
Hyperproperty-Preserving
Register Specifications

YOAV BEN SHIMON, ORI LAHAV, SHARON SHOHAM

TEL AVIV UNIVERSITY

Verification via Abstraction

?
Client Program

Object Implementation

⊨ 𝜑invocations responses

Verification via Abstraction

⟹?
Client Program

Object Implementation

⊨ 𝜑
Client Program

Object Specification

⊨ 𝜑

Verification via Abstraction

⟹?
Client Program

Object Implementation

⊨ 𝜑
Client Program

Object Specification

⊨ 𝜑

reference
implementation

Abstraction via Linearizability
§If 𝜑 is a trace property (e.g., bad state not reachable):

§Does not work for hyperproperties [Golab, Higham, Woelfel ’11] [Attiya, Enea ’19]

⟹
Client Program

Linearizable
Object Implementation

⊨ 𝜑
Client Program

Atomic
Object Specification

⊨ 𝜑

Example: Program using Shared Register

𝜑 =“Pr 𝑎 = 𝑏 = !
"

for
any strong adversary”

sees coin toss results
controls scheduling & non-determinism

Double-load:Atomic:

Example: Program using Shared Register

𝜑 =“Pr 𝑎 = 𝑏 = !
"

for
any strong adversary”

sees coin toss results
controls scheduling & non-determinism

⊨
Double-load:Atomic:

Example: Program using Shared Register

𝜑 =“Pr 𝑎 = 𝑏 = !
"

for
any strong adversary”

sees coin toss results
controls scheduling & non-determinism

Double-load:

Linearizable

Example: Program using Shared Register

𝜑 =“Pr 𝑎 = 𝑏 = !
"

for
any strong adversary”

sees coin toss results
controls scheduling & non-determinism

⊭
Double-load:

𝑋 ← 1

𝑜𝑢𝑡! ← 1 𝑜𝑢𝑡" ← 2

𝑎 ← 𝑐

𝐫𝐞𝐭𝐮𝐫𝐧 𝑜𝑢𝑡# 𝑏 ← 𝑐

𝑋 ← 2

Hyperproperty Preservation via Strong Linearizability
§If 𝜑 is a property of sets of traces generated by strong adversaries:

§Indeed, the double-load register implementation is not strongly linearizable

[Golab, Higham, Woelfel ’11]

⟹
Client program

Strongly Linearizable
Object Implementation

⊨ 𝜑
Client program

Atomic
Object Specification

⊨ 𝜑

Strong Linearizability is Rarely Achievable
§Various impossibility results for strongly linearizable implementations
§Example: Crash-resilient lock-free message passing register implementation
§No strongly linearizable implementation exists
§ In particular, ABD [Attiya, Bar-Noy, Dolev ’95] is not strongly linearizable

§

Strong Linearizability is Rarely Achievable
§Various impossibility results for strongly linearizable implementations
§Example: Crash-resilient lock-free message passing register implementation
§No strongly linearizable implementation exists
§ In particular, ABD [Attiya, Bar-Noy, Dolev ’95] is not strongly linearizable

§Problem: how to reason about hyperproperties of clients that use non-strongly
linearizable implementations, such as ABD?

Our Contributions

§ In the form of (non-atomic)
reference-implementations

§Enable reasoning about
hyperproperties of clients that
use non-strongly linearizable
implementations

§

§

§

§Simple shared memory register specifications

Our Contributions

§ In the form of (non-atomic)
reference-implementations

§Enable reasoning about
hyperproperties of clients that
use non-strongly linearizable
implementations

§“Complete” for a range of
linearizability classes, including:
§Write strong-linearizability

[Hadzilacos, Hu, Toueg ’21]

§Decisive linearizability

Novel linearizability class

Linearizability

Decisive Linearizability

Write Strong-Linearizability

Strong Linearizability

§Simple shared memory register specifications

Hyperproperty Preservation via Simulation
§Preservation of hyperproperties ≡ forward simulation [Attiya, Enea ’19]

⟹
Client Program

Object Implementation

⊨ 𝜑
Client Program

Object Specification

⊨ 𝜑

Hyperproperty Preservation via Simulation
§Preservation of hyperproperties ≡ forward simulation [Attiya, Enea ’19]

⟹
Client Program

Object Implementation

⊨ 𝜑
Client Program

Object Specification

⊨ 𝜑
≥!"#$%&'"()

§𝒞 - class of implementations
§An implementation 𝐼 is
§𝓒-hard if 𝐼! ≤#$%&'()$*+ 𝐼 for all 𝐼! ∈ 𝒞
§𝓒-complete if additionally, 𝐼 ∈ 𝒞

§Example: Atomic implementation is complete for the class of strongly
linearizable implementations

§

§

Complete Implementations

§𝒞 - class of implementations
§An implementation 𝐼 is
§𝓒-hard if 𝐼! ≤#$%&'()$*+ 𝐼 for all 𝐼! ∈ 𝒞
§𝓒-complete if additionally, 𝐼 ∈ 𝒞

