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Abstract

We prove that the extension of the known hypersequent calculus for standard first-order Gödel logic with usual rules
for second-order quantifiers is sound and (cut-free) complete for Henkin-style semantics for second-order Gödel logic.
The proof is semantic, and it is similar in nature to Schütte and Tait’s proof of Takeuti’s conjecture.
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1. Introduction

Fuzzy logics form a natural generalization of classical logic, in which truth values consist of some linearly
ordered set, usually taken to be the real interval [0, 1]. They have a wide variety of applications, as they
provide a reasonable model of certain very common vagueness phenomena. Both their propositional and
first-order versions are well-studied by now (see, e.g., [1]). Clearly, for many interesting applications (see,
e.g., [2] and Section 5.5.2 in Chapter I of [3]), propositional and first-order fuzzy logics do not suffice, and
one has to use higher-order versions. These are much less developed (see, e.g., [4] and [3]), especially from
the proof-theoretic perspective. Evidently, higher-order fuzzy logics deserve a proof-theoretic study, with
the aim of providing a basis for automated deduction methods, as well as a complementary point of view in
the investigation of these logics.

The proof-theory of propositional fuzzy logics is the main subject of [5]. There, an essential tool to
develop well-behaved proof calculi for fuzzy logics is the transition from (Gentzen-style) sequents, to hyper-
sequents. The latter, that are usually nothing more than disjunctions of sequents, turn to be an adequate
proof-theoretic framework for the fundamental fuzzy logics. In particular, propositional Gödel logic (the
logic interpreting conjunction as minimum, and disjunction as maximum) is easily captured by a cut-free
hypersequent calculus called HG (introduced in [6]). The derivation rules of HG are the standard hyper-
sequent versions of the sequent rules of Gentzen’s LJ for intuitionistic logic, and they are augmented by
the communication rule that allows “exchange of information” between two hypersequents [7]. In [8], it was
shown that HIF, the extension of HG with the natural hypersequent versions of LJ’s sequent rules for the
first-order quantifiers, is sound and (cut-free) complete for standard first-order Gödel logic.1 As a corollary,
one obtains Herbrand theorem for the prenex fragment of this logic (see [5, 9]).

In this paper, we study the extension of HIF with usual rules for second-order quantifiers. These consist
of the single-conclusion hypersequent version of the rules for introducing second-order quantifiers in the

1Note that Gödel logic is the only fundamental fuzzy logic whose first-order version is recursively axiomatizable [5].
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ordinary sequent calculus for classical logic (see, e.g., [10, 11]). We denote by HIF2 the extension of (the
cut-free fragment of) HIF with these rules. Our main result is that HIF2 is sound and complete for second-
order Gödel logic. Since we do not include the cut rule in HIF2, this automatically implies the admissibility
of cut, which makes this calculus a suitable possible basis for automated theorem proving. It should be
noted that like in the case of second-order classical logic, the obtained calculus characterizes Henkin-style
second-order Gödel logic. Thus second-order quantifiers range over a domain that is directly specified in the
second-order structure, and it admits full comprehension (this is a domain of fuzzy sets in the case of fuzzy
logics). This is in contrast to what is called the standard semantics, where second-order quantifiers range
over all subsets of the universe. Hence HIF2 is practically a system for two-sorted first-order Gödel logic
together with the comprehension axioms (see also [12]).

While the soundness of HIF2 is straightforward, proving its (cut-free) completeness turns out to be
relatively involved. This is similar to the case of second-order classical logic, where the completeness of
the cut-free sequent calculus was open for several years, and known as Takeuti’s conjecture [13].2 While
usual syntactic arguments for cut-elimination dramatically fail for the rules of second-order quantifiers,
Takeuti’s conjecture was initially verified by a semantic proof. This was accomplished in two steps. First,
the completeness was proved with respect to three-valued non-deterministic semantics (this was done by
Schütte in [14]). Then, it was left to show that from every three-valued non-deterministic counter-model,
one can extract a usual (two-valued) counter-model, without losing comprehension (this was done first by
Tait in [15]). Our proof has basically a similar general structure. Thus, in Section 5, we present a non-
deterministic semantics for HIF2 with generalized truth values. In Section 6, we use this semantics to derive
completeness with respect to the ordinary semantics. Finally, full proofs of the more technical propositions
are given in Appendices Appendix A and Appendix B.

2. Preliminaries

In what follows, L denotes an arbitrary second-order language. For the simplicity of the presentation,
we follow [10] and restrict ourselves to simplified second-order languages, in which the second-order part of
the signature consists only of one predicate symbol ε (with the intuitive meaning of set membership). This
is formulated in the next definition.

Definition 2.1. A simple second-order language consists of the following:

1. Infinitely many individual variables ν1, ν2, ... and set variables χ1, χ2, .... We use the metavariables
x, y, z and X,Y, Z (with or without subscripts) for individual and set variables (respectively).

2. A propositional constant ⊥.

3. Binary connectives ∧,∨,⊃. We use � as a metavariable for the binary connectives.

4. Individual quantifiers ∀i and ∃i, and set quantifiers ∀s and ∃s. We use Qi and Qs as metavariables for
the individual and set quantifiers (respectively).

5. An arbitrary set of individual constant symbols, and an arbitrary set of set constant symbols. The
metavariables c and C are used to range over individual and set constant symbols (respectively).

6. An arbitrary set of function symbols (that take individuals as arguments). The metavariable f is used
to range over them.

7. An arbitrary set of predicate symbols (that take individuals as arguments). The metavariable p is
used to range over them.

8. A predicate symbol ε, with two places, the first for individuals and the second for sets.

9. Parentheses ′(′ and ′)′.

Definition 2.2. The set of L-terms consists of first-order L-terms and second-order L-terms. These are
defined as follows:

2More precisely, Takeuti’s conjecture concerned full type-theory, namely, the completeness of the cut-free sequent calculus
that includes rules for quantifiers of any finite order. However, the proof for second-order fragment was the main breakthrough.
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1. First-order L-terms are all individual variables of L; all individual constant symbols of L; if f is an n-
ary function symbol of L and t1, ... , tn are first-order L-terms then f(t1, ... , tn) is a first-order L-term.
We use t (with or without subscripts) as a metavariable for first-order L-terms.

2. Second-order L-terms are all set variables of L and all set constant symbols of L. We use T (with or
without subscripts) as a metavariable for second-order L-terms.

The set of (individual) variables occurring in a first-order L-term t is defined as usual, and denoted by fv[t].
Similarly, the set of (set) variables occurring in a second-order L-term T is denoted by fv[T ].

Following the convention in [10], we define a formula as an equivalence class of what we call concrete
formulas, so that two formulas that differ only by the names of their bound variables are considered as the
same.3 This is convenient for handling the bureaucracy of free and bound variables. Moreover, it simplifies
the non-deterministic semantics below (see Remark 5.7).

Definition 2.3. Concrete L-formulas are inductively defined as follows:

1. p(t1, ... , tn) is a concrete L-formula for n-ary every predicate symbol p of L and first-order L-terms
t1, ... , tn.

2. (tεT ) is a concrete L-formula for every first-order L-term t and second-order L-term T .

3. ⊥ is a concrete L-formula.

4. If ϕ•1 and ϕ•2 are concrete L-formulas, so are (ϕ•1 ∧ ϕ•2), (ϕ•1 ∨ ϕ•2), and (ϕ•1 ⊃ ϕ•2).

5. If ϕ• is a concrete L-formula, and x is an individual variable of L, then (∀ixϕ•) and (∃ixϕ•) are
concrete L-formulas.

6. If ϕ• is a concrete L-formula, and X is a set variable of L, then (∀sXϕ•) and (∃sXϕ•) are concrete
L-formulas.

We use ϕ• (with or without subscripts) as a metavariable for concrete L-formulas. Free and bound variables
in concrete L-formulas are defined as usual. We denote by fv[ϕ•], the set of (individual and set) variables
occurring free in a concrete L-formula ϕ•. Alpha-equivalence between concrete L-formulas is defined as
usual (renaming of bound variables). We denote by [ϕ•]α the set of all concrete L-formulas which are
alpha-equivalent to ϕ• (i.e. the equivalence class of ϕ• under alpha-equivalence).

