
What Cannot Be Implemented on Weak Memory?
Armando Castañeda #

Instituto de Matemáticas, Universidad Nacional Autónoma de México

Gregory Chockler #

Department of Computer Science, University of Surrey

Brijesh Dongol #

Department of Computer Science, University of Surrey

Ori Lahav #

School of Computer Science, Tel Aviv University

Abstract
We present a general methodology for establishing the impossibility of implementing certain con-
current objects on different (weak) memory models. The key idea behind our approach lies in
characterizing memory models by their mergeability properties, identifying restrictions under which
independent memory traces can be merged into a single valid memory trace. In turn, we show that
the mergeability properties of the underlying memory model entail similar mergeability requirements
on the specifications of objects that can be implemented on that memory model. We demonstrate
the applicability of our approach to establish the impossibility of implementing standard distributed
objects with different restrictions on memory traces on three memory models: strictly consistent
memory, total store order, and release-acquire. These impossibility results allow us to identify tight
and almost tight bounds for some objects, as well as new separation results between weak memory
models, and between well-studied objects based on their implementability on weak memory models.

2012 ACM Subject Classification Theory of computation → Distributed computing models; Theory
of computation → Concurrent algorithms

Keywords and phrases Impossibility, Weak Memory Models, Total-Store Order, Release-Acquire

Digital Object Identifier 10.4230/LIPIcs.DISC.2024.6

Related Version Full Version: https://arxiv.org/abs/2405.16611

Funding Armando Castañeda: Supported by DGAPA PAPIIT project IN108723 and Royal Society
grant IES\R1\221226.
Gregory Chockler : Supported by Royal Society grant: IES\R1\221226; CHIST-ERA project RE-
DONDA EP/Y036425/1; and EPSRC grants: EP/X037142/1 and EP/X015149/1.
Brijesh Dongol: Supported by VeTSS; Royal Society grant: IES\R1\221226; CHIST-ERA project
REDONDA EP/Y036425/1; and EPSRC grants: EP/X037142/1, EP/X015149/1, EP/V038915/1,
and EP/R025134/2.
Ori Lahav: Supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement no. 851811) and the Israel
Science Foundation (grant number 814/22).

1 Introduction

Weak memory models have become standard in modern hardware architectures and pro-
gramming languages. Unlike traditional strictly consistent memory (SCM), which provides
atomic read/write instructions, memories achieve efficiency by multiple optimizations, which,
in particular, delay propagation of writes instead of making them immediately visible to
subsequent reads in other threads. Two well-studied models, which we consider in this paper,
are total store order model (TSO), as implemented in SPARC [36, 23] and x86 multiproces-

© Armando Castañeda, Gregory Chockler, Brijesh Dongol, and Ori Lahav;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Distributed Computing (DISC 2024).
Editor: Dan Alistarh; Article No. 6; pp. 6:1–6:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:armando.castaneda@im.unam.mx
https://orcid.org/0000-0002-8017-8639
mailto:g.chockler@surrey.ac.uk
https://orcid.org/0000-0001-6700-9235
mailto:b.dongol@surrey.ac.uk
https://orcid.org/0000-0003-0446-3507
mailto:orilahav@tau.ac.il
https://orcid.org/0000-0003-4305-6998
https://doi.org/10.4230/LIPIcs.DISC.2024.6
https://arxiv.org/abs/2405.16611
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 What Cannot Be Implemented on Weak Memory?

Example 1 Linearizable Obstruction-Free Set
Consider a set object that provides the high-level operations add(v) and remove(v), where remove
returns true iff the element v is in the abstract set and in this case removes v from the set. Consider
the following histories assuming two processes:

p1 : |add(1) ack| |remove(1) true|
p2 :

p1 : |add(1) ack|
p2 : |remove(1) true|

history h1 history h2

Let σ0 be the trace of a set implementation I generated by p1 executing add(1) until completion from
the initial state, and for i ∈ {1, 2}, let σi be the trace generated by pi after σ0 to induce history hi.
Such traces must exist assuming I is obstruction-free. If σ1 and σ2 can be merged into a trace σ such
that σ0 · σ is a valid trace of a memory model M , then we reach a contradiction because p1 (resp.,
p2) cannot distinguish between σ1 (resp., σ2) and σ, and thus both remove operations of p1 and p2

in σ return true, contradicting linearizability of I. In other words, since the two remove invocations
cannot be merged into a single linearizable object history, it must be that the corresponding memory
traces cannot be merged. In particular, if σ1 and σ2 have neither RAW nor RMW, then they can
always be merged on SCM, which gives us the impossibility result of [6] for this object.

sors [31], and the weaker release-acquire model (RA), a fragment of C/C++11 [8, 26], which
guarantees causal consistency together with per-location strict consistency (a.k.a. coherence).

The standard memory model for the design and analysis of asynchronous shared memory
algorithms is SCM. These algorithms however, are not guaranteed to work correctly on
weaker memory models (such as TSO and RA) due to the lack of atomicity of reads
and writes. To ensure atomicity, one can use fence or atomic read-modify-write (RMW)
instructions provided by the weak memory models. However, since fences and RMWs disable
hardware optimizations and enforce synchronization between threads, they incur substantial
performance overheads. Thus, one would like to understand when fences and RMWs are
necessary and when they can be avoided, in order to correctly and efficiently implement the
large body of existing shared memory algorithms on weak memory architectures.

In this paper, we set out to tackle this important and challenging question. The crux of
our approach is based on mergeability of traces and object histories. Roughly speaking, two
memory traces (sequences of memory accesses) of some memory model M are strongly (resp.,
weakly) mergeable if every (resp., some) interleaving of these traces forms a valid trace of M .
Likewise, two object histories (sequences of invocations and responses) of some object O are
strongly (resp., weakly mergeable) if every (resp., some) interleaving of these histories forms
a valid history of O. Then, our key result is the Merge Theorem, which, roughly speaking,
states that strongly (resp., weakly) mergeable memory traces can only be used to implement
strongly (resp., weakly) mergeable object histories. Contrapositively, when operations of a
certain concurrent object are not strongly (resp., weakly) mergeable, then the memory traces
implementing these operations on a memory model M cannot be strongly (resp., weakly)
mergeable in M . The correctness and progress conditions in the Merge Theorem are weaker
versions of linearizability [22] and obstruction-freedom [21].

A prerequisite for applying our Merge Theorem for a particular memory model is to
identify useful mergeability properties of the model. For SCM, TSO, and RA, we develop a
set of properties (see Table 1) that describe conditions under which traces of the models can
be (weakly/strongly) merged. These results provide key insights into the synchronization
power of these memory models, and together with the Merge Theorem allow us to derive
multiple impossibility results, and identify optimal implementations.

For instance, consider the read-after-write pattern (RAW), which is often used by shared

A. Castañeda, G. Chockler, B. Dongol, and O. Lahav 6:3

memory algorithms under SCM (such as classical mutual exclusion [17, 28]) as a synchroniza-
tion mechanism. In RAW, a process first writes to a shared variable and then reads from a
different shared variable, and under SCM, this ensures that at least one of the two processes
writing to two different variables has to observe the value written by the other process (see
the SB program in §2). This means that solo traces that use RAW are not mergeable into a
single trace. In turn, it is straightforward to establish that any two RAW-free read-write
traces (by distinct processes) are weakly mergeable under SCM (§3).

With this observation, we easily re-establish (and generalize) the “Laws of Order” results
from [6], showing that mutual exclusion protocols, as well as concurrent objects with strongly
non-commutative methods, cannot be implemented on SCM with neither RAW nor RMW.
We do so by simple mergeability-based arguments (see, e.g., Example 1), instead of rather
complex and ad-hoc application of the covering technique used in [6]. Intuitively, two methods
are strongly non-commutative if executing one of them first affects the response of the other,
and vice versa. Moreover, by using mergeability properties for TSO and RA we directly
obtain similar impossibility results for these models, whereas the argument in [6] for weak
memory models is only implicit, based on the fact that enforcing a write to be executed
before a read (i.e., implementing RAW) on a weak model requires a fence.

A benefit of our generic methodology is that we can also reason about implementability
of methods that are not strongly non-commutative, hence not covered by [6]:

One-Sided Non-Commutative Operations. Some objects such as register, max-register,
snapshot and monotone counter have pairs of methods that do not strongly non-commute. To
support them, we consider one-sided non-commutativity of pairs of methods, which, roughly
speaking, means that executing one of them first affects the response of the other, but not
necessarily vice versa. We then apply the Merge Theorem to show that any linearizable
obstruction-free implementations of these objects must use fences or RMWs in TSO and RA.

Then, for max-register, a useful building block in several implementations, e.g., [3, 7, 15],
we obtain fence-optimal implementations in TSO and RA. The TSO implementation is
obtained through a more general fence-insertion strategy: a transformation that takes any
read/write linearizable implementation in SCM and adds fences between every write followed
by a read or a return of an operation, provably resulting in a linearizable implementation in
TSO. Combined with a wait-free read/write max-register implementation in SCM (with uses
neither RAW nor RMW), the transformation gives a fence-optimal wait-free read/write max-
register implementation in TSO. For RA, we develop a similar linearizable implementation by
placing a fence in the beginning and the end of every operation, which leads to a fence-optimal
implementation of max-register in RA.

Snapshot and Counter. We also reason about snapshot and (non-monotone) counter, which
fall beyond the scope of non-commutativity. These two objects are of particular interests:
snapshot is universal for a family of objects whose pairs of operations either commute or one
overwrites the other [5], and counter is a useful building block for randomized consensus [2, 4].
For TSO, the fence-insertion transformation above once again provides a wait-free fence-
optimal snapshot (resp., counter) implementation where every update operation ends with a
fence. However, we use our Merge Theorem to show that, in sharp contrast to max-register,
there is no obstruction-free read/write snapshot (resp., counter) implementation in RA,
whose operations start with a fence and end with a fence (see outline in Example 2). To
the best of our knowledge, this is the first sharp separation between max-register on the one
hand and snapshot and counter on the other in terms of their implementability under RA
using only reads, writes and fences.