§Example: Atomic implementation is complete for the class of strongly
linearizable implementations
§Problem reformulation: devise complete implementations for
(non-strong) linearizability classes

§

simple

Complete Implementations

§𝒞 - class of implementations
§An implementation 𝐼 is
§𝓒-hard if 𝐼! ≤#$%&'()$*+ 𝐼 for all 𝐼! ∈ 𝒞
§𝓒-complete if additionally, 𝐼 ∈ 𝒞

§Example: Atomic implementation is complete for the class of strongly
linearizable implementations
§Problem reformulation: devise complete implementations for
(non-strong) linearizability classes

§

simple

Complete Implementations

§𝒞 - class of implementations
§An implementation 𝐼 is
§𝓒-hard if 𝐼! ≤#$%&'()$*+ 𝐼 for all 𝐼! ∈ 𝒞
§𝓒-complete if additionally, 𝐼 ∈ 𝒞

§Example: Atomic implementation is complete for the class of strongly
linearizable implementations
§Problem reformulation: devise complete implementations for
(non-strong) linearizability classes
§Focus on registers

simple

Complete Implementations

𝒞 = Write Strong Linearizability [Hadzilacos, Hu, Toueg ’21]

§Includes all single-writer register implementations
§Specifically, single-writer ABD

§The “Write Strong Register” is complete:

§

§

𝒞 = Write Strong Linearizability [Hadzilacos, Hu, Toueg ’21]

§Includes all single-writer register implementations
§Specifically, single-writer ABD

§The “Write Strong Register” is complete:

§Captures hyperproperties of single-writer ABD
§What about multi-writer ABD?

Example: Multiple Writers
§When using multi-writer ABD, can force 𝑎 = 𝑏
(Proof in the paper)

§

Try-not-to-store:

Example: Multiple Writers
§When using multi-writer ABD, can force 𝑎 = 𝑏
(Proof in the paper)
§Shared memory implementation capturing this
behavior: Try-not-to-store register

𝑙! ← 0 𝑙" ← 1

𝑋 ← 1 𝑎 ← 𝑐

𝑋 ← 2

𝑏 ← 1

𝑏 ← 2

Reference Implementation for Multi-Writer ABD
§Combines ideas from the Write-strong and Try-not-to-store registers
§Comparing version numbers instead of register values
§Communicating “overwritten” writes to concurrent reads
§Details in the paper

§Captures hyperproperties of multi-writer ABD

§

Reference Implementation for Multi-Writer ABD
§Combines ideas from the Write-strong and Try-not-to-store registers
§Comparing version numbers instead of register values
§Communicating “overwritten” writes to concurrent reads
§Details in the paper

§Captures hyperproperties of multi-writer ABD

§Next: decisive linearizability, a new class of linearizable
implementations for which this implementation is complete

Decisive Linearizability
§𝑒 ⊑ 𝑠: execution 𝑒 linearized by sequential history 𝑠
§

§

§

§

⊑

Decisive Linearizability
§𝑒 ⊑ 𝑠: execution 𝑒 linearized by sequential history 𝑠
§An implementation 𝐼 is:
§Linearizable if there exists a mapping 𝐿: executions 𝐼 → Seq s.t. ∀𝑒. 𝑒 ⊑ 𝐿 𝑒
§

§Strongly Linearizable if 𝑒" ≤#$%&'(𝑒) ⟹ 𝐿 𝑒" ≤#$%&'(𝐿 𝑒)

Lin. Decisive Strong

ü ü ü

ü ü ✗

ü ✗ ✗

Decisive Linearizability
§𝑒 ⊑ 𝑠: execution 𝑒 linearized by sequential history 𝑠
§An implementation 𝐼 is:
§Linearizable if there exists a mapping 𝐿: executions 𝐼 → Seq s.t. ∀𝑒. 𝑒 ⊑ 𝐿 𝑒
§Decisively Linearizable if 𝑒" ≤#$%&'(𝑒) ⟹ 𝐿 𝑒" ≤*+,*%-+%./% 𝐿 𝑒)
§Strongly Linearizable if 𝑒" ≤#$%&'(𝑒) ⟹ 𝐿 𝑒" ≤#$%&'(𝐿 𝑒)

𝐿

𝐿

Conclusion
§Simple shared memory register specifications:
§Write strong register
§Decisive register
§General construction (in the paper)

Linearizability

Decisive Linearizability

Write Strong-Linearizability

Strong Linearizability

§Enable reasoning about
hyperproperties of clients that
use implementations satisfying
certain linearizability criteria

§New linearizability class: decisive
linearizability
§Applicable beyond registers

Conclusion
§Simple shared memory register specifications:
§Write strong register
§Decisive register
§General construction (in the paper)

Linearizability

Decisive Linearizability

Write Strong-Linearizability

Strong Linearizability

§Enable reasoning about
hyperproperties of clients that
use implementations satisfying
certain linearizability criteria

§New linearizability class: decisive
linearizability
§Applicable beyond registers