Definition 2.4. cp[ϕ•], the complexity of a concrete L-formula ϕ• is the number of occurrences of quantifiers,
connectives (including ⊥), and atomic concrete formulas (formulas of the form p(t1, ... , tn) or (tεT )) in ϕ•.

Definition 2.5. An L-formula is an equivalence class of concrete L-formulas under alpha-equivalence. We
mainly use ϕ,ψ (with or without subscripts) as metavariables for L-formulas. The set of free variables and
the complexity of an L-formula are defined using representatives, i.e. for an L-formula ϕ, fv[ϕ] = fv[ϕ•]
and cp[ϕ] = cp[ϕ•] for some ϕ• ∈ ϕ.

In the last definition and henceforth, it is easy to verify that all notions defined using representatives are
well-defined.

Definition 2.6. We define several operations on L-formulas:

• For � ∈ {∧,∨,⊃}, and L-formulas ϕ1 and ϕ2: (ϕ1 � ϕ2) = [(ϕ•1 � ϕ•2)]α for some ϕ•1 ∈ ϕ1 and ϕ•2 ∈ ϕ2.

• For Qi ∈ {∀i,∃i}, an individual variable x of L, and an L-formula ϕ: (Qixϕ) = [(Qixϕ•)]α for some
ϕ• ∈ ϕ.

• For Qs ∈ {∀s,∃s}, a set variable X of L, and an L-formula ϕ: (QsXϕ) = [(QsXϕ•)]α for some ϕ• ∈ ϕ.

The next proposition allows us to use inductive definitions and to prove claims by induction on complexity
of formulas:

Proposition 2.7. Exactly one of the following holds for every L-formula ϕ:

3Since [10] does not provide all technical details for this convention, we do it here.
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• cp[ϕ] = 1 and exactly one of the following holds:

– ϕ = {p(t1, ... , tn)} for unique n-ary predicate symbol p of L, and first-order L-terms t1, ... , tn.

– ϕ = {(tεT )} for unique first-order L-term t, and second-order L-term T .

– ϕ = {⊥}.
• ϕ = (ϕ1 � ϕ2) for unique � ∈ {∧,∨,⊃}, and L-formulas ϕ1 and ϕ2 such that cp[ϕ1] < cp[ϕ] and
cp[ϕ2] < cp[ϕ].

• For every individual variable x 6∈ fv[ϕ], ϕ = (Qixψ) for unique Qi ∈ {∀i,∃i}, and L-formula ψ such
that cp[ψ] < cp[ϕ].

• For every set variable X 6∈ fv[ϕ], ϕ = (QsXψ) for unique Qs ∈ {∀s,∃s}, and L-formula ψ such that
cp[ψ] < cp[ϕ].

Substitutions are defined as follows:

Definition 2.8. Let t be a first-order L-term, and x be an individual variable of L.

1. Given a first-order L-term t′, t′{t/x} is inductively defined by:

t′{t/x} =


t t′ = x

t′ t′ = y for y 6= x, or t′ = c

f(t1{t/x}, ... , tn{t/x}) t′ = f(t1, ... , tn)

2. Given an L-formula ϕ, ϕ{t/x} is inductively defined by:

ϕ{t/x} =



{p(t1{t/x}, ... , tn{t/x})} ϕ = {p(t1, ... , tn)}
{(t′{t/x}εT )} ϕ = {(t′εT )}
ϕ ϕ = {⊥}
(ϕ1{t/x} � ϕ2{t/x}) ϕ = (ϕ1 � ϕ2)

(Qiyψ{t/x}) ϕ = (Qiyψ) for y 6∈ fv[t] ∪ {x}
(QsY ψ{t/x}) ϕ = (QsY ψ)

Definition 2.9. Let T be a second-order L-term, and X be a set variable of L. Given an L-formula ϕ,
ϕ{T/X} is inductively defined by:

ϕ{T/X} =



ϕ ϕ = {p(t1, ... , tn)}
ϕ ϕ = {(tεT ′)} for T ′ 6= X

{(tεT )} ϕ = {(tεX)}
ϕ ϕ = {⊥}
(ϕ1{T/X} � ϕ2{T/X}) ϕ = (ϕ1 � ϕ2)

(Qiyψ{T/X}) ϕ = (Qiyψ)

(QsY ψ{T/X}) ϕ = (QsY ψ) for Y 6∈ fv[T ] ∪ {X}

Note that the above substitution operations are well-defined. In particular, the choice of the variables y
and Y is immaterial.

2.1. Henkin-style Second-Order Gödel Logic

In this section we precisely define Henkin-style second-order Gödel logic, via a semantic presentation.
These definitions naturally extend the usual definitions of Henkin-style second-order classical logic, by re-
placing the usual two truth values True and False by any bounded complete linearly ordered set of truth
values (e.g., the standard real interval [0, 1]). From a different angle, these definitions naturally extend the
usual definitions of (standard) first-order Gödel logic, by extending the first-order domains with an addi-
tional collection of fuzzy sets. The first component of the semantics is the set of truth values. These should
form a Gödel set, defined as follows:
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Definition 2.10. A (standard) Gödel set is a bounded complete linearly ordered set V = 〈V,≤〉. We denote
by 0V and 1V the maximal and minimal elements (respectively) of V with respect to ≤. The operations
minV ,maxV , infV and supV are defined as usual (where minV ∅ = 1V and maxV ∅ = 0V). For every pair of
elements u1, u2 ∈ V , u1 →V u2 is defined to be 1V if u1 ≤ u2, and u2 otherwise. The relations ≥, <, and
> are also defined in the obvious way. We omit the subscript V when it is clear from the context, and
sometimes we identify V with the set V (e.g., when referring to the elements of V as elements of V).

Next, we define the domain of the semantic structures. As done in Henkin-style second order logics, in
addition to the non-empty domain of individuals, we also have a domain of sets. In our case the elements
of this domain are fuzzy sets.

Definition 2.11. A function from a set D to a Gödel set V is called a fuzzy subset of D over V.

Definition 2.12. Let V be a Gödel set. A domain for L and V is an ordered triplet 〈Di,Ds, I〉, where
Di is some non-empty set, Ds is a non-empty collection of fuzzy subsets of Di over V, and I is a function
assigning: an element in Di to every individual constant symbol of L, a fuzzy subset in Ds to every set
constant symbol of L, and a function in Din → Di to every n-ary function symbol of L.

Note that we include the interpretation of constants and function symbols in the domain itself. Thus,
a domain is defined relatively to the language, as well as to the set of truth values (which is used in the
definition of a fuzzy subset). Next, we define L-structures, that include, in addition to a Gödel set of truth
values and a corresponding domain, an interpretation of the predicate symbols. Similarly to the set constant
symbols, unary predicate symbols are naturally interpreted as fuzzy subsets of the individuals domain, and
fuzzy subsets of tuples of individuals are used for predicates of larger arities.

Definition 2.13. An L-structure is a tuple U = 〈V,D, P 〉 where:

1. V is a Gödel set.

2. D = 〈Di,Ds, I〉 is a domain for L and V.

3. P is a function assigning a fuzzy subset of Din over V to every n-ary predicate symbol of L.

As usual, an additional function is used for interpreting the free variables.

Definition 2.14. Let D = 〈Di,Ds, I〉 be a domain for L and V.

1. An 〈L,D〉-assignment is a function assigning an element of Di to every individual variable of L, and
an element of Ds to every set variable of L. An 〈L,D〉-assignment σ is extended to all L-terms by:
σ[c] = I[c] for every individual constant c of L, σ[C] = I[C] for every set individual constant C of
L, and σ[f(t1, ... , tn)] = I[f ][σ[t1], ... , σ[tn]] for every n-ary function symbol f of L and first-order
L-terms t1, ... , tn.