DISC 2024

6:4 What Cannot Be Implemented on Weak Memory?

Example 2 Linearizable Obstruction-Free Snapshot
Mergeability can justify a novel impossibility result for RA, showing that a shared (single-writer
multi-reader) snapshot object cannot be implemented with only reads, writes and fences under the
restriction that all fences are only placed at the beginning and end of a method invocation. Consider
the following histories assuming three processes:

p1 : |update(1) ack|
p2 :
p3 : |scan ⟨1,⊥,⊥⟩|

p1 :
p2 : |update(1) ack| |scan ⟨⊥,1,⊥⟩|
p3 :

history h1 history h2

An obstruction-free implementation should generate both histories. A merge-based argument implies
that the memory traces σ1 and σ2 induced by the implementation when it generates h1 and h2 must
not be mergable in the underlying memory model. Otherwise, the same algorithm will also allow
some interleaving h of h1 and h2, but it is easy to observe that no such interleaving is linearizable:
no valid single history h with only two updates, update(1) by p1 and update(1) by p2, can have both
scan results ⟨1, ⊥, ⊥⟩ and ⟨⊥, 1, ⊥⟩. The RA memory model allows any two RMW-free traces σ1

and σ2 by disjoint sets of processes to be merged, provided that fences are not used in the middle of
these traces. Roughly speaking, following [26, 24], the semantics of RA is based on point-to-point
communication, making it is possible for p1 and p3 to communicate directly, without affecting p2.
Thus, every implementation of snapshot on RA uses RMWs or fences in the middle of operations.

Outline. The rest of this paper is structured as follows. In §2 we define the notion of a
memory model. In §3 we establish multiple mergeability properties for these memory models.
In §4 we present the general impossibility result. In §5 we discuss applications of the theorem
for well known objects, and tightness of the obtained lower bounds. We conclude and discuss
related work in §6. The full version of that paper [14] contains more details and full proofs.

2 Weak Memory Models

In this paper, we consider three memory models:

Strictly Consistent Memory (SCM): In this model every write is propagated to all threads
immediately after being executed. In the weak memory literature, this memory model is
often referred to as sequential consistency, but it essentially corresponds to a collection of
linearizable (a.k.a. atomic) register objects [22].
Total Store Order (TSO): Each process has a local FIFO store buffer. Writes are first
enqueued in the buffer of the writing process, and later propagate from the buffer to main
memory in an internal step that occurs non-deterministically as part of the system’s execution.
A read of a variable returns the latest write to the variable in the reading process’ buffer or
the value in main memory if there is no pending write to that variable in the buffer.
Release/Acquire (RA): This model employs a notion of synchronization between processes
through acquiring instructions (read or RMW) which synchronize with previously executed
releasing instructions (write or RMW) when the acquiring instruction reads its value from the
releasing instruction. Such synchronization transfers “happens-before” knowledge from the
releasing instruction to the acquiring instruction. Following a release-acquire synchronization,
instructions that follow (in “happens-before” order) the acquire instruction must be consistent
with the happens-before knowledge received through the synchronization.

The classic examples used to explain these memory models are the store buffering (SB),
independent reads of independent writes (IRIW), and message passing (MP) programs, given

A. Castañeda, G. Chockler, B. Dongol, and O. Lahav 6:5

below. We assume shared variables x and y initialized with the value 0 and process-local
variables a, b, The possible final values of a, b, ... depend on the memory model.

Proc p1

x := 1;
a := y;

Proc p2

y := 1;
b := x;

(SB)

Proc p1

x := 1;
Proc p2

a := x;
b := y;

Proc p3

c := y;
d := x;

Proc p4

y := 1;

(IRIW)

Proc p1

x := 1;
y := 1;

Proc p2

a := y;
b := x;

(MP)

Under SCM, no execution of SB ends with a = b = 0, while this outcome is possible
under both TSO and RA. Under both SCM and TSO, no execution of IRIW ends with
a = c = 1 and b = d = 0, while this outcome is possible under RA, indicating that under RA,
processes p2 and p3 observe the writes to x and y in a different order. In particular, under
RA, suppose that both p1 and p4 execute their writes. It is possible for p2 (resp., p3) to read
the new value for x (resp., y) then read the old value for y (resp., x). Although RA is weaker
than both SCM and TSO, like TSO, RA maintains causal consistency as demonstrated MP.
Under all three memory models, when MP terminates, if a = 1, then b = 1, indicating that if
p2 is aware of the write to y by p1, then it must also be aware of the prior write to x.

Non-SCM-outcomes (a.k.a. weak behaviors) can be avoided in weak memory models by
using fence instructions. In TSO fences drain the store buffer of the process that executes
the fence. In RA fences synchronize in pairs, transferring happens-before knowledge from
one process to another. We formally include fences also in SCM (with “no-op” semantics).

2.1 Formalizing Weak Memory Models
For the formal definitions of the models, we find it most convenient to follow an operational
presentation, where memory models are specified by labeled transition systems.

Sequences. For a sequence s = ⟨x1, ... ,xn⟩, s[i] denotes the ith element of s (i.e., xi), and
|s| denotes the length of s (i.e., n). We write x ∈ s when s[i] = x for some 1 ≤ i ≤ n. We
denote by ε the empty sequence, write s1 · s2 for concatenation of s1 and s2 and denote
by X∗ the set of all sequences over elements of a set X. The restriction of a sequence s

w.r.t. a set Y , denoted s|Y , is the longest subsequence of s that consists only of elements
in Y . These notations are lifted to sets in the obvious way (e.g., S · s′ ≜ {s · s′ | s ∈ S}
and S|Y ≜ {s|Y | s ∈ S}). We use the suffix ‘-set’ to lift a function f from some set X to a
function form sequences over X, formally defined by: f -set(s) ≜ {f(s[i]) | 1 ≤ i ≤ |s|}.
Labeled Transition Systems (LTSs). An LTS L consists of a set of states, states(L); an
initial state, init(L) ∈ states(L); a set of transition labels, labels(L); and a set of transitions,
trans(L) ⊆ states(L) × labels(L) × states(L). We write q

l−→L q′ for ⟨q, l, q′⟩ ∈ trans(L), and
given π = ⟨l1, ... ,ln⟩ ∈ labels(L)∗, we write q

π−→L q′ for ∃q2, ... ,qn. q
l1−→L q2

l2−→L ... qn
ln−→L q′.

An execution fragment of L is a sequence α = ⟨q0, l1, q1, l2, ... ,ln, qn⟩ of alternating states and
transition labels such that qi

li+1−−→L qi+1 for every 0 ≤ i ≤ n − 1. The trace of α, denoted
trace(α), is the restriction of α w.r.t. labels(L). We denote by traces(L, q) the set of all
sequences that are traces of some execution fragment α of L that starts from q ∈ states(L).
An execution fragment α of L is an execution of L if it starts from init(L). A sequence π of
transition labels is a trace of L if it is a trace of some execution of L. We denote by traces(L)
the set of all traces of L (so we have traces(L) = traces(L, init(L))).
Domains. We assume sets Var of shared variables and Val of values with a distinguished
initial value 0 ∈ Val. We let P ≜ {p1, ... ,pN } be the set of process identifiers.
Memory Actions. Memory operations execute atomically using memory actions, which
include both argument and return values. Formally, a memory action a ∈ MemActs is one the

DISC 2024

6:6 What Cannot Be Implemented on Weak Memory?

following (where x ∈ Var and v, vold, vnew ∈ Val): (i) write action of the form W(x, v); (ii) read
action of the form R(x, v); (iii) RMW action of the form RMW(x, vold, vnew); and (iv) fence
action of the form F. We denote by typ(a) the type of the memory action a (W, R, RMW, or F)
and by var(a) the variable accessed by action a (when applicable).
Memory Events. A memory event e ∈ MemEvs is a pair e = p:a where p ∈ P and a ∈
MemActs. We use proc(e) and act(e) to retrieve the components of e (p and a, respectively).
The functions typ(·) and var(·) are lifted to events in the obvious way.
Memory Models. The semantics of the memory operations is given by an LTS, called a
memory model. The transition labels of a memory model M , labels(M) ≜ MemEvs ∪ {τ},
consist of memory events, as well as τ , which represents a silent memory internal step.

We demonstrate the formulation of TSO as an LTS. The formal models for SCM and RA
can be found in [14].

▶ Definition 2.1. TSO’s states are pairs ⟨m, b⟩, where m ∈ Var → Val is the main memory
and b ∈ P → (Var × Val)∗ assigns a store buffer to every process; the initial state is
init(TSO) ≜ ⟨λx. 0, λp. ε⟩ (i.e., all variables in memory are zeroed and all store buffers are
empty); and the transitions are as follows, where β|x denotes the restriction of a store buffer
β to pairs of the form ⟨x, _⟩:

write
e = p:W(x, v)

b′ = b[p 7→ b(p) · ⟨x, v⟩]
⟨m, b⟩ e−→ ⟨m, b′⟩

read-from-buffer
e = p:R(x, v)

b(p)|x = _ · ⟨⟨x, v⟩⟩
⟨m, b⟩ e−→ ⟨m, b⟩

read-from-memory
e = p:R(x, v)

b(p)|x = ε m(x) = v

⟨m, b⟩ e−→ ⟨m, b⟩

rmw
e = p:RMW(x, vold, vnew)

b(p) = ε m(x) = vexp

⟨m, b⟩ e−→ ⟨m[x 7→ vnew], b⟩

fence
e = p:F
b(p) = ε

⟨m, b⟩ e−→ ⟨m, b⟩

propagate
b(p) = ⟨⟨x, v⟩⟩ · β

m′ = m[x 7→ v] b′ = b[p 7→ β]
⟨m, b⟩ τ−→ ⟨m′, b′⟩

Memory Sequences. We refer to sequences ρ ∈ (MemEvs ∪ {τ})∗ as memory sequences and
to sequences σ ∈ MemEvs∗ as observable memory sequences. We use the following notations:

σ|p denotes the restriction of σ w.r.t. {e ∈ MemEvs | proc(e) = p}.
otraces(M, q) denotes the set of all observable memory sequences obtained by restricting
traces of M from a state q to non-τ steps, i.e., otraces(M, q) ≜ traces(M, q)|MemEvs.
otraces(M) ≜ traces(M)|MemEvs is the set of all observable memory sequences of M .

