Hyperproperty-Preserving
Register Specifications

YOAV BEN SHIMON, ORI LAHAV, SHARON SHOHAM
TEL AVIV UNIVERSITY

Verification via Abstraction

Client Program

invocationsl Iresponses — (p

Verification via Abstraction

Client Program Client Program
?
Object Specification Object Implementation

Verification via Abstraction

Client Program Client Program
?
Object Specification Object Implementation
l
reference

implementation

Abstraction via Linearizability

"|If @ is a trace property (e.g., bad state not reachable):

Client Program Client Program
Atomic Linearizable
Object Specification Object Implementation

*Does not work for hyperproperties [Golab, Higham, Woelfel '11] [Attiya, Enea '19]

Example: Program using Shared Register

write(l);
write(2); b < read(); v . 1
a + coin(); ¢ ="Prla = b] = Efor

l I any strong adversary”

Atomic:

Method write (v) sees coin toss results
X « v controls scheduling & non-determinism
return;

Method read()
out < X;
return out;

Example: Program using Shared Register

write(l);

write(2); b < read(); v . 1
a + coin(); ¢ ="Prla = b] = Efor

l I |: any strong adversary”

Atomic:

Method write (v) sees coin toss results
X « v controls scheduling & non-determinism
return;

Method read()
out < X;
return out;

Example: Program using Shared Register

write(l);
write(2); b <+ read();
a < coin();

I

Double-load:

Method write (v)
X < v;

‘ return;
Method read ()
outy <+ X;
outs < X;
if * then return out;;
else return outs;

@ ="Pr|la = b| = %for
any strong adversary”

sees coin toss results
controls scheduling & non-determinism

» Linearizable

Example: Program using Shared Register

write(l);
write(2); b <+ read();
a < coin();

I

Double-load:
Method write (v)

X < v;

‘ return;

Method read ()

out1 < X;

outs < X;

if * then return out;;
else return outs;

@ =“Prla = b] = %for
I?& any strong adversary”

sees coin toss results
controls scheduling & non-determinism

write(l); write(2); coin(); °
Xe1 X2 a<c
read();

yperproperty Preservation via Strong Linearizability

*|If @ is a property of sets of traces generated by strong adversaries:

Client program

I 1

Atomic
Object Specification

=@ =

Client program

I 1

= ¢

Strongly Linearizable
Object Implementation

[Golab, Higham, Woelfel "11]

"Indeed, the double-load register implementation is not strongly linearizable

Strong Linearizability is Rarely Achievable

=\/arious impossibility results for strongly linearizable implementations

sExample: Crash-resilient lock-free message passing register implementation
" No strongly linearizable implementation exists
" |n particular, ABD [attiya, Bar-Noy, Dolev’95] is not strongly linearizable

Strong Linearizability is Rarely Achievable

=\/arious impossibility results for strongly linearizable implementations

sExample: Crash-resilient lock-free message passing register implementation
" No strongly linearizable implementation exists
" |n particular, ABD [attiya, Bar-Noy, Dolev’95] is not strongly linearizable

"Problem: how to reason about hyperproperties of clients that use non-strongly
linearizable implementations, such as ABD?

Our Contributions

=Simple shared memory register specifications

*|n the form of (non-atomic)
reference-implementations

" Enable reasoning about
hyperproperties of clients that
use non-strongly linearizable
implementations

Client Program

I 1

Object Specification

i

Client Program

I 1

Object Implementation

i

Our Contributions

=Simple shared memory register specifications
*|n the form of (non-atomic)
reference-implementations

Client Program Client Program

" Enable reasoning about I 1 o = [1 =¢
hype rp rope rt|es Of Cllents that Object Specification Object Implementation
use non-strongly linearizable
implementations Linearizability

= “Complete” for a range of Decisive Linearizability

linearizability classes, including:

= Write strong-linearizability
[Hadzilacos, Hu, Toueg '21]

" Decisive linearizability

|

Novel linearizability class

Write Strong-Linearizability

Strong Linearizability

yperproperty Preservation via Simulation

"Preservation of hyperproperties = forward simulation [attiya, enea’19]

Client Program Client Program

| 1 = = | 1 = @

Object Specification Object Implementation

yperproperty Preservation via Simulation

"Preservation of hyperproperties = forward simulation [attiya, enea’19]

Object Specification Zsimulation

Object Implementation

Complete Implementations

"C - class of implementations

“An implementation [is
=C-hard if I" <gimulation I foralll’ € C

= C-complete if additionally, I € C

"Example: Atomic implementation is complete for the class of strongly
linearizable implementations

Complete Implementations

"C - class of implementations

“An implementation [is
=C-hard if I" <gimulation I foralll’ € C

= C-complete if additionally, I € C

"Example: Atomic implementation is complete for the class of strongly
linearizable implementations