2. Let σ be an 〈L,D〉-assignment. Given an individual variable x of L and d ∈ Di, we denote by
σx:=d the 〈L,D〉-assignment which is identical to σ except for σx:=d[x] = d. Similarly, given a set
variable X of L, and D ∈ Ds, we denote by σX:=D the 〈L,D〉-assignment which is identical to σ
except for σX:=D[X] = D. These notations are naturally extended to several distinct variables (e.g.
σν1:=d1,ν2:=d2,χ1:=D).

We can now define the truth value assigned by a given structure to an arbitrary formula with respect to
some assignment. This definition generalizes in a natural way the usual recursive definition used in classical
higher-order logics, where instead of the usual truth tables we use their counterparts of Gödel logic: ∧
corresponds to min, ∨ to max, and the implication ⊃ is interpreted as the → operation. For the quantifiers,
we take inf and sup. Since the set of truth values is, by definition, complete, inf and sup are always defined.
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Definition 2.15. Let U = 〈V,D, P 〉 be an L-structure, where D = 〈Di,Ds, I〉. For every L-formula ϕ and
〈L,D〉-assignment σ, U [ϕ, σ] is the element of V inductively defined as follows:

U [ϕ, σ] =



P [p][σ[t1], ... , σ[tn]] ϕ = {p(t1, ... , tn)}
σ[T ][σ[t]] ϕ = {(tεT )}
0 ϕ = {⊥}
min{U [ϕ1, σ],U [ϕ2, σ]} ϕ = (ϕ1 ∧ ϕ2)

max{U [ϕ1, σ],U [ϕ2, σ]} ϕ = (ϕ1 ∨ ϕ2)

U [ϕ1, σ]→ U [ϕ2, σ] ϕ = (ϕ1 ⊃ ϕ2)

infd∈Di
U [ψ, σx:=d] ϕ = (∀ixψ)

supd∈Di
U [ψ, σx:=d] ϕ = (∃ixψ)

infD∈Ds
U [ψ, σX:=D] ϕ = (∀sXψ)

supD∈Ds
U [ψ, σX:=D] ϕ = (∃sXψ)

It can be verified that the choice of x and X in the last definition is immaterial, and U [ϕ, σ] is well-defined.
The last definition establishes the connection between the predicate symbol ε, and the (fuzzy) set mem-

bership. The truth value assigned to a formula of the form {(tεT )} with respect to an assignment σ is equal
to the membership degree of σ[t] in the fuzzy subset σ[T ].

Next, we define Henkin-style second-order Gödel logic. This amounts to the set of tautologies induced by
the structures defined above with the additional restriction of comprehension. Thus, as done in Henkin-style
classical second-order logic, we require that all (fuzzy) subsets of the universe that can be captured by some
formula, are indeed included in the domain of (fuzzy) subsets. Structures satisfying this property (namely,
admit the comprehension axiom) are called comprehensive.

Definition 2.16. Let U = 〈V,D, P 〉 be an L-structure, where D = 〈Di,Ds, I〉. Given an L-formula ϕ, an
individual variable x of L, and an 〈L,D〉-assignment σ, we denote by U [ϕ, σ, x] the fuzzy subset of Di over
V defined by λd ∈ Di. U [ϕ, σx:=d]. U is called comprehensive if U [ϕ, σ, x] ∈ Ds for every ϕ, x, and σ.

Definition 2.17. For an L-formula ϕ, we write `G2
L ϕ if U [ϕ, σ] = 1 for every comprehensive L-structure

U = 〈V,D, P 〉 and 〈L,D〉-assignment σ. G2
L is the logic consisting of all formulas ϕ such that `G2

L ϕ.

Remark 2.18. For simplicity, we identify a logic with its set of theorems, and do not consider consequence
relations.

Example 2.19. It is easy to see that the comprehension axiom scheme is valid in G2
L, i.e.

`G
2
L (∃sX(∀ix((ϕ ⊃ {(xεX)}) ∧ ({(xεX)} ⊃ ϕ))))

for every L-formula ϕ, set variable X 6∈ fv[ϕ], and individual variable x. Indeed, let U = 〈V,D, P 〉 be a com-
prehensive L-structure, where D = 〈Di,Ds, I〉. Let σ be an 〈L,D〉-assignment. By definition, U [ϕ, σ, x] ∈ Ds.
Thus

U [(∃sX(∀ix((ϕ ⊃ {(xεX)})∧({(xεX)} ⊃ ϕ)))), σ] ≥ U [(∀ix((ϕ ⊃ {(xεX)})∧({(xεX)} ⊃ ϕ))), σX:=U [ϕ,σ,x]].

By definition, for every d ∈ Di we have:

U [{(xεX)}), σX:=U [ϕ,σ,x],x:=d] = U [ϕ, σ, x][d] = U [ϕ, σx:=d].

Since X 6∈ fv[ϕ] (using Lemma Appendix A.1, see Appendix Appendix A),

U [(ϕ ⊃ {(xεX)}), σX:=U [ϕ,σ,x],x:=d] = U [ϕ, σx:=d]→ U [ϕ, σx:=d] = 1,

and similarly,
U [({(xεX)} ⊃ ϕ), σX:=U [ϕ,σ,x],x:=d] = 1.

6



O. Lahav and A. Avron / Fuzzy Sets and Systems 00 (2014) 1–30 7

It follows that

U [((ϕ ⊃ {(xεX)}) ∧ ({(xεX)} ⊃ ϕ)), σX:=U [ϕ,σ,x],x:=d] = min{1, 1} = 1.

Since this holds for every d ∈ Di, we have:

inf
d∈Di

U [((ϕ ⊃ {(xεX)}) ∧ ({(xεX)} ⊃ ϕ)), σX:=U [ϕ,σ,x],x:=d] = 1.

Consequently,
U [(∃sX(∀ix((ϕ ⊃ {(xεX)}) ∧ ({(xεX)} ⊃ ϕ)))), σ] = 1.

3. Hypersequent Calculus

In this section we present a cut-free hypersequent calculus for G2
L. This calculus is obtained by aug-

menting the hypersequent calculus HIF for standard first-order Gödel logic (introduced in [8]) with rules for
second-order quantifiers. We begin by presenting HIF itself. We follow its formulation from [16] (adapted
to our definitions, where formulas are equivalence classes of concrete formulas).

Definition 3.1. A single-conclusion L-sequent is an ordered pair 〈Γ, E〉 of finite sets of L-formulas, where
E is either a singleton or empty. A single-conclusion L-hypersequent is a finite set of single-conclusion
L-sequents.

Henceforth, we simply write L-sequent instead of single-conclusion L-sequent, and L-hypersequent instead
of single-conclusion L-hypersequent. The set of free variables and substitution operations are defined as
expected for sets of L-formulas, L-sequents, and L-hypersequents. We usually employ the standard sequent
notation Γ⇒E (for 〈Γ, E〉) and the hypersequent notation s1 | ... | sn (for {s1, ... , sn}). We also employ the
standard abbreviations, e.g. Γ, ϕ⇒ψ instead of Γ ∪ {ϕ}⇒{ψ}, and H | s instead of H ∪ {s}.