Stable States. A state q ∈ states(M) is stable if q ̸ τ−→M q′ for any q′ ∈ states(M). Every
state of SCM is stable, a state of TSO is stable iff all store buffers are empty, and a state of
RA is stable iff all processes are aware of all writes.
Well-Behaved Memory Models. TSO is strictly weaker than SCM and RA is strictly weaker
than TSO, which formally means that otraces(SCM) ⊊ otraces(TSO) ⊊ otraces(RA). In the
sequel we will need the following assumption on memory models:

▶ Definition 2.2. A memory model M is well-behaved if there exists a simulation R from SCM
to M whose codomain consists solely of stable states. That is, there should exist a relation
R ⊆ states(SCM) × {q ∈ states(M) | q is stable} such that (i) ⟨init(SCM), init(M)⟩ ∈ R; and
(ii) if ⟨m, q⟩ ∈ R and m

l−→SCM m′, then q
l−→M

τ−→
∗
M q′ and ⟨m′, q′⟩ ∈ R for some stable

q′ ∈ states(M).

A. Castañeda, G. Chockler, B. Dongol, and O. Lahav 6:7

Memory Restrictions on σ1 Restrictions on σ2 Merge
#Name model process events pattern process events pattern property
1 TSOs TSO solo RW — solo RW — Strong
2 RAs

1 RA — RW — — — — Strong
3 RAs

2 RA — RWF PPTF — — PPTF Strong
4 RAs

3 RA — RWF PPLF — — PPLF Strong
5 SCMw SCM — RW RBW — — — Weak
6 TSOw TSO solo RWF LTF — — — Weak
7 RAw RA — RWF LTF — — — Weak

Table 1 Merging observable memory sequences σ1 and σ2 such that proc-set(σ1)∩proc-set(σ2) = ∅

Note that if M is well-behaved, then σ0 · σ ∈ otraces(SCM) implies that there exist a stable
state q ∈ states(M) and a memory trace ρ0 such that init(M) ρ0−→M q, ρ0|MemEvs = σ0, and
σ ∈ otraces(M, q). The following lemma is proven in [14].

▶ Lemma 2.3. Each M ∈ {SCM, TSO, RA} is well-behaved.

3 Mergeability Results for Memory Models

We consider two notions of mergeability of observable memory traces, weak mergeability,
which means that some interleaving of the given traces is admitted, and strong mergeability,
which requires that all interleavings are admitted. We denote by s1 � s2 the the set of all
interleavings of s1 and s2.

For our impossibility result to handle a non-empty base object history (as in Example 1),
it does not suffice to merge memory traces from the initial state. Instead, we require the
traces to be mergeable from every stable state:

▶ Definition 3.1. Two observable memory traces σ1, σ2 with proc-set(σ1) ∩ proc-set(σ2) = ∅
are weakly (resp., strongly) mergeable in a memory model M if for every stable state
q0 ∈ states(M) such that σ1, σ2 ∈ otraces(M, q0), we have σ ∈ otraces(M, q0) for some (resp.,
every) σ ∈ σ1 � σ2.

Table 1 presents the merge properties established for the memory models we consider
(see [14] for the proofs). To specify restrictions on the mergeable traces, we say that an
observable memory sequence σ is:

solo if |proc-set(σ)| = 1;
read-write (RW) if typ-set(σ) ⊆ {R, W};
read-write-fence (RWF) if typ-set(σ) ⊆ {R, W, F};
read-before-write (RBW) if for every k1 < k2, if typ(σ[k1]) = W, typ(σ[k2]) = R, and
var(σ[k1]) ̸= var(σ[k2]), then typ(σ[k]) = W and var(σ[k]) = var(σ[k2]) for some k1 < k < k2;1

trailing-fence (TF) if there is no k such that typ(σ[k]) = F but typ(σ[k + 1]) ̸= F;
leading-fence (LF) if there is no k such that typ(σ[k]) = F but typ(σ[k − 1]) ̸= F;
per-process trailing fence (PPTF) if σ|p is TF for all processes p;
per-process leading fence (PPLF) if σ|p is LF for all processes p; and
leading-and-trailing-fence (LTF) if σ = σ1 · σ2 for some LF σ1 and TF σ2.

1 RBW is equivalent to the absence of the read-after-write (RAW) pattern as defined in [6].

DISC 2024

6:8 What Cannot Be Implemented on Weak Memory?

We have three types of restrictions, namely: (i) a restriction on the processes (solo); (ii) re-
strictions on the types of events (RW and RWF); and (iii) restrictions on the access pattern
(all others). The restrictions on types and access patterns correspond to synchronization
mechanisms that are expensive performance wise. RMWs and non-RBW were identified as
such in [6], and since we explicitly deal with weak memory models, we add fences to this
list. To motivate our focus on leading/trailing fence placement, we note that the trivial
linearizable implementation of an atomic register using a write/read instruction requires
fences: at the end of every write operation on TSO, and at the beginning and the end of
every (write/read) operation on RA. We aim to investigate whether other objects admit
similar implementations.

Next, we briefly discuss the results in the table:

SCM. In SCM, if σ1 is RW-RBW, then it can be weakly merged with any other observable
memory trace. Indeed, being RW-RBW, σ1 must be of the form σr

1 · σw
1 where σr

1 is a
sequence of reads and σw

1 is a sequence of writes and reads, starting with a write, where
the reads in σw

1 read from the writes in σw
1 . Then, it is straightforward to see that σ1 and

any observable memory sequence σ2 can be merged to form the trace σ = σr
1 · σ2 · σw

1 ,
which is valid trace under SCM. We note that the RBW restriction is necessary here, as
⟨p1:W(x, 1), p1:R(y, 0)⟩ and ⟨p2:W(y, 1), p2:R(x, 0)⟩ (which may arise from the SB example)
are not weakly mergeable. Also note that there is no useful strong merge property for SCM.
Even ⟨p1:W(x, 1)⟩ and ⟨p2:R(x, 0)⟩ cannot be strongly merged.

TSO. In TSO, σ1 and σ2 can be strongly merged when they are both solo-RW traces. This
holds because with only writes and reads, there is always an observable trace where all the
writes of both σ1 and σ2 remain in the local store buffers, allowing the events of σ1 and σ2 to
be arbitrarily interleaved. TSO also satisfies a weak merge property if σ1 is solo-RWF-LTF
and σ2 is arbitrary. To do so, we let σ1 = σlf

1 · σ′
1 · σtf

1 where typ-set(σlf
1) ∪ typ-set(σtf

1) ⊆ {F}
and σ′

1 is RW. Then, σlf
1 · σ′

1 · σ2 · σtf
1 is a valid TSO observable trace since no instruction in

σ′
1 forces writes to propagate. We note that the solo restriction is essential. For example,

⟨p1:W(x, 1), p2:R(x, 1), p2:R(y, 0)⟩ and ⟨p4:W(y, 1), p3:R(y, 1), p3:R(x, 0)⟩ (which may arise from
the IRIW example) are not weakly mergeable.

RA. We prove three strong merge properties for RA: (RAs
1) If σ1 is RW, then it can be

strongly merged with σ2 even when σ1 is non-solo. Indeed, in the absence of RMWs and
fences in σ1, the writes in σ1 can be propagated to other processes of σ1, but never propagate
to the processes of σ2, and vice-versa. (RAs

2) If σ1 is RWF-PPTF and σ2 is PPTF, the
strong merge argument is as follows. First, we remove all the fences in σ1, which results
in an RW trace. From RAs

1, this trace can be strongly merged with σ2. In the resulting
trace, we reintroduce the fences removed from σ1 arbitrarily after the last read or write
of the corresponding process. Regardless of whether this fence is before or after a fence
of σ2, the resulting fence synchronization has no effect since σ2 is also PPTF. (RAs

3) If σ1
is RWF-PPLF and σ2 is PPLF the argument is symmetric to RAs

2. Finally, RA satisfies
a weak merge property if σ1 is RWF-LTF. As in the TSO weak merge property, we split
σ1 = σlf

1 · σ′
1 · σtf

1 . By RAs
1, σ′

1 · σ2 is an RA observable trace. Then, σlf
1 · σ′

1 · σ2 · σtf
1 is an

RA observable trace since the leading/trailing fences have no bearing on the execution.

4 A Recipe for Merge-Based Impossibility Results

We introduce objects, implementations, and histories (§4.1), and our main theorem (§4.2).

A. Castañeda, G. Chockler, B. Dongol, and O. Lahav 6:9

e = p:inv(o)
q = init(I(o, p))

⊥ e−→Sp
I

⟨o, q⟩

e ∈ MemEvs
q

e−→I(o,p) q′

⟨o, q⟩ e−→Sp
I

⟨o, q′⟩

e = p:res(u)
q

e−→I(o,p) _
⟨o, q⟩ e−→Sp

I
⊥

Figure 1 Transitions of Sp
I

q̄(p) e−→Sp
I

q′

q̄
e−→SI q̄[p 7→ q′]

Figure 2 Transitions of SI

4.1 Objects and Their Implementations
We consider systems implementing of a high-level object O using the low-level atomic
shared-memory operations provided by the memory model M .