"Problem reformulation: devise simple complete implementations for
(non-strong) linearizability classes

Complete Implementations

"C - class of implementations

“An implementation [is
=C-hard if I" <gimulation I foralll’ € C

= C-complete if additionally, I € C

"Example: Atomic implementation is complete for the class of strongly
linearizable implementations

"Problem reformulation: devise simple complete implementations for
(non-strong) linearizability classes

Complete Implementations

"C - class of implementations

“An implementation [is
=C-hard if I" <gimulation I foralll’ € C

= C-complete if additionally, I € C

"Example: Atomic implementation is complete for the class of strongly
linearizable implementations

"Problem reformulation: devise simple complete implementations for
(non-strong) linearizability classes

"Focus on registers

C = erte StrOﬂg Llﬂea rlza blllty [Hadzilacos, Hu, Toueg '21]

"Includes all single-writer register implementations
= Specifically, single-writer ABD

"The “Write Strong Register” is complete:

Method write(v) Method read ()
X + v; V— {X};
return; do
| (VpreVa V) = (Va VU {X}>a
while V # Vprev;
out < pick v € V;
return out;

C = erte StrOﬂg Llﬂea rlza blllty [Hadzilacos, Hu, Toueg '21]

"Includes all single-writer register implementations
= Specifically, single-writer ABD

"The “Write Strong Register” is complete:

Method write(v) Method read ()
X + v; V— {X};
return; do
| Vorev, V) = (V,VU{X});
while V # Vprev;
out < pick v € V;
return out;

=Captures hyperproperties of single-writer ABD

=\WWhat about multi-writer ABD?

Example: Multiple Writers
write(1); |lwrite(2): *When using multi-writer ABD, can forcea = b
e) (Proof in the paper)
barrier(); ||barrier();
b <+ read();

Example: Multi

ple Writers

write(1l);
a < coin();
barrier();

write(2);

barrier();
b+ read();

|

I

*When using multi-writer ABD, can forcea = b
(Proof in the paper)

sShared memory implementation capturing this
behavior: Try-not-to-store register

Try-not-to-store:

l1 +— X;
lo +— X;
if * then

X < v;
return;

Method write (v)

write(1l); coin();
MethOd read() e e TTTTTTE .|_|..... ...
X <1 a<c
out +— X;
return out; read();

if {1 # [then
| return;

Reference Implementation for Multi-Writer ABD

"Combines ideas from the Write-strong and Try-not-to-store registers
= Comparing version numbers instead of register values

* Communicating “overwritten” writes to concurrent reads
= Details in the paper

"Captures hyperproperties of multi-writer ABD

Reference Implementation for Multi-Writer ABD

"Combines ideas from the Write-strong and Try-not-to-store registers
= Comparing version numbers instead of register values

* Communicating “overwritten” writes to concurrent reads
= Details in the paper

"Captures hyperproperties of multi-writer ABD

"Next: decisive linearizability, a new class of linearizable
implementations for which this implementation is complete

Decisive Linearizability

"e C s: execution e linearized by sequential history s
[— f—

e —]

) @ —

Decisive Linearizability

"e C s: execution e linearized by sequential history s

“An implementation I is:
= Linearizable if there exists a mapping L: executions(I) — Seqs.t. Ve.e E L(e)

= Strongly Linearizable if e; <¢fix €2, = L(e1) <prefix L(e2)

Decisive Linearizability

"e C s: execution e linearized by sequential history s

“An implementation I is:
= Linearizable if there exists a mapping L: executions(I) — Seqs.t. Ve.e E L(e)

" Decisively Linearizable if e; <jqrix €2 = L(e;) <subsequence L(e,)
= Strongly Linearizable if e; <¢fix €2, = L(e1) <prefix L(e2)

L —

Conclusion

=Simple shared memory register specifications:
= \Write strong register

Client Program Client Program

= Decisive register [1 = @ s [1 =
= General construction (in the paper)

Object Specification Object Implementation

"Enable reasoning about
hyperproperties of clients that Linearizability
use implementations satisfying
certain linearizability criteria

*New linearizability class: decisive Write Strong-Linearizability
linearizability

= Applicable beyond registers

Decisive Linearizability

Strong Linearizability

Conclusion

=Simple shared memory register specifications:
= \Write strong register

Client Program Client Program

= Decisive register [1 = @ s [1 =
= General construction (in the paper)

Object Specification Object Implementation

"Enable reasoning about
hyperproperties of clients that Linearizability
use implementations satisfying
certain linearizability criteria

*New linearizability class: decisive Write Strong-Linearizability
linearizability

= Applicable beyond registers
Thank You!

Decisive Linearizability

Strong Linearizability