Definition 3.2. HIF is the hypersequent calculus consisting of the following derivation rules:
Structural Rules:

(IW⇒)
H | Γ⇒E
H | Γ, ϕ⇒E

(⇒IW )
H | Γ⇒
H | Γ⇒ϕ

(EW )
H

H | Γ⇒E

(com)
H | Γ1,Γ2⇒E1 H | Γ1,Γ2⇒E2

H | Γ1⇒E1 | Γ2⇒E2
(id)

H | Γ, ϕ⇒ϕ

Logical Rules:

(⊥⇒)
H | Γ, {⊥}⇒E

(⊃⇒)
H | Γ⇒ϕ1 H | Γ, ϕ2⇒E
H | Γ, (ϕ1 ⊃ ϕ2)⇒E

(⇒⊃)
H | Γ, ϕ1⇒ϕ2

H | Γ⇒(ϕ1 ⊃ ϕ2)

(∨⇒)
H | Γ, ϕ1⇒E H | Γ, ϕ2⇒E

H | Γ, (ϕ1 ∨ ϕ2)⇒E

(⇒∨1)
H | Γ⇒ϕ1

H | Γ⇒(ϕ1 ∨ ϕ2)
(⇒∨2)

H | Γ⇒ϕ2

H | Γ⇒(ϕ1 ∨ ϕ2)

(∧⇒1)
H | Γ, ϕ1⇒E

H | Γ, (ϕ1 ∧ ϕ2)⇒E
(∧⇒2)

H | Γ, ϕ2⇒E
H | Γ, (ϕ1 ∧ ϕ2)⇒E

(⇒∧)
H | Γ⇒ϕ1 H | Γ⇒ϕ2

H | Γ⇒(ϕ1 ∧ ϕ2)
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(∀i⇒)
H | Γ, ϕ{t/x}⇒E
H | Γ, (∀ixϕ)⇒E

(⇒∀i) H | Γ⇒ϕ
H | Γ⇒(∀ixϕ)

(∃i⇒)
H | Γ, ϕ⇒E

H | Γ, (∃ixϕ)⇒E
(⇒∃i) H | Γ⇒ϕ{t/x}

H | Γ⇒(∃ixϕ)

Applications of the rules (⇒∀i) and (∃i⇒) must obey the eigenvariable condition: x is not a free variable in
the lower hypersequent.

Several clarifications should be noted:

1. As usual, rules are formulated by schemes using metavariables. In addition to the metavariables
declared above, we use: H for L-hypersequents; Γ for finite sets of L-formulas; E for singleton or
empty sets of L-formulas. For example, an L-hypersequent H1 can be derived from an L-hypersequent
H2 by applying the rule (∀i⇒) iff H1 = H ∪ {〈Γ, (∀ixϕ)〉} and H2 = H ∪ {〈Γ ∪ {ϕ{t/x}}, E〉} for some
L-hypersequent H, finite set Γ of L-formulas, individual variable x of L, L-formula ϕ, first-order
L-term t, and singleton or empty set E of L-formulas.

2. Since formulas are equivalence classes, the rules (⇒∀i), (∃i⇒) could be written also as:

(⇒∀i) H | Γ⇒ϕ{y/x}
H | Γ⇒(∀ixϕ)

(∃i⇒)
H | Γ, ϕ{y/x}⇒E
H | Γ, (∃ixϕ)⇒E

where y is not a free variable in the lower hypersequent.

3. In the presence of the weakening rules, it is always possible to incorporate external weakenings and left
internal weakenings in the applications of the rules. Thus for example, we could have defined an appli-
cation of (⊃⇒) as an inference step deriving H | Γ, ϕ1 ⊃ ϕ2⇒E from H1 | Γ1⇒ϕ1 and H2 | Γ2, ϕ2⇒E
with the requirement that H1 ∪H2 ⊆ H and Γ1 ∪ Γ2 ⊆ Γ. Note that in the case of (com), the equiv-
alent definition allows us to derive H | Γ′1⇒E1 | Γ′2⇒E2 from H1 | Γ1,∆1⇒E1 and H2 | Γ2,∆2⇒E2

where H1 ∪H2 ⊆ H, Γ1 ∪∆2 ⊆ Γ′1 and Γ2 ∪∆1 ⊆ Γ′2. Henceforth, we freely use this kind of applica-
tions (that formally might involve additional applications of the weakening rules).

Next, we introduce the rules schemes for the set quantifiers. These are the single-conclusion hypersequent
versions of the sequent rules used for classical logic (see the calculus L2K in [10]), and they have the same
structure of the rules for individual quantifiers, where instead of using first-order terms, one uses abstraction
terms (abstracts for short). Abstracts are syntactic objects of the form {◦x | ϕ◦} that intuitively represent sets
of individuals. Note that abstracts are just a syntactic tool for formulating the rules of the set quantifiers.
Derivations in the calculus still consist solely of hypersequents, and no abstracts are mentioned in them. As
we did for formulas, we first define concrete abstracts, and abstracts are defined as alpha-equivalence classes
of concrete ones.

Definition 3.3. A concrete L-abstract is an expression of the form {◦x | ϕ•◦}, where x is an individual
variable of L, and ϕ• is a concrete L-formula. Alpha-equivalence between concrete L-abstracts is defined
as usual (where x is considered bound in {◦x | ϕ•◦}), and [{◦x | ϕ•◦}]α is standing for the set of all concrete
L-abstracts which are alpha-equivalent to {◦x | ϕ•◦}. An L-abstract is an equivalence class of concrete L-
abstracts under alpha-equivalence. We mainly use τ as a metavariable for L-abstracts. The set of free
variables of an L-abstract is defined using representatives, i.e. for an L-abstract τ , fv[τ ] = fv[{◦x | ϕ•◦}] for
some {◦x | ϕ•◦} ∈ τ .

Definition 3.4. Given an individual variable x of L and an L-formula ϕ, {◦x | ϕ◦} is the L-abstract [{◦x | ϕ•◦}]α
for some ϕ• ∈ ϕ.

Proposition 3.5. For every L-abstract τ and individual variable x 6∈ fv[τ ], there exists a unique L-formula
ϕ, such that τ = {◦x | ϕ◦}.

Definition 3.6. Let τ be an L-abstract, and t be a first-order L-term. τ [t] is defined to be the L-formula
ϕ{t/x} for some individual variable x and L-formula ϕ, such that τ = {◦x | ϕ◦}.

8
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It is easy to see that τ [t] is well-defined. First, Proposition 3.5 ensures the existence of x and ϕ such
that τ = {◦x | ϕ◦}. Additionally, it is easy to see that the result does not depend on the choice of x. Next,
we define substitution of an abstract for a set variable in an arbitrary formula ϕ.

Definition 3.7. Let τ be an L-abstract, and X be a set variable of L. Given an L-formula ϕ, ϕ{τ/X} is
inductively defined by:

ϕ{τ/X} =



ϕ ϕ = {p(t1, ... , tn)}, ϕ = {(tεT )} for T 6= X, or ϕ = {⊥}
τ [t] ϕ = {(tεX)}
(ϕ1{τ/X} � ϕ2{τ/X}) ϕ = (ϕ1 � ϕ2)

(Qiyψ{τ/X}) ϕ = (Qiyψ) for y 6∈ fv[τ ]

(QsY ψ{τ/X}) ϕ = (QsY ψ) for Y 6∈ fv[τ ] ∪ {X}

Note that the this substitution operation is well-defined. In particular, the choice of the variables y and
Y is immaterial.

Example 3.8. For ϕ = (∀iν1({(ν1εχ1)} ⊃ (∃sχ2{(ν1εχ2)}))), and τ = {◦ν2 | {p(ν2, ν2)}◦}, we have

ϕ{τ/χ1} = (∀iν1({p(ν1, ν1)} ⊃ (∃sχ2{(ν1εχ2)}))).

The following lemma will be useful in the sequel.

Notation 3.9. Given a second-order L-term T , Tabs denotes the L-abstract {◦ν1 | {(ν1εT )}◦}.

Lemma 3.10. For every second-order L-term T , L-formula ϕ, and set variable X of L, ϕ{Tabs/X} = ϕ{T/X}.

Proof. By usual induction on the complexity of ϕ.

Using abstracts, the rules for the second-order quantifiers are formulated as follows.

Definition 3.11. HIF2 is the hypersequent calculus obtained by augmenting HIF with the following
derivation rules:

(∀s⇒)
H | Γ, ϕ{τ/X}⇒E
H | Γ, (∀sXϕ)⇒E

(⇒∀s) H | Γ⇒ϕ
H | Γ⇒(∀sXϕ)

(∃s⇒)
H | Γ, ϕ⇒E

H | Γ, (∃sXϕ)⇒E
(⇒∃s) H | Γ⇒ϕ{τ/X}

H | Γ⇒(∃sXϕ)

where X is not a free variable in the lower hypersequent in applications of the rules (⇒ ∀s) and (∃s ⇒).
Below, we write ` H to denote that a hypersequent H is provable in HIF2.