Objects. An object O is a pair O = ⟨ops, rets⟩, where ops is a set of operation names (each
of which may include argument values) and rets is a set of response values. We use ops(O)
and rets(O) to retrieve the components of an object O (ops and rets, respectively). We use
ack for a default response value for operations that do not return any value.
Object Actions. To delimit executions of operations of O, we use object actions that can be
either invocation actions of the form inv(o) with o ∈ ops(O), or response actions of the form
res(u) with u ∈ rets(O). We let acts(O) denote the set of all object actions of O.
Object Events. Like memory events defined in §2, object events are pairs e = p:a where
p ∈ P and a ∈ acts(O). We apply the same notations used for memory events to object
events, and let Evs(O) denote the set of all object events. By event we collectively refer
to either a memory event or an object event. Given a sequence π of events, we define the
following notations:

π|p denotes the restriction of π w.r.t. the set of events e with proc(e) = p.
π|M denotes the restriction of π w.r.t. the set MemEvs of memory events.
π|O denotes the restriction of π w.r.t. the set Evs(O) of object events.

Histories. A history of an object O is a sequence of events in Evs(O). We denote by
(p: |o u|) the history consisting of a single operation by process p ∈ P invoking o ∈ ops(O)
with response value u ∈ rets(O) (and omit the response value if it is ack), i.e., (p: |o u|) ≜
⟨p:inv(o), p:res(u)⟩ and (p: |o |) ≜ ⟨p:inv(o), p:res(ack)⟩. A history h is:

sequential if it is a prefix of a history of the form (p1: |o1u1|) · (p2: |o2u2|) · · · (pn: |onun|);
well-formed if h|p is sequential for every p ∈ P; and
complete if it is well-formed and each h|p ends with a response event.

We let H(O), ComH(O), and ComSeqH(O) denote the sets of all well-formed histories of O,
all complete histories of O, and all complete sequential histories of O (respectively).
Specifications. We assume that every object O is associated with a specification, denoted
spec(O), that is a subset of ComSeqH(O) that is prefix-closed (in the sense that h′ ∈ spec(O)
for every h′ ∈ ComSeqH(O) that is a prefix of some h ∈ spec(O)). An object O is deterministic
if no two histories in spec(O) have longest common prefix that ends with an invocation.
Implementations. An implementation I of an operation o for a process p is an LTS whose
set of transition labels are events with process identifier p. We assume that a response event
is always the last transition of executions of I (i.e., if q

p:res(u)−−−−−→I q′, then no transition is
enabled in q′). An implementation I of an object O is a function assigning an implementation
I(o, p) of o for p to every o ∈ ops(O) and p ∈ P.

An implementation I of an object O induces an LTS, denoted SI , that repeatedly and
concurrently executes the operations of O as I prescribes. To formally define SI , we first
define the “per-process” LTS induced by I, denoted Sp

I . This LTS is given by: states(Sp
I) ≜

DISC 2024

6:10 What Cannot Be Implemented on Weak Memory?

{⊥} ∪ {⟨o, q⟩ | o ∈ ops(O), q ∈ states(I(o, p))}; init(Sp
I) ≜ ⊥; labels(Sp

I) ≜ Evs(O) ∪ MemEvs;
and the transitions are given in Fig. 1. The state ⊥ means that the process is not currently
executing any operation, whereas ⟨o, q⟩ means that process p is currently executing o and it
is in state q of the implementation of o for p.

In turn, SI is given by: states(SI) is the set of all mappings assigning a state in states(Sp
I)

to every p ∈ P; init(SI) ≜ λp. ⊥; labels(SI) ≜ Evs(O) ∪ MemEvs; and the transition relation
in Fig. 2. This transition simply interleaves the transitions of the different processes. In the
sequel, we let traces(I) ≜ traces(SI).
Histories of Implementations. Let I be an implementation of an object O, π0 be a sequence
of events, and M be a memory model. A history h of O is:

generated by I after π0 if h = π|O for some π such that π0 · π ∈ traces(I).
generated by I after π0 under M if h = π|O for some π such that π0 · π ∈ traces(I) and
(π0 · π)|M ∈ otraces(M).

We denote by H(π0, I) the set of all histories that are generated by I after π0, and by
H(π0, I, M) the set of all histories generated by I after π0 under M . We also write H(I)
instead of H(ε, I) and H(I, M) instead of H(ε, I, M).

4.2 The Merge Theorem

Our main result relates mergeability properties of memory models and objects implemented
in those models, assuming that the implementation provides minimal safety and liveness
guarantees. This result can be also seen as a CAP Theorem for weak memory models [19],
where partition tolerance of CAP corresponds to mergeability, as it allows two traces of
distinct set of processes to run concurrently without interaction. Our results are more fine
grained, as we show the correspondence between mergeability of certain traces in a memory
model, and the (in)ability of these traces to implement non-mergeable object histories.

For the formal treatment, we first present the following lemma (proven in [14]). The lemma
describes the key shape of our results, namely that given two traces of an implementation
over a memory model, the merge property over these traces carries over to a merge property
over the histories induced by the traces.

▶ Lemma 4.1. Let I be an implementation of O. Suppose that there exist sequences π0, π1, π2
of events such that the following hold:

(a) proc-set(π1) ∩ proc-set(π2) = ∅; π0 · π1, π0 · π2 ∈ traces(I); π0|O ∈ ComH(O); and
(b) π0|M · σ ∈ otraces(M) for some (resp., every) σ ∈ π1|M � π2|M.

Then, h ∈ H(π0, I, M) for some (resp., every) h ∈ π1|O � π2|O.

The Merge Theorem, which we obtain using this lemma, makes several assumptions on
implementations. First, the safety condition, which we call consistency, is restriction of
linearizability to complete histories. For its definition, we first define reorderings of sequences.

▶ Definition 4.2. Let R ⊆ X × X. A sequence s′ ∈ X∗ is an R-reordering of a sequence
s ∈ X∗ if there exists a bijection f : {1, ... ,|s|} → {1, ... ,|s′|} such that s[i] = s′[f(i)]
for every 1 ≤ i ≤ |s|, and f(i) < f(j) whenever i < j and ⟨s[i], s[j]⟩ ∈ R. We denote
by reorderR(s) the set of all R-reorderings of s, and lift this notation to sets by letting
reorderR(S) ≜

⋃
s∈S reorderR(s).

A. Castañeda, G. Chockler, B. Dongol, and O. Lahav 6:11

We define sproc and lin relations on events:

sproc ≜ {⟨e1, e2⟩ | proc(e1) = proc(e2)}
lin ≜ sproc ∪ ({e | e is a response event} × {e | e is a invocation event})

▶ Definition 4.3. A history h′ ∈ H(O) linearizes a history h ∈ H(O), denoted h ⊑ h′, if
h′ ∈ reorderlin(h). For a set H ′ ⊆ H(O), we write h ⊑ H ′ if h ⊑ h′ for some h′ ∈ H ′.

▶ Definition 4.4. An implementation I of an object O is consistent under a memory model
M if h ⊑ spec(O) for every complete history h ∈ H(I, M).

Consistency follows from linearizability [22], and it is equivalent to linearizability for
implementations in which every history can be extended to a complete history.

Next, the liveness condition, which we call availability, requires progress for the specific
histories under consideration.

▶ Definition 4.5. An implementation I of O is available after a history h0 ∈ ComSeqH(O)
w.r.t. a history h ∈ H(O) if h ∈ H(π0, I, SCM) for every π0 ∈ traces(I) such that π0|M ∈
traces(SCM) and π0|O = h0. We say I is available w.r.t. h, if it is available after ε w.r.t. h

(i.e., h ∈ H(I, SCM)). We call I spec-available if for every h0, h ∈ ComSeqH(O) such that
h0 · h ∈ spec(O), I is available after h0 w.r.t. h.

Availability w.r.t. h after h0 only guarantees that the implementation under SCM is able
to generate the history h when it starts executing after generating h0. For deterministic
implementations, availability w.r.t. h after h0 follows from availability w.r.t. h0 · h (after ϵ).
Note that availability considers SCM rather than a general memory model M , but when M

is well-behaved (Def. 2.2), h ∈ H(π0, I, SCM) ensures that h ∈ H(π0, I, M). Spec-availability
essentially means that the implementation can generate all (sequential) specification histories
and for deterministic objects and implementations, it follows from obstruction-freedom [21].

The next lemma (proven in [14]) is used in the sequel to derive availability w.r.t. a history
h from the fact that availability holds w.r.t. a sequential history that linearizes h.

▶ Lemma 4.6. Suppose that I is available after h0 w.r.t. a history h′ ∈ H(O). Then, I is
available after h0 w.r.t. every h ∈ H(O) such that h ⊑ h′.

Next, we define mergeability for objects, akin to mergeability for memory models (Def. 3.1):

▶ Definition 4.7. Two histories h1, h2 ∈ ComH(O) with proc-set(h1) ∩ proc-set(h2) = ∅
are weakly (resp., strongly) mergeable in spec(O) after a history h0 ∈ ComSeqH(O) if
h0 · h1 ⊑ spec(O) and h0 · h2 ⊑ spec(O) imply that h0 · h ⊑ spec(O) for some (resp., every)
h ∈ h1 � h2.

We now have all prerequisites to state our Merge Theorem (see [14] for the proof).

▶ Theorem 4.8. Let I be an implementation of an object O that is consistent under a
well-behaved memory model M . Suppose that there exist π0 ∈ traces(I), h1, h2 ∈ ComH(O)
such that the following hold, where h0 = π0|O and σ0 = π0|M:

(i) h0 ∈ spec(O), σ0 ∈ traces(SCM), and proc-set(h1) ∩ proc-set(h2) = ∅,
(ii) I is available after h0 w.r.t. some hi

seq ∈ ComSeqH(O) such that hi ⊑ hi
seq for i ∈ {1, 2},

(iii) h1 and h2 are not weakly (resp., strongly) mergeable in spec(O) after h0.

Then, there exist π1 and π2 such that all of the following hold:

DISC 2024

6:12 What Cannot Be Implemented on Weak Memory?

(a) For i ∈ {1, 2}, we have π0 · πi ∈ traces(I); πi|O = hi; σ0 · πi|M ∈ traces(SCM); and
proc-set(πi) = proc-set(hi).

(b) For every π′
1 ∈ reordersproc(π1) and π′

2 ∈ reordersproc(π2) such that π′
1|O = h1, π′

2|O = h2,
and σ0 · π′

1|M, σ0 · π′
2|M ∈ traces(SCM), we have that π′

1|M and π′
2|M are not weakly (resp.,

strongly) mergeable in M . In particular, π1|M and π2|M are not weakly (resp., strongly)
mergeable in M .

For simplicity, we explain Thm. 4.8 for π0 = ε (and hence h0 = σ0 = ε). The theorem
assumes that we start with an implementation I that is consistent under the memory model
M under consideration. Moreover, we assume that we have two complete histories h1 and h2
of the object such that the processes of h1 and h2 are distinct (condition (i)), I is available
w.r.t. some linearization of h1 and h2 (condition (ii)), and that h1 and h2 are not weakly
(strongly) mergeable (condition (iii)). Then, for i ∈ {1, 2} there must be a trace πi of I,
corresponding to hi, whose memory events are allowed by SCM, and processes are only
included in πi if they call some operation of the object (condition (a)), such that π1 and π2
restricted to memory events are not weakly (strongly) mergeable in M (second clause of
condition (b)). In fact, weak (strong) non-mergeability extends to any process-preserving
reordering of π1 and π2 whose corresponding histories are h1 and h2 and corresponding
memory traces are SCM traces (first clause of condition (b)).

5 Implementability of Objects on Weak Memory Models

We demonstrate the power of the Merge Theorem by using it along with the mergeability
results in Table 1 to characterize implementability of objects under weak memory models.

5.1 One-Sided Non-Commutative Operations
We start by analyzing implementability of pair of operations o1 and o2 such that o1 is
one-sided non-commutative w.r.t. o2. Roughly, this means that the execution order of o1 and
o2 affects the response of o1. Formally:

▶ Definition 5.1. An operation o1 ∈ ops(O) is one-sided non-commutative w.r.t. an operation
o2 ∈ ops(O) in spec(O) if there exist h0 ∈ ComSeqH(O), processes p1 ̸= p2, and response
values u1, v1, u2 ∈ rets(O) such that: (i) u1 ̸= v1; (ii) h0 · (p1: |o1u1|) ∈ spec(O); and
(iii) h0 · (p2: |o2u2|) · (p1: |o1 v1|) ∈ spec(O).

▶ Example 5.2. Consider a standard register object Reg with initial value 0, and operations
write(v), where v ∈ V for some set of values V , and read. Then, read is one-sided non-
commutative w.r.t. write in spec(Reg). Indeed, for p1 ̸= p2 and h0 = ε, we have both
(p1: |read 0|) ∈ spec(Reg) and (p2: |write(1) |) · (p1: |read 1|) ∈ spec(Reg). The same holds
for max-register [3], denoted MaxReg, that stores integers with the initial value 0. We note
that all pairs of specification histories of Reg and MaxReg with disjoint sets of processes are
weakly mergeable.

▶ Example 5.3. Consider a monotone counter object MC with initial value 0, and operations
inc and read. Then, read is one-sided non-commutative w.r.t. inc in spec(MC) as for p1 ̸= p2
and h0 = ε, we have (p1: |read 0|) ∈ spec(MC) and (p2: |inc |) · (p1: |read 1|) ∈ spec(MC).

The next lemma (proven in [14]) shows that for deterministic objects, the existence of a
pair of operations one of which is one-sided non-commutative w.r.t. to the other implies that
their corresponding histories are not strongly mergeable:

A. Castañeda, G. Chockler, B. Dongol, and O. Lahav 6:13

▶ Lemma 5.4. Let O be a deterministic object and suppose that o1 ∈ ops(O) is one-sided non-
commutative w.r.t. o2 ∈ ops(O) in spec(O). Then, there exist h0 ∈ ComSeqH(O), processes
p1 ̸= p2, and response values u1, u2 ∈ rets(O) such that (p1: |o1u1|) and (p2: |o2u2|) are not
strongly mergeable in spec(O) after h0.

Then, the following theorem (proven in [14]) follows from Thm. 4.8 and properties TSOs

and RAs
1 in Table 1.

▶ Theorem 5.5. Let O be a deterministic object and suppose that o1 ∈ ops(O) is one-sided
non-commutative w.r.t. o2 ∈ ops(O) in spec(O). Let I be a spec-available implementation of O

that is consistent under M ∈ {TSO, RA}. Then, there exist p1, p2 ∈ P, π1 ∈ traces(I(o1, p1)),
and π2 ∈ traces(I(o2, p2)) such that the following hold for σ1 = π1|M and σ2 = π2|M:

(a) if M = TSO, then either σ1 or σ2 has a fence or a RMW event; and
(b) if M = RA, then neither σ1 nor σ2 is RW, and one of the following holds: (i) either

σ1 or σ2 has a RMW event; (ii) either σ1 or σ2 is not LTF (i.e., has a fence in the
middle); (iii) σ1 is LF and σ2 is TF; or (iv) σ1 is TF and σ2 is LF.

Since read is one-sided non-commutative w.r.t. write in both spec(Reg) and spec(MaxReg),
their respective implementations under TSO and RA are subject to the constraints given in
Thm. 5.5. The same holds for the implementations of the read and inc operations of MC.

To establish the tightness of these lower bounds, we present linearizable wait-free imple-
mentations of Reg and MaxReg that are optimal w.r.t. the above bounds: for TSO, it uses
only reads, writes, and a single fence at the end of write; and for RA, it uses only reads,
writes, and a pair of fences at both the beginning and the end of both write and read.

A Reg object is trivial to implement under SCM and there are MaxReg implementations
under SCM [3] with every operation being RBW. We use these implementations as a basis
for implementations under TSO and RA as follows:

TSO. For TSO, we utilize a fence-insertion strategy, which derives a linearizable TSO
implementation of an object from its SCM counterpart by inserting a fence in-between every
consecutive pair of write and read, as well as between a final write of an operation (if it
exists) and the operation’s response. We give full details, prove correctness, and present more
examples of applications of this transformation in [14]. Using this strategy, we obtain a TSO
implementation of Reg as follows: write first writes to a memory location, and then executes
a fence, and read reads the same memory location and returns the value read. Likewise, to
implement MaxReg under TSO, we add a fence at the end of the write implementations
of [3], and leave their read implementation as is.
RA. We augment the TSO implementations above by adding another fence at the beginning
of write as well as fences at the beginning and the end of read. The pseudocode of the
MaxReg algorithm appears in §A and its correctness proof can be found in [14]. Further
details of the register implementation and its correctness proof appear in [14]. For conciseness,
our MaxReg implementation under RA is derived from a simplified version of the algorithm
in [3] (with linear step complexity instead of logarithmic as in [3]).

5.2 Two-Sided Non-Commutative Operations and Mutual Exclusion
We next explore implementability of objects with non-weakly mergeable histories. We apply
our framework to generalize the “laws of order” (LOO) results of [6]. The next notion of
two-sided non-commutativity is a strengthening of one-sided non-commutativity defined
above, and is identical to the notion of strong non-commutativity in [6]:

DISC 2024

6:14 What Cannot Be Implemented on Weak Memory?

▶ Definition 5.6. Two operations o1, o2 ∈ ops(O) are two-sided non-commutative in spec(O)
if there exist history h0 ∈ ComSeqH(O), processes p1 ̸= p2, and response values u1 ̸=
v1 and u2 ̸= v2 in rets(O) such that: (i) h0 · (p1: |o1u1|) · (p2: |o2 v2|) ∈ spec(O); and
(ii) h0 · (p2: |o2u2|) · (p1: |o1 v1|) ∈ spec(O).

▶ Example 5.7. Revisiting Example 1, in a standard set object Set the operations remove(v)
and remove(v) (for any v) are strongly non-commutative. Indeed, we can take any p1 ̸= p2,
h0 = (p: |add(v) |) (with any p ∈ P), u1 = u2 = true, and v1 = v2 = false, and we have
(p: |add(v) |) · (p1: |remove(v) true|) · (p2: |remove(v) false|) ∈ spec(Set) and (p: |add(v) |) ·
(p2: |remove(v) true|) · (p1: |remove(v) false|) ∈ spec(Set).

▶ Example 5.8. Consider a consensus object Consensus with operations propose(0) and
propose(1) and return values {0, 1}. Its specification spec(Consensus) consists of all histories
h ∈ ComSeqH(Consensus) such that every propose(v) invoked in h returns the same value,
which is either v or the argument of one of the previously invoked propose operations. The
operations propose(0) and propose(1) are two-sided non-commutative. Indeed, for any
p1 ≠ p2 and h0 = ε, we have (p1: |propose(0) 0|) · (p2: |propose(1) 0|) ∈ spec(Consensus) and
(p2: |propose(1) 1|) · (p1: |propose(0) 1|) ∈ spec(Consensus).

Examples for other objects with consensus number > 1, such as swap, compare-and-swap,
fetch-and-add, queues, stacks, are constructed similarly. In [14] we show that deterministic
objects with a pair of two-sided non-commutative operations must have consensus numbers
> 1. (We conjecture that the converse also holds.)

We prove in [14] that two-sided non-commutative operations imply non-weakly merge-
ability:

▶ Lemma 5.9. Let O be a deterministic object and o1, o2 ∈ ops(O) be two-sided non-
commutative operations in spec(O). Then, there exist h0 ∈ ComSeqH(O), processes p1 ̸= p2
and response values u1, u2 ∈ rets(O) such that (p1: |o1u1|) and (p2: |o2u2|) are not weakly
mergeable in spec(O) after h0.