As before, since formulas are equivalence classes, the rules (⇒∀s), and (∃s⇒) could be written as:

(⇒∀s) H | Γ⇒ϕ{Y/X}
H | Γ⇒(∀sXϕ)

(∃s⇒)
H | Γ, ϕ{Y/X}⇒E
H | Γ, (∃sXϕ)⇒E

where Y is not a free variable in the lower hypersequent.

Remark 3.12. Note that rules given by the schemes

H | Γ, ϕ{T/X}⇒E
H | Γ, (∀sXϕ)⇒E

H | Γ⇒ϕ{T/X}
H | Γ⇒(∃sXϕ)

where T is a second-order L-term, are particular instances of (∀s⇒) and (⇒∃s), obtained by choosing
τ = Tabs (see Lemma 3.10).

9
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Example 3.13. Let ϕ and ψ be L-formulas, and X be a set variable such that X 6∈ fv[ϕ]∪fv[ψ]. We show
that ⇒̀((∀sX(ϕ ∨ ψ)) ⊃ (ϕ ∨ (∀sXψ))):

ϕ⇒ϕ (id)

ϕ⇒ϕ (id)ψ⇒ψ
(id)

ψ⇒ϕ | ϕ⇒ψ
(com)

ψ⇒ψ
(id)

ψ⇒ϕ | (ϕ ∨ ψ)⇒ψ
(∨⇒)

(ϕ ∨ ψ)⇒ϕ | (ϕ ∨ ψ)⇒ψ
(∨⇒)

(∀sX(ϕ ∨ ψ))⇒ϕ | (ϕ ∨ ψ)⇒ψ
(∀s⇒)

(∀sX(ϕ ∨ ψ))⇒ϕ | (∀sX(ϕ ∨ ψ))⇒ψ
(∀s⇒)

(∀sX(ϕ ∨ ψ))⇒ϕ | (∀sX(ϕ ∨ ψ))⇒(∀sXψ)
(⇒∀s)

(∀sX(ϕ ∨ ψ))⇒(ϕ ∨ (∀sXψ)) | (∀sX(ϕ ∨ ψ))⇒(∀sXψ)
(⇒∨1)

(∀sX(ϕ ∨ ψ))⇒(ϕ ∨ (∀sXψ))
(⇒∨2)

⇒((∀sX(ϕ ∨ ψ)) ⊃ (ϕ ∨ (∀sXψ)))
(⇒⊃)

3.1. Some Admissible and Derivable Rules

In this section, we prove some properties of HIF2, to be used below for proving its completeness. First,
the following standard lemma establishes the admissibility of substitution:

Lemma 3.14. Let H be an L-hypersequent.

• For every individual variables x, y of L, such that y 6∈ fv[H], if ` H then ` H{y/x}.
• For every set variables X,Y of L, such that Y 6∈ fv[H], if ` H then ` H{Y/X}.

Next, the rules (com), (∨⇒), (∃i⇒), and (∃s⇒) can be generalized as follows.

Proposition 3.15 (Generalized (com)). The following rule is derivable in HIF2:

H1 | Γ1,Γ
′
1⇒E1 | ... | Γ1,Γ

′
1⇒En H2 | Γ2,Γ

′
2⇒F1 | ... | Γ2,Γ

′
2⇒Fm

H1 | H2 | Γ1,Γ
′
2⇒E1 | ... | Γ1,Γ

′
2⇒En | Γ2,Γ

′
1⇒F1 | ... | Γ2,Γ

′
1⇒Fm

Proof. The proof is similar to the proof of Proposition 22 in [16].

Proposition 3.16 (Generalized (∨⇒)). The following rule is derivable in HIF2:

H1 | Γ1, ϕ1⇒E1 | ... | Γ1, ϕ1⇒En H2 | Γ2, ϕ2⇒F1 | ... | Γ2, ϕ2⇒Fm
H1 | H2 | Γ1, (ϕ1 ∨ ϕ2)⇒E1 | ... | Γ1, (ϕ1 ∨ ϕ2)⇒En | Γ2, (ϕ1 ∨ ϕ2)⇒F1 | ... | Γ2, (ϕ1 ∨ ϕ2)⇒Fm

Proof. The proof is similar to the proof of Proposition 23 in [16].

Proposition 3.17 (Generalized (∃i⇒)). For every L-hypersequent H, singleton or empty sets of L-formulas
E1, ... , En, finite set Γ of L-formulas, L-formula ϕ, and individual variable x 6∈ fv[H] ∪ fv[Γ ∪ E1 ∪ ... ∪ En]:
if ` H | Γ, ϕ⇒E1 | ... | Γ, ϕ⇒En, then ` H | Γ, (∃ixϕ)⇒E1 | ... | Γ, (∃ixϕ)⇒En.

Proof. We use induction on n. The claim is trivial for n = 0. Now assume that the claim holds for
n − 1, we prove it for n. Let H be an L-hypersequent, E1, ... , En be singleton or empty sets of L-
formulas, Γ be a finite set of L-formulas, ϕ be an L-formula, and x be an individual variable of L such
that x 6∈ fv[H] ∪ fv[Γ ∪ E1 ∪ ... ∪ En]. Let H0 = H | Γ, ϕ⇒E1 | ... | Γ, ϕ⇒En. Suppose that ` H0. Let y
be an individual variable of L such that y 6∈ fv[H0]. By Lemma 3.14, ` H0{y/x}. By Proposition 3.15, the
following L-hypersequent is derivable from H0 and H0{y/x}:

H | Γ, ϕ⇒En | Γ, ϕ{y/x}⇒E1 | ... | Γ, ϕ{y/x}⇒En−1

10
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(to see this, take H1 = H | Γ, ϕ⇒ En and H2 = H | Γ, ϕ{y/x} ⇒ E1 | ... | Γ, ϕ{y/x} ⇒ En−1). By an
application of (∃i⇒) on the last hypersequent, we obtain:

H | Γ, (∃ixϕ)⇒En | Γ, ϕ{y/x}⇒E1 | ... | Γ, ϕ{y/x}⇒En−1

The induction hypothesis now entails that ` H | Γ, (∃ixϕ)⇒E1 | ... | Γ, (∃ixϕ)⇒En.

Similarly, we have the following:

Proposition 3.18 (Generalized (∃s ⇒)). For L-hypersequent H, singleton or empty sets of L-formulas
E1, ... , En, finite set Γ of L-formulas, L-formula ϕ, and set variable X 6∈ fv[H] ∪ fv[Γ ∪ E1 ∪ ... ∪ En]: if
` H | Γ, ϕ⇒E1 | ... | Γ, ϕ⇒En, then ` H | Γ, (∃sXϕ)⇒E1 | ... | Γ, (∃sXϕ)⇒En.

4. Soundness

In this section we prove the soundness of HIF2 for G2
L.

Definition 4.1. Let U = 〈V,D, P 〉 be an L-structure, where V = 〈V,≤〉.

1. An 〈L,D〉-assignment σ is a model (with respect to U) of:

(a) an L-sequent Γ⇒E (denoted by: σ |=U Γ⇒E) if minϕ∈Γ U [ϕ, σ] ≤ maxϕ∈E U [ϕ, σ].4

(b) an L-hypersequent H (denoted by: σ |=U H) if σ |=U s for some component s ∈ H.

2. U is a model of an L-hypersequent H if σ |=U H for every 〈L,D〉-assignment σ.

Theorem 4.2. Let H be an L-hypersequent. If ` H, then every comprehensive L-structure is a model of
H.

Soundness for G2
L is an obvious corollary:

Corollary 4.3. For every L-formula ϕ, if `⇒ϕ, then `G2
L ϕ.

Proof. Directly follows from Theorem 4.2, using the fact that U is a model of ⇒ϕ iff U [ϕ, σ] = 1 for every
comprehensive L-structure U = 〈V,D, P 〉 and 〈L,D〉-assignment σ.

Theorem 4.2 is proved in the usual way, by induction on the length of the derivation in HIF2. Note
that the soundness proof for HIF in [16], was with respect to Kripke-style semantics, where here we prove
soundness of HIF2 for the many-valued semantics described above. We use the following technical lemmas
(full proofs are given in Appendix Appendix A):

Lemma 4.4. Let U = 〈V,D, P 〉 be an L-structure, t be a first-order L-term, and x be an individual variable
of L. For every L-formula ϕ, and 〈L,D〉-assignment σ: U [ϕ, σx:=σ[t]] = U [ϕ{t/x}, σ].

Lemma 4.5. Let U = 〈V,D, P 〉 be an L-structure, where D = 〈Di,Ds, I〉, τ be an L-abstract, x 6∈ fv[τ ]
be an individual variable, and X be a set variable of L. For every L-formula ϕ and 〈L,D〉-assignment σ, if
U [τ [x], σ, x] ∈ Ds, then U [ϕ{τ/X}, σ] = U [ϕ, σX:=U [τ [x],σ,x]].

Proof (Theorem 4.2). Let U = 〈V,D, P 〉 be an L-structure, where V = 〈V,≤〉 and D = 〈Di,Ds, I〉. It
suffices to prove soundness of each possible application of a rule of HIF2. We do here several cases, and
leave the other cases to the reader:

4Dealing with single-conclusion sequences, E is either a singleton {ϕ} and then maxϕ∈E U [ϕ, σ] = U [ϕ, σ], or empty and
then maxϕ∈E U [ϕ, σ] = 0.
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(com) Suppose that H | Γ1⇒E1 | Γ2⇒E2 is derived from H | Γ1,Γ2⇒E1 and H | Γ1,Γ2⇒E2 using (com).
Let σ be an 〈L,D〉-assignment. If σ |=U s for some component s ∈ H, then we are done. Oth-
erwise, σ |=U Γ1,Γ2⇒E1 and σ |=U Γ1,Γ2⇒E2. Thus minϕ∈Γ1∪Γ2

U [ϕ, σ] ≤ maxϕ∈E1
U [ϕ, σ], and

minϕ∈Γ1∪Γ2
U [ϕ, σ] ≤ maxϕ∈E2

U [ϕ, σ]. Now, either we have minϕ∈Γ1∪Γ2
U [ϕ, σ] = minϕ∈Γ1

U [ϕ, σ]
or minϕ∈Γ1∪Γ2

U [ϕ, σ] = minϕ∈Γ2
U [ϕ, σ]. It follows that either minϕ∈Γ1

U [ϕ, σ] ≤U maxϕ∈E1
U [ϕ, σ]

or minϕ∈Γ2 U [ϕ, σ] ≤ maxϕ∈E2 U [ϕ, σ]. Therefore, σ |=U Γ1⇒E1 or σ |=U Γ2⇒E2. In both cases,
σ |=U H | Γ1⇒E1 | Γ2⇒E2.

(⊃⇒) Suppose that H | Γ, (ϕ1 ⊃ ϕ2)⇒E is derived from H | Γ⇒ϕ1 and H | Γ, ϕ2⇒E using (⊃⇒). Let
σ be an 〈L,D〉-assignment. If σ |=U s for some s ∈ H, then we are done. Otherwise, σ |=U Γ⇒ϕ1

and σ |=U Γ, ϕ2⇒E. Let u1 = minψ∈Γ U [ψ, σ] and u2 = maxψ∈E U [ψ, σ]. If u1 ≤ u2, then we
have σ |=U Γ, (ϕ1 ⊃ ϕ2)⇒E, and we are done. Otherwise, u1 ≤ U [ϕ1, σ], U [ϕ2, σ] ≤ u2, and so
U [ϕ2, σ] < U [ϕ1, σ]. It follows that U [(ϕ1 ⊃ ϕ2), σ] = U [ϕ1, σ]→ U [ϕ2, σ] = U [ϕ2, σ] ≤ u2. Conse-
quently, σ |=U Γ, (ϕ1 ⊃ ϕ2)⇒E in this case as well.

(∀i⇒) Suppose that H = H ′ | Γ, (∀ixϕ)⇒E is derived from the L-hypersequent H ′ | Γ, ϕ{t/x}⇒E using
(∀i⇒). Assume that σ 6|=U H for some 〈L,D〉-assignment σ. Hence, σ 6|=U s for every s ∈ H ′, and σ 6|=U
Γ, (∀ixϕ)⇒E. Let u = maxψ∈E U [ψ, σ]. Since σ 6|=U Γ, (∀ixϕ)⇒E, we have minψ∈Γ U [ψ, σ] > u, and
U [(∀ixϕ), σ] > u. By definition, U [(∀ixϕ), σ] = infd∈Di

U [ϕ, σx:=d]. Thus U [ϕ, σx:=d] > u for every
d ∈ Di. In particular, U [ϕ, σx:=σ[t]] > u. Lemma 4.4 implies that U [ϕ{t/x}, σ] > u. It follows that
σ 6|=U Γ, ϕ{t/x}⇒E. Consequently, U is not a model of H ′ | Γ, ϕ{t/x}⇒E.

(∀s⇒) Suppose that H = H ′ | Γ, (∀sXϕ)⇒E is derived from the L-hypersequent H ′ | Γ, ϕ{τ/X}⇒E using
(∀s ⇒). Assume that σ 6|=U H for some 〈L,D〉-assignment σ. Hence, σ 6|=U s for every s ∈ H ′,
and σ 6|=U Γ, (∀sXϕ) ⇒ E. Let u = maxψ∈E U [ψ, σ]. Since σ 6|=U Γ, (∀sXϕ) ⇒ E, we have
minψ∈Γ U [ψ, σ] > u, and U [(∀sXϕ), σ] > u. By definition, U [(∀sXϕ), σ] = infD∈Ds U [ϕ, σX:=D].
Thus U [ϕ, σX:=D] > u for every D ∈ Ds. Let x be an individual variable such that x 6∈ fv[τ ], and
let D0 = U [τ [x], σ, x]. Since U is comprehensive, D0 ∈ Ds, and in particular, U [ϕ, σX:=D0

] > u.
Lemma 4.5 implies that U [ϕ{τ/X}, σ] > u. It follows that σ 6|=U Γ, ϕ{τ/X}⇒E. Consequently, U is
not a model of H ′ | Γ, ϕ{τ/X}⇒E.

5. Complete Non-deterministic Semantics

It remains to prove the completeness of HIF2 for Henkin-style second-order Gödel logic. This will be
established in two stages. First, in this section, we present a non-deterministic semantics for which HIF2

is complete. In the next section, we prove completeness with respect to the semantics described above, by
extracting an ordinary counter-model out of a non-deterministic one. The non-deterministic semantics that
we use here extends the semantics that was presented in [17] for the propositional fragment. It is based on
quasi-L-structures, defined as follows.

Definition 5.1. A quasi-domain for L is an ordered triplet 〈Di,Ds, I〉, where Di and Ds are non-empty
sets, and I is a function assigning: an element of Di to every individual constant symbol of L, an element
of Ds to every set constant symbol of L, and a function in Din → Di to every n-ary function symbol of L.

Note that the elements of Ds in quasi-domains may not be fuzzy subsets. This allows us to compose
Ds out of abstracts (as done in the completeness proof). 〈L,D〉-assignments are defined for quasi-domains
exactly as for domains (see Definition 2.14).

Definition 5.2. Let V = 〈V,≤〉 be a Gödel set.

1. A non-empty closed interval for V is a set of elements of the form {u ∈ V : l ≤ u ≤ r} (denoted by
[l, r]) where l, r ∈ V and l ≤ r. We denote by IntV the set of all non-empty closed intervals for V.

2. Given some non-empty set D, a function D from D to IntV is called a quasi fuzzy subset of D over V.

Definition 5.3. A quasi-L-structure is a tuple Q = 〈V,D, P, v〉 where:
12
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1. V is a Gödel set.

2. D = 〈Di,Ds, I〉 is a quasi-domain for L.

3. P is a function assigning a quasi fuzzy subset of Din over V to every n-ary predicate symbol of L, and
a quasi fuzzy subset of Di over V to every element of Ds.