We now apply the merge theorem and the properties SCMw, TSOw, RAw from Table 1
to obtain the lower bounds of LOO under SCM along with impossibilities for TSO and RA
(see [14] for the proof):

▶ Theorem 5.10. Let O be a deterministic object with a pair of strongly non-commutative
operations o1, o2 ∈ ops(O) in spec(O). Let I be a spec-available implementation of O that
is consistent under a memory model M . Then, there exist p1 ∈ P and π1 ∈ traces(I(o1, p1))
such that the following hold for σ1 = π1|M:

(a) if M = SCM, then σ1 either has an RMW or is not RBW; and
(b) if M ∈ {TSO, RA}, then σ1 either has an RMW or is not LTF (i.e., has a fence in the

middle).

Since deterministic objects with a pair of two-sided non-commutative operations have
consensus numbers > 1, their wait-free implementations must rely on RMWs [20]. We
therefore consider their obstruction-free implementations to obtain upper bounds in the
absence of RMWs.2 In [14], we show that every object in this class has an obstruction-
free implementation under TSO with a fence pattern optimal w.r.t. our lower bounds in

2 It is known that every deterministic object has read/write obstruction-free linearizable implementations
in SCM [21].

A. Castañeda, G. Chockler, B. Dongol, and O. Lahav 6:15

contention-free executions, i.e., when a process runs solo for long enough to complete its
operation. For that, we use a variant of a universal construction from [33] instantiated on
top of a TSO-based obstruction-free consensus algorithm. The latter is obtained from shared
memory Paxos [18] using our fence-insertion strategy.

Finally, in §B, we derive lower bounds for mutual exclusion. We define an object Lock
that can be implemented by means of an entry section of a mutual exclusion algorithm. We
show that Lock has a pair of non-weakly mergeable histories, and apply the merge theorem
to obtain the lower bounds of LOO for SCM and their counterparts for TSO and RA. A
matching upper bound for TSO is obtained by adding a single fence to the entry section of
the Bakery algorithm [28].

5.3 Snapshot and Counter
We next explore implementability of snapshot [1] (Snapshot) and (non-monotone) counter
(Counter). The former is known to be universal w.r.t. a large class of objects implementable
in read/write SCM [5], and the latter has been studied extensively as a building block for
randomized consensus (e.g., [4, 2]).

In §C, we revisit and formalize Example 2, and obtain lower bounds on memory events and
fence structure that must be exhibited by any consistent and spec-available implementation
of snapshot and counter under the memory models we consider. Specifically, we obtain the
following for snapshot:

▶ Theorem 5.11. Let I be a spec-available implementation of Snapshot that is consistent
under a memory model M . Then, there exist p, p′ ∈ P, π1 ∈ traces(I(update(w), p)) for
some i ∈ {1..m} and w ∈ W , and π2 ∈ traces(I(scan, p′)) such that the following hold for
σ1 = π1|M and σ2 = π2|M:

(a) if M = SCM, then σ1 · σ2 either has an RMW or is not RBW;
(b) if M = TSO, then σ1 · σ2 either has an RMW or is not LTF (i.e., has a fence in the

middle); and
(c) if M = RA, then (i) either σ1 or σ2 has an RMW, or (ii) either σ1 or σ2 is not LTF.

We show that a similar lower bounds holds for Counter for π1 ∈ traces(I(o, p)) with
o ∈ {inc, dec} and π2 ∈ traces(I(read, p′)).

The wait-free linearizable implementations of both Snapshot and Counter under SCM
are well-known [1, 5]. The implementation of update operation uses collect followed by a
write, and the implementation of scan uses a sequence of three collects. Counter can be
implemented on top of a snapshot using a single call to update to implement increment and
decrement, and a single call to scan to implement read. Both implementations exhibit a
single read-after-write across a consecutive pair of update and read, and are therefore optimal
w.r.t. to the above lower bounds.

To obtain optimal upper bounds for TSO, the above algorithms are modified using the
fence-insertion strategy discussed above that inserts a fence at the end of update for snapshot,
and at the end of the increment and decrement for counter. Optimal implementations under
RA are left for future work.
Max-register vs. snapshot and counter. Our analysis yields the first sharp separation
between max-register on the one hand and snapshot and counter on the other in terms of
their implementability under RA using only reads, writes, and fences. Specifically, as we
show above, max-register can be implemented under RA using fences only at the beginning
and the end of read and write. On the other hand, our lower bounds for snapshot and

DISC 2024

6:16 What Cannot Be Implemented on Weak Memory?

counter show that this fence placement is insufficient to correctly implement these objects
under RA. We are unaware of prior results separating these objects. In particular, all of
them are equivalent w.r.t. their power to solve consensus under SCM [20].

6 Related Work

Our mergeability approach is inspired by the work of Kawash [25], who showed that, without
fences and RMWs, the critical section problem, as well as certain producer/consumer
coordination problems, cannot be solved in a variety of weak memory models that were
studied at that time (including TSO). However, while Kawash considers specific tasks, we
derive a general result by relating mergeability of traces in the underlying memory model to
mergeability at the level of the implemented object histories.3 Moreover, we also use different
mergeability properties to differentiate between weak memory models.

We have already discussed how the results of [6], which were based on a covering
technique [13], are obtained by a simpler merge-based argument. The main advantage of our
approach is its applicability beyond “strongly non-commutative operations” (see Lem. 5.9),
as well as the fact that we directly handle weak memory models, which is only implicit in [6].
In addition, [6] is restricted to deterministic objects and implementations, while our merge
theorem avoids these assumptions by stating more precise availability requirements.

Through consensus numbers, Herlihy [20] already showed that for some of the ob-
jects we consider here, such as sets, queues and stacks, RMW operations are required in
any lock-free linearizable implementation. This result does not have any implication for
obstruction-freedom. In fact, for every object, there is a read/write obstruction-free lineariz-
able implementation under SCM (as consensus is universal and read/write obstruction-free
solvable [20, 21]). Due to our results, if the object has non-weakly mergeable operations, any
such implementation cannot be RBW.

For several objects such as snapshot, counter, max register, work stealing and even
relaxations of queues, stacks, and data sketches, there have been proposed lock-free or wait-free
read/write linearizable (or variants of it) RBW implementations under SCM [5, 1, 3, 15, 16, 34].
None of these works relate the possibility of such implementations with mergeability properties
of the objects implemented. Morrison and Afek [30] show how memory fences can be
eliminated on TSO in the implementation of work stealing by assuming that the store buffers
are bounded in size, and using this bound in the thief implementation to guarantee that a
write is propagated to main memory after a number of subsequent writes. In contrast, the
store buffers in the TSO model we study are unbounded, and hence their implementation is
not considered linearizable.

In the weak memory literature, some works studied robustness of concurrent implemen-
tations under TSO and RA, where a robust implementation cannot have any non-SCM
behaviors [11, 9, 27, 10, 29]. We note, however, that robustness does not entail that
linearizability under SCM is transferred to linearizability under TSO or RA (a register
implementation that uses one shared variable is robust, but fences are needed to ensure
linearizability under TSO and RA). This is different from the fence-insertion strategy in §5.1
that transfers linearizability under SCM to linearizability under TSO. Other works stud-
ied alternatives to linearizability for TSO and RA [12, 35, 32], whereas we take standard
linearizability as a correctness criterion.

3 We also note that Kawash’s merge strategy for TSO traces is unnecessarily complex, while our proofs
directly exploit the local store buffers for avoiding inter-thread communication.

A. Castañeda, G. Chockler, B. Dongol, and O. Lahav 6:17

References
1 Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. Atomic

snapshots of shared memory. J. ACM, 40(4):873–890, 1993. doi:10.1145/153724.153741.
2 James Aspnes. Time-and space-efficient randomized consensus. In PODC, page 325–331, New

York, NY, USA, 1990. ACM. doi:10.1145/93385.93433.
3 James Aspnes, Hagit Attiya, and Keren Censor-Hillel. Polylogarithmic concurrent data

structures from monotone circuits. J. ACM, 59(1):2:1–2:24, 2012. doi:10.1145/2108242.
2108244.

4 James Aspnes and Maurice Herlihy. Fast randomized consensus using shared memory. Journal
of Algorithms, 11(3):441–461, 1990. doi:10.1016/0196-6774(90)90021-6.

5 James Aspnes and Maurice Herlihy. Wait-free data structures in the asynchronous PRAM
model. In SPAA, pages 340–349. ACM, 1990. doi:10.1145/97444.97701.

6 Hagit Attiya, Rachid Guerraoui, Danny Hendler, Petr Kuznetsov, Maged M. Michael, and
Martin T. Vechev. Laws of order: expensive synchronization in concurrent algorithms cannot
be eliminated. In POPL, pages 487–498. ACM, 2011. doi:10.1145/1926385.1926442.

7 Mirza Ahad Baig, Danny Hendler, Alessia Milani, and Corentin Travers. Long-lived counters
with polylogarithmic amortized step complexity. Distributed Comput., 36(1):29–43, 2023. URL:
https://doi.org/10.1007/s00446-022-00439-5, doi:10.1007/S00446-022-00439-5.

8 Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. Mathematizing
C++ concurrency. In POPL, pages 55–66, New York, NY, USA, 2011. ACM. URL: http:
//doi.acm.org/10.1145/1926385.1926394, doi:10.1145/1926385.1926394.

9 Ahmed Bouajjani, Egor Derevenetc, and Roland Meyer. Checking and enforcing robustness
against TSO. In ESOP, volume 7792 of LNCS, pages 533–553. Springer, 2013.

10 Ahmed Bouajjani, Constantin Enea, Suha Orhun Mutluergil, and Serdar Tasiran. Reasoning
about TSO programs using reduction and abstraction. In CAV, pages 336–353, Cham, 2018.
Springer International Publishing. doi:10.1007/978-3-319-96142-2_21.

11 Ahmed Bouajjani, Roland Meyer, and Eike Möhlmann. Deciding robustness against total
store ordering. In ICALP (2), pages 428–440, 2011.

12 Sebastian Burckhardt, Alexey Gotsman, Madanlal Musuvathi, and Hongseok Yang. Concurrent
library correctness on the TSO memory model. In ESOP, pages 87–107, Berlin, Heidelberg,
2012. Springer.

13 James E. Burns and Nancy A. Lynch. Bounds on shared memory for mutual exclusion.
Inf. Comput., 107(2):171–184, 1993. URL: https://doi.org/10.1006/inco.1993.1065, doi:
10.1006/INCO.1993.1065.

14 Armando Castañeda, Gregory Chockler, Brijesh Dongol, and Ori Lahav. What cannot be
implemented on weak memory? CoRR, abs/2405.16611, 2024. URL: https://doi.org/10.
48550/arXiv.2405.16611, arXiv:2405.16611, doi:10.48550/ARXIV.2405.16611.

15 Armando Castañeda and Miguel Piña. Read/write fence-free work-stealing with multiplicity.
J. Parallel Distributed Comput., 186:104816, 2024. URL: https://doi.org/10.1016/j.jpdc.
2023.104816, doi:10.1016/J.JPDC.2023.104816.

16 Armando Castañeda, Sergio Rajsbaum, and Michel Raynal. Set-linearizable implementations
from read/write operations: Sets, fetch &increment, stacks and queues with multiplicity.
Distributed Comput., 36(2):89–106, 2023. doi:10.1007/s00446-022-00440-y.

17 Edsger W. Dijkstra. EWD123: Cooperating Sequential Processes. Technical report, 1965.
URL: http://www.cs.utexas.edu/~EWD/transcriptions/EWD01xx/EWD123.html.

18 Eli Gafni and Leslie Lamport. Disk paxos. Distrib. Comput., 16(1):1–20, feb 2003.
19 Seth Gilbert and Nancy A. Lynch. Brewer’s conjecture and the feasibility of consistent,

available, partition-tolerant web services. SIGACT News, 33(2):51–59, 2002. doi:10.1145/
564585.564601.

20 Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–149,
1991.

DISC 2024

https://doi.org/10.1145/153724.153741
https://doi.org/10.1145/93385.93433
https://doi.org/10.1145/2108242.2108244
https://doi.org/10.1145/2108242.2108244
https://doi.org/10.1016/0196-6774(90)90021-6
https://doi.org/10.1145/97444.97701
https://doi.org/10.1145/1926385.1926442
https://doi.org/10.1007/s00446-022-00439-5
https://doi.org/10.1007/S00446-022-00439-5
http://doi.acm.org/10.1145/1926385.1926394
http://doi.acm.org/10.1145/1926385.1926394
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1007/978-3-319-96142-2_21
https://doi.org/10.1006/inco.1993.1065
https://doi.org/10.1006/INCO.1993.1065
https://doi.org/10.1006/INCO.1993.1065
https://doi.org/10.48550/arXiv.2405.16611
https://doi.org/10.48550/arXiv.2405.16611
https://arxiv.org/abs/2405.16611
https://doi.org/10.48550/ARXIV.2405.16611
https://doi.org/10.1016/j.jpdc.2023.104816
https://doi.org/10.1016/j.jpdc.2023.104816
https://doi.org/10.1016/J.JPDC.2023.104816
https://doi.org/10.1007/s00446-022-00440-y
http://www.cs.utexas.edu/~EWD/transcriptions/EWD01xx/EWD123.html
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601

6:18 What Cannot Be Implemented on Weak Memory?

21 Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-free synchronization: Double-
ended queues as an example. In ICDCS, pages 522–529, 2003.

22 Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990. doi:10.1145/78969.78972.

23 Intel. Intel® 64 and IA-32 architectures software developer’s manual. Volume 3B: system
programming guide, Part, 2(11):1–64, 2011.

24 Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. A promising
semantics for relaxed-memory concurrency. In POPL, pages 175–189, New York, NY, USA,
2017. ACM. doi:10.1145/3009837.3009850.

25 J. Y. Kawash. Limitation and capabilities of weak memory consistency systems. PhD thesis,
University of Calgary, 2000. doi:10.11575/PRISM/19939.

26 Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. Taming release-acquire consistency. In
POPL, pages 649–662, New York, NY, USA, 2016. ACM. URL: http://doi.acm.org/10.
1145/2837614.2837643, doi:10.1145/2837614.2837643.

27 Ori Lahav and Roy Margalit. Robustness against release/acquire semantics. In PLDI, pages
126–141, New York, NY, USA, 2019. ACM. URL: http://doi.acm.org/10.1145/3314221.
3314604, doi:10.1145/3314221.3314604.

28 Leslie Lamport. A new solution of Dijkstra’s concurrent programming problem. Commun.
ACM, 17(8):453–455, 1974.

29 Roy Margalit and Ori Lahav. Verifying observational robustness against a C11-style memory
model. Proc. ACM Program. Lang., 5(POPL), jan 2021. doi:10.1145/3434285.

30 Adam Morrison and Yehuda Afek. Fence-free work stealing on bounded TSO processors. In
ASPLOS, pages 413–426. ACM, 2014. doi:10.1145/2541940.2541987.

31 Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory model: x86-TSO. In
TPHOLs, pages 391–407, Berlin, Heidelberg, 2009. Springer. URL: http://dx.doi.org/10.
1007/978-3-642-03359-9_27, doi:10.1007/978-3-642-03359-9_27.

32 Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis. On library
correctness under weak memory consistency: Specifying and verifying concurrent libraries
under declarative consistency models. Proc. ACM Program. Lang., 3(POPL), January 2019.
doi:10.1145/3290381.

33 Michel Raynal. Distributed universal construcitons: a guided tour. Bulleting of EATCS:
Distributed Computing Column, (121), 2011.

34 Arik Rinberg and Idit Keidar. Intermediate value linearizability: A quantitative correctness
criterion. In DISC, volume 179 of LIPIcs, pages 2:1–2:17. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020. doi:10.4230/LIPIcs.DISC.2020.2.

35 Abhishek Kr Singh and Ori Lahav. An operational approach to library abstraction under
relaxed memory concurrency. Proc. ACM Program. Lang., 7(POPL):1542–1572, 2023. doi:
10.1145/3571246.

36 SPARC International Inc. The SPARC architecture manual (version 9). Prentice-Hall, 1994.

https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/3009837.3009850
http://doi.acm.org/10.1145/2837614.2837643
http://doi.acm.org/10.1145/2837614.2837643
https://doi.org/10.1145/2837614.2837643
http://doi.acm.org/10.1145/3314221.3314604
http://doi.acm.org/10.1145/3314221.3314604
https://doi.org/10.1145/3314221.3314604
https://doi.org/10.1145/3434285
https://doi.org/10.1145/2541940.2541987
http://dx.doi.org/10.1007/978-3-642-03359-9_27
http://dx.doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1145/3290381
https://doi.org/10.4230/LIPIcs.DISC.2020.2
https://doi.org/10.1145/3571246
https://doi.org/10.1145/3571246

A. Castañeda, G. Chockler, B. Dongol, and O. Lahav 6:19

A Fence-optimal Max Register Under RA

The pseudocode of a linearizable wait-free implementation of MaxReg under RA is given
in Algorithm 1. The function collect(M) reads one by one, in an arbitrary order, the entries
of M , and returns an array with the read values. The algorithm is fence-optimal. It uses one
fence at the beginning and one fence at the end of every operation, thus matching the lower
bounds of Thm. 5.5. The correctness proof appears in [14].

Algorithm 1 MaxReg implementation in RA. Algorithm for proces pi.

Shared variables:
int[n] M = [0, ... , 0]

1: procedure read()
2: fence()
3: m[] = collect(M)
4: fence()
5: return max(m[])

6: procedure write(v)
7: fence()
8: m[] = collect(M)
9: if max(m[]) < v then

10: M [i] = v

11: fence()
12: return ack

B Mutual Exclusion

We use the merge theorem (Thm. 4.8) for the case of non-weakly mergeable histories and
the mergeability results for the memory models to establish minimum synchronization
requirements for mutual exclusion. Our result for SCM reproves the corresponding lower
bound of [6].

Consider a (non-standard) lock object Lock with ops(Lock) ≜ {acquire} and rets(Lock) ≜
{ack}. Its specification is given by

spec(Lock) ≜ {ε} ∪ {(p: |acquire |) | p ∈ P}.

The histories (p: |acquire |) and (p′: |acquire |) where p ̸= p′ are not weakly mergeable.
Thus, by the merge theorem and properties SCMw, TSOw, and RAw in Table 1, we have:

▶ Theorem B.1. Let I be a spec-available implementation of Lock that is consistent under
a memory model M . Then, there exist p ∈ P and π ∈ traces(I(acquire, p)) such that the
following hold for σ = π|M:

(a) if M = SCM, then σ either has an RMW event or is not RBW; and
(b) if M ∈ {TSO, RA}, then σ either has an RMW event or a fence.

The proof of this theorem is identical to that of Thm. 5.10, which appears in [14]. Since
the implementation of the entry section of a mutual exclusion algorithm can be used to
implement acquire, we obtain that entry section of a solo-terminating mutual exclusion
algorithm on SCM has to use a RAW pattern or an RMW; and on TSO or RA, it must use
an RMW or a fence.

There exist many algorithms implementing starvation-free mutual exclusion under SCM,
which use the RAW pattern to implement the entry section. As before, their counterparts
under TSO can be obtained by adding a fence between every pair of consecutive write and
read (§5.1). For example, the transformation of Bakery algorithm [28] only requires a single
fence to separate a write-only block at the beginning of the entry section from the read-only

DISC 2024

6:20 What Cannot Be Implemented on Weak Memory?

block right afterwards. The resulting implementation is therefore tight. Mutual exclusion
under RA with an RMW or a fence has several verified implementations [27].