4. v is a function assigning an interval in IntV to every (pair of) L-formula ϕ and 〈L,D〉-assignment σ,
such that the following hold:

(a) For every pair of individual variables x, y such that y 6∈ fv[ϕ], and every d ∈ Di:

v[ϕ, σx:=d] = v[ϕ{y/x}, σy:=d].

(b) For every pair of set variables X,Y such that Y 6∈ fv[ϕ], and every D ∈ Ds:

v[ϕ, σX:=D] = v[ϕ{Y/X}, σY :=D].

Quasi-L-structures are different from L-structures in several important aspects:

1. The interpretations of the predicate symbols are not fuzzy subsets of tuples of elements of Di, but
quasi fuzzy subsets, namely P [p][d1, ... , dn] is a non-empty closed interval of truth values.

2. The interpretation function P of a quasi-L-structure also assigns a quasi fuzzy subset of Di over V to
every element of Ds.

3. Quasi-L-structures include also a valuation function v that assigns to every formula and assignment
some interval of truth values. Intuitively, the left endpoint of v[ϕ, σ] should be thought of as the
value of ϕ with respect to σ when ϕ occurs on left sides of sequents, and the right endpoint is the
corresponding value when it occurs on right sides of sequents. This flexibility is the key for proving
completeness when the cut rule is absent. Indeed, intuitively speaking, from a semantic point of view,
the cut rule and the identity axiom bind the left and right value of each formula. The reason to
have v included in the structure lies in the fact that the resulting semantics is non-deterministic (see
discussion below). Thus, in contrast to (ordinary) structures, in quasi structures the values of the
atomic formulas do not uniquely determine the values of all compound formulas. The function v is
then used to “store” the values of the compound formulas.

Obviously, in order to be able to extract an ordinary counter-model out of a quasi-structure, further
conditions should be imposed:

Notation 5.4. For each function F whose range is IntV from Definition 5.3 (namely, P [p] for every predicate
symbol p, P [D] for every D ∈ Ds, and v), we denote by F l and F r the functions obtained from F by taking
only the left and the right endpoints (respectively). For instance, for every ϕ and σ, vl[ϕ, σ] is the left
endpoint of the interval v[ϕ, σ].

Definition 5.5. Let Q = 〈V,D, P, v〉 be a quasi-L-structure, where D = 〈Di,Ds, I〉. For every L-formula
ϕ and 〈L,D〉-assignment σ, Q[ϕ, σ] is the interval in IntV defined as follows:

Q[ϕ, σ] =



P [p][σ[t1], ... , σ[tn]] ϕ = {p(t1, ... , tn)}
P [σ[T ]][σ[t]] ϕ = {(tεT )}
{0} ϕ = {⊥}
[min{vl[ϕ1, σ], vl[ϕ2, σ]},min{vr[ϕ1, σ], vr[ϕ2, σ]}] ϕ = (ϕ1 ∧ ϕ2)

[max{vl[ϕ1, σ], vl[ϕ2, σ]},max{vr[ϕ1, σ], vr[ϕ2, σ]}] ϕ = (ϕ1 ∨ ϕ2)

[vr[ϕ1, σ]→ vl[ϕ2, σ], vl[ϕ1, σ]→ vr[ϕ2, σ]] ϕ = (ϕ1 ⊃ ϕ2)

[infd∈Di v
l[ψ, σx:=d], infd∈Di v

r[ψ, σx:=d]] ϕ = (∀ixψ)

[supd∈Di
vl[ψ, σx:=d], supd∈Di

vr[ψ, σx:=d]] ϕ = (∃ixψ)

[infD∈Ds
vl[ψ, σX:=D], infD∈Ds

vr[ψ, σX:=D]] ϕ = (∀sXψ)

[supD∈Ds
vl[ψ, σX:=D], supD∈Ds

vr[ψ, σX:=D]] ϕ = (∃sXψ)

13
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Conditions (a) and (b) in Definition 5.3 ensure that Q is well-defined, namely that the choice of x and
X is immaterial. It is straightforward to verify that Q[ϕ, σ] is indeed non-empty for every L-formula ϕ and
〈L,D〉-assignment σ (for ⊃, note that if u1 ≤ u2 and u3 ≤ u4 then u2 → u3 ≤ u1 → u4).

Definition 5.6. A quasi-L-structure Q = 〈V,D, P, v〉 is called legal if Q[ϕ, σ] ⊆ v[ϕ, σ] for every L-formula
ϕ and 〈L,D〉-assignment σ.

We can now demonstrate the non-deterministic nature of the semantics. Suppose that v[ϕ1, σ] = [l1, r1]
and v[ϕ2, σ] = [l2, r2]. All we require from, e.g., v[(ϕ1 ∧ ϕ2), σ] is [min{l1, l2},min{r1, r2}] ⊆ v[(ϕ1 ∧ ϕ2), σ].
In other words, every interval [l, r] such that l ≤ min{l1, l2} and min{r1, r2} ≤ r can be chosen as a value
for v[(ϕ1 ∧ ϕ2), σ]. In contrast to ordinary structures, here the values of 〈ϕ1, σ〉 and 〈ϕ2, σ〉 do not uniquely
determine the value of 〈(ϕ1 ∧ ϕ2), σ〉. Intuitively speaking, non-determinism is a direct result of the “split”
truth values: each logical introduction rule enforces only one-sided bound on values of formulas when they
appear on a certain side of the sequent.

Remark 5.7. Since formulas are defined to be alpha equivalence classes of concrete formulas, we do not
have to enforce in the definition of a quasi-structure that two alpha-equivalent formulas obtain the same
value. Previous works on non-deterministic semantics for languages with quantifiers, such as [18], studied
structures in which truth values are non-deterministically assigned to concrete formulas. In this case,
additional (technically complicated) restrictions are needed.

We adapt the definition of comprehensive structures to quasi-structures, keeping in mind that the function
P interprets the elements of Ds as quasi fuzzy sets.

Definition 5.8. A quasi-L-structure Q = 〈V,D, P, v〉, where D = 〈Di,Ds, I〉, is called comprehensive if
for every L-formula ϕ, individual variable x, and 〈L,D〉-assignment σ, there exist some D ∈ Ds such that
P [D] = λd ∈ Di. v[ϕ, σx:=d].

The notion of model for quasi-L-structures is given in Definition 5.9. Note that the definition is “liberal”,
taking the smallest possible value (the left endpoint of each interval) when a formula occurs on the left side
of a sequent, and the greatest one (the right endpoint) when a formula occurs on the right side of a sequent.

Definition 5.9. Let Q = 〈V,D, P, v〉 be a quasi-L-structure, where V = 〈V,≤〉.

1. An 〈L,D〉-assignment σ is a model (with respect to Q) of:

(a) an L-sequent Γ⇒E (denoted by: σ |=Q Γ⇒E) if minϕ∈Γ v
l[ϕ, σ] ≤ maxϕ∈E v

r[ϕ, σ].

(b) an L-hypersequent H (denoted by: σ |=Q H) if σ |=Q s for some component s ∈ H.

2. Q is a model of an L-hypersequent H if σ |=Q H for every 〈L,D〉-assignment σ.

Theorem 5.10. Suppose that 6` H0, for some L-hypersequent H0. Then there exists a legal comprehensive
quasi-L-structure which is not a model of H0.

The rest of this section is devoted to prove this theorem. First, we introduce the two main ingredients
of this proof: maximal extended hypersequents and Herbrand quasi-domains.

Remark 5.11. Every L-structure U = 〈V,D, P 〉 naturally induces a quasi-L-structure Q = 〈V ′,D′, P ′, v〉,
by taking V ′ = V, D′ = D, P ′[p] = λd1, ... , dn ∈ Di. {P [p][d1, ... , dn]} for every n-ary predicate symbol,
P ′[D] = λd ∈ Di. {D[d]} for every D ∈ Ds, and v[ϕ, σ] = {U [ϕ, σ]} for every ϕ and σ. It is easy to
verify that Q is always legal, as well as comprehensive assuming that U is comprehensive. In addition, it is
straightforward to verify the soundness of HIF2 with respect to the semantics of legal comprehensive quasi-
structures (i.e. ` H implies that every legal comprehensive quasi-L-structure is a model of H). Soundness
would not hold if we added (cut) to HIF2, since we allow cases in which vl[ϕ, σ] < vr[ϕ, σ] and then Q
might be both a model of⇒ϕ and ϕ⇒ .