C Lower and Upper Bounds for Snapshot and Counter

Lower bounds for snapshot. Consider a (single-writer) snapshot object Snapshot storing
a vector of a length |P| over a set of values W (also represented as function in P → W) with
the initial vector of ⟨⊥, ... ,⊥⟩. The operations are {update(w) | w ∈ V } ∪ {scan}, and its
return values are {ack} ∪ (P → W). The specification spec(Snapshot) consists of all complete
sequential histories where each scan event returns v such that v(p) is the value written by
the last preceding update by process p, or ⊥ if no such update exists.

▶ Proposition C.1. Let w, w′ ∈ W , p1, p2, p3 ∈ P, and h1, h2 ∈ ComH(Snapshot), such that
w ̸= w′, i ̸= j, proc-set(h1) ∩ proc-set(h2) = ∅, and the following hold:

h1 ⊑ (p1: |update(w) |) · (p3: |scan v|), where v = λp. if p = p1 then w else ⊥; and
h2 ⊑ (p2: |update(w′) |) · (p2: |scan v′|), where v′ = λp. if p = p2 then w′ else ⊥.

Then, h1 and h2 are not weakly mergeable in spec(Snapshot) after ε.

Next, we use the merge theorem (instantiated for the case of non-weakly mergeable
histories) together with Prop. C.1 and the mergeability results SCMw, TSOw, and RAw from
Table 1 to establish lower bounds on implementability of snapshot.

▶ Theorem 5.11. Let I be a spec-available implementation of Snapshot that is consistent
under a memory model M . Then, there exist p, p′ ∈ P, π1 ∈ traces(I(update(w), p)) for
some i ∈ {1..m} and w ∈ W , and π2 ∈ traces(I(scan, p′)) such that the following hold for
σ1 = π1|M and σ2 = π2|M:

(a) if M = SCM, then σ1 · σ2 either has an RMW or is not RBW;
(b) if M = TSO, then σ1 · σ2 either has an RMW or is not LTF (i.e., has a fence in the

middle); and
(c) if M = RA, then (i) either σ1 or σ2 has an RMW, or (ii) either σ1 or σ2 is not LTF.

Proof. First, consider the case of M ∈ {SCM, TSO}. Let p1, p2 be distinct processes and
consider the histories

h1 = (p1: |update(1) |) · (p1: |scan v|) and h2 = (p2: |update(1) |) · (p2: |scan v′|),

where v = λp. if p = p1 then w else ⊥ and v′ = λp. if p = p2 then w′ else ⊥. Then, by
Prop. C.1, h1 and h2 are not weakly mergeable in spec(Snapshot) after h0 = ε. Clearly, we
also have h1, h2 ∈ spec(Snapshot), and since I is spec-available, it is available w.r.t. both h1
and h2.

Thus, by Thm. 4.8, there exist π′
1, π′

2 ∈ traces(I) such that h1 = π′
1|Snapshot and h2 =

π′
2|Snapshot, and σ′

1 = π′
1|M and σ′

2 = π′
2|M are not weakly mergeable in M . Observe that

π′
1 = π1 ·π2 where π1 ∈ traces(I(update(1), p1)) and π2 ∈ traces(I(scan, p1)). Let σ1 = π1|M

and σ2 = π2|M. Then, σ′
1 = σ1 · σ2. Thus, the required follows properties SCMw and TSOw

in Table 1.

Next, we consider the case of M = RA. Let p1, p2, p3 ∈ P be distinct processes, and
consider the histories:

h1 = ⟨p1:inv(update(1)), p3:inv(scan), p1:res(ack), p3:res(v)⟩ and
h2 = (p2: |update(2) |) · (p2: |scan v′|),

A. Castañeda, G. Chockler, B. Dongol, and O. Lahav 6:21

where v = λp. if p = p1 then w else ⊥ and v′ = λp. if p = p2 then w′ else ⊥. Then, by
Prop. C.1, h1 and h2 are not weakly mergeable in spec(Snapshot) after h0 = ε. Note that
h2 ∈ spec(Snapshot). Consider the following sequential history of spec(Snapshot):

h1
seq = (p1: |update(1) |) · (p3: |scan v|)

By assumption, I is available w.r.t. h2 and h1
seq.

Then, by Thm. 4.8, there exist π1 and π2 such that:

πi|Snapshot = hi for i ∈ {1, 2}.
πi ∈ traces(I) for i ∈ {1, 2}.
πi|M ∈ traces(SCM) for i ∈ {1, 2}.
proc-set(πi) = proc-set(hi) for i ∈ {1, 2}.
For every π′

1 ∈ reordersproc(π1) such that π′
1|M ∈ traces(SCM) and π1|Snapshot = h1 and

π′
2 ∈ reordersproc(π2) such that π′

2|M ∈ traces(SCM) and π2|Snapshot = h2, π′
1|M and π′

2|M
are not weakly mergeable in RA.

Let π′
1 be the sequence obtained from π1 by:

moving ⟨p1, inv(update(1))⟩, ⟨p3, inv(scan)⟩ and all leading fences to the beginning of
the sequence; and
moving ⟨p1, res(ack)⟩, ⟨p3, res(v)⟩ and all trailing fences to the end of the sequence.

In this rearrangement we keep the internal order among moved events as it is in π1. Then,
π′

1 ∈ reordersproc(π1) and π1|Snapshot = h1. Moreover, among memory events, we only moved
fences which are no-ops under SCM. Thus, π1|M ∈ traces(SCM) implies π′

1|M ∈ traces(SCM).
By taking π′

2 = π2, we obtain that π′
1|M and π′

2|M are not weakly mergeable in RA. Finally,
by property RAw in Table 1, we obtain that π′

1|M is not LTF, or it contains some RMW event.
This implies that either π′

1|M|p1 or π′
1|M|p3 are not LTF or contain some RMW event. ◀

Lower bounds for counter. Consider a counter object Counter with the initial value of 0,
and the increment (inc), decrement (dec), and read (read) operations. Then, we have:

▶ Proposition C.2. Let p1, p2, p3 ∈ P and h1, h2 ∈ ComH(Counter) such that proc-set(h1) ∩
proc-set(h2) = ∅ and the following hold:

h1 ⊑ (p1: |inc |) · (p3: |read 1|); and
h2 ⊑ (p2: |dec |) · (p2: |read −1|)

Then, h1 and h2 are not weakly mergeable in spec(Counter) after ε.

Then, the following can be obtained by instantiating the proof of Thm. 5.11 to use
Prop. C.2.

▶ Theorem C.3. Let I be a spec-available implementation of Counter that is consistent under
a memory model M . Then, there exist p, p′ ∈ P, π1 ∈ traces(I(o, p)) where o ∈ {inc, dec}
and π2 ∈ traces(I(read, p′)) such that the following hold for σ1 = π1|M and σ2 = π2|M}:

(a) if M = SCM, then σ1 · σ2 either has a RMW event or is not RBW; and
(b) if M = TSO, then σ1 · σ2 has either a RMW event or is non-LTF (i.e., has a fence in

the middle).
(c) if M = RA, then (i) either σ1 or σ2 has an RMW, or (ii) either σ1 or σ2 is non-LTF.

DISC 2024

6:22 What Cannot Be Implemented on Weak Memory?

Upper bounds. There is a wait-free snapshot implementation [1] that is linearizable under
SCM, in which scan performs a sequence of reads, and update performs a sequence of
reads followed by a write, Using the fence insertion strategy in §5.1, a linearizable wait-free
implementation of snapshot under TSO is obtained from such implementations by adding a
single fence at the end of update.

▶ Theorem C.4. For M ∈ {SCM, TSO}, there exists a linearizable wait-free implementation
of snapshot SnapshotM under M such that:

(a) SnapshotSCM uses only a sequence of reads followed by a write to implement update
and only reads to implement scan, and

(b) SnapshotTSO uses only a sequence of reads followed by a write and a fence at the end to
implement update, and only reads to implement scan.

Observe that Thm. C.4 (a) implies that any pair of consecutive update and scan is RBW,
which is tight in the lower bound of Thm. 5.11 (a). Likewise, Thm. C.4 (b) is tight in the
lower bound of Thm. 5.11 (b), which stipulates that a fence is needed somewhere within
consecutively executed update and scan.

A linearizable wait-free counter can be implemented on top of a snapshot instance
as follows: each process pi stores its contribution to the current counter value in a local
variable ci initialized to 0. To increment (resp., decrement) the counter, pi increments (resp.,
decrements) ci, and then invokes update(ci) to share its contribution with other processes.
To read the counter, a process calls scan and returns the sum of the values stored in the
returned vector.

▶ Theorem C.5. For M ∈ {SCM, TSO}, there exists a linearizable wait-free implementation
of counter CounterM under M such that:

(a) CounterSCM uses only writes to implement inc and dec and only reads to implement
read, and

(b) CounterTSO uses only writes and a fence at the end to implement inc and dec, and only
reads to implement read.

As in the case of snapshot, the synchronization strategy stipulated by this result is optimal
w.r.t. the lower bound of Thm. C.3. The optimal implementations of snapshot and counter
under RA are left for future work.

	1 Introduction
	2 Weak Memory Models
	2.1 Formalizing Weak Memory Models

	3 Mergeability Results for Memory Models
	4 A Recipe for Merge-Based Impossibility Results
	4.1 Objects and Their Implementations
	4.2 The Merge Theorem

	5 Implementability of Objects on Weak Memory Models
	5.1 One-Sided Non-Commutative Operations
	5.2 Two-Sided Non-Commutative Operations and Mutual Exclusion
	5.3 Snapshot and Counter

	6 Related Work
	A Fence-optimal Max Register Under RA
	B Mutual Exclusion
	C Lower and Upper Bounds for Snapshot and Counter