14
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5.1. Maximal Extended Hypersequents

Maximal extended L-hypersequents will play a crucial role in the completeness proof below. These are
straightforward adaptations of the corresponding notions in [16], that were used to prove cut-free complete-
ness of the first-order fragment. The full proofs, that are also adaptations of the corresponding proofs in
[16], are given in Appendix Appendix B.

Definition 5.12. An extended L-sequent is an ordered pair of (possibly infinite) sets of L-formulas. Given
two extended L-sequents µ1 = 〈L1, R1〉 and µ2 = 〈L2, R2〉, we write µ1 v µ2 if L1 ⊆ L2 and R1 ⊆ R2. An
extended L-sequent is called finite if it consists of finite sets of formulas.

Definition 5.13. An extended L-hypersequent is a (possibly infinite) set of extended L-sequents. Given
two extended L-hypersequents Ω1,Ω2, we write Ω1 v Ω2 (and say that Ω2 extends Ω1) if for every extended
L-sequent µ1 ∈ Ω1, there exists µ2 ∈ Ω2 such that µ1 v µ2. An extended L-hypersequent is called finite if
it consists of finite number of finite extended L-sequents.

We shall use the same notations as above for extended L-sequents and extended L-hypersequents. For
example, we write L⇒ R instead of 〈L, R〉, and Ω | L, ϕ⇒ R instead of Ω ∪ {〈L ∪ {ϕ}, R〉}. Obviously, every
L-hypersequent is an extended L-hypersequent, and so the definition above and the properties defined below
apply to (ordinary) L-hypersequents as well. Note that finite extended sequents (hypersequents) correspond
to multiple-conclusion sequents (hypersequents).

Definition 5.14. An extended L-sequent L⇒R admits the witness property if the following hold for every
L-formula ϕ, individual variable x of L, and set variable X of L:

1. If (∀ixϕ) ∈ R, then ϕ{y/x} ∈ R for some individual variable y of L.

2. If (∃ixϕ) ∈ L, then ϕ{y/x} ∈ L for some individual variable y of L.

3. If (∀sXϕ) ∈ R, then ϕ{Y/X} ∈ R for some set variable Y of L.

4. If (∃sXϕ) ∈ L, then ϕ{Y/X} ∈ L for some set variable Y of L.

Definition 5.15. Let Ω be an extended L-hypersequent.

1. Ω is called unprovable if 6` H for every (ordinary) L-hypersequent H v Ω. Otherwise, Ω is called
provable.

2. Let ϕ be an L-formula. Ω is called internally maximal with respect to ϕ if for every L⇒R ∈ Ω:

(a) If ϕ 6∈ L then Ω | L, ϕ⇒R is provable.

(b) If ϕ 6∈ R then Ω | L⇒ϕ, R is provable.

3. Ω is called internally maximal if it is internally maximal with respect to any L-formula.

4. Let s be an L-sequent. Ω is called externally maximal with respect to s if either {s} v Ω, or Ω | s is
provable.

5. Ω is called externally maximal if it is externally maximal with respect to any L-sequent.

6. Ω admits the witness property if every L⇒R ∈ Ω admits the witness property.

7. Ω is called maximal if it is unprovable, internally maximal, externally maximal, and it admits the
witness property.

Less formally, an extended hypersequent Ω is internally maximal if every formula added on some side of
some component of Ω would make it provable. Similarly, Ω is externally maximal if every sequent added to
Ω would make it provable. Note that the availability of external and internal weakenings ensures that for
ordinary hypersequents the previous notion of provability (denoted by `) and the current one are equivalent.

The following propositions easily follow from the definitions using internal and external weakenings.

Proposition 5.16. Let Ω be an extended L-hypersequent, which is internally maximal with respect to an
L-formula ϕ. For every L⇒R ∈ Ω:

1. If ϕ 6∈ L, then we have ` H | Γ, ϕ⇒E1 | ... | Γ, ϕ⇒En for some L-hypersequent H v Ω and L-sequents
Γ⇒E1, ... ,Γ⇒En v L⇒R.
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2. If ϕ 6∈ R, then we have ` H | Γ⇒ϕ for some L-hypersequent H v Ω and finite set Γ ⊆ L.

Proposition 5.17. Let Ω be an extended L-hypersequent, which is externally maximal with respect to an
L-sequent s. If {s} 6v Ω, then there exists an L-hypersequent H v Ω such that ` H | s.

Lemma 5.18. Every unprovable L-hypersequent can be extended to a maximal extended L-hypersequent.

Proof. See Appendix Appendix B.

5.2. The Herbrand Quasi-Domain

Definition 5.19. The Herbrand quasi-domain for L is the quasi-domain D = 〈Di,Ds, I〉 where Di is the
set of all first-order L-terms, Ds is the set of all L-abstracts, I[c] = c for every individual constant symbol
c of L, I[C] = Cabs = {◦ν1 | {(ν1εC)}◦} for every set constant symbol C of L (see Notation 3.9), and
I[f ] = λt1, ... , tn ∈ Di. f(t1, ... , tn) for every n-ary function symbol f of L.

In an Herbrand quasi-domain, we can extend 〈L,D〉-assignments to apply on formulas. Roughly speaking,
every occurrence of a free variable x or X in a formula ϕ is replaced in σ[ϕ] by σ[x] or σ[X]. Formally, this
is defined as follows.

Definition 5.20. Let D = 〈Di,Ds, I〉 be the Herbrand quasi-domain for L. Let ϕ be an L-formula, and σ
be an 〈L,D〉-assignment. The set of free variables of the pair 〈ϕ, σ〉 (denoted by fv[〈ϕ, σ〉]) consists of the
variables of σ[x] for every individual variable x ∈ fv[ϕ], and the free variables of σ[X] for every set variable
X ∈ fv[ϕ].

Definition 5.21. Let D = 〈Di,Ds, I〉 be the Herbrand quasi-domain for L. 〈L,D〉-assignments are extended
to L-formulas, according to the following inductive definition:

σ[ϕ] =



{p(σ[t1], ... , σ[tn])} ϕ = {p(t1, ... , tn)}
σ[T ][σ[t]] ϕ = {(tεT )}
{⊥} ϕ = {⊥}
(σ[ϕ1] � σ[ϕ2]) ϕ = (ϕ1 � ϕ2)

(Qixσx:=x[ψ]) ϕ = (Qixψ) for x 6∈ fv[〈ϕ, σ〉]
(QsXσX:=Xabs

[ψ]) ϕ = (QsXψ) for X 6∈ fv[〈ϕ, σ〉]

Note that the choice of x and X in the last definition is immaterial, and thus σ[ϕ] is well-defined. The
following properties of the Herbrand quasi-domain are needed in the completeness proof. Their proofs are
given in Appendix Appendix A.

Lemma 5.22. Let D be the Herbrand quasi-domain for L.

1. Let t be a first-order L-term. For every L-formula ϕ, 〈L,D〉-assignment σ, and individual variables
x, y such that y 6∈ fv[ϕ], σx:=t[ϕ] = σy:=t[ϕ{y/x}].

2. Let τ be an L-abstract. For every L-formula ϕ, 〈L,D〉-assignment σ, and set variables X,Y such that
Y 6∈ fv[ϕ], σX:=τ [ϕ] = σY :=τ [ϕ{Y/X}].

Lemma 5.23. Let D be the Herbrand quasi-domain for L.

1. Let t be a first-order L-term. For every L-formula ϕ, 〈L,D〉-assignment σ, and individual variables
x, z such that z 6∈ fv[σ[ϕ]], σx:=z[ϕ]{t/z} = σx:=t[ϕ].

2. Let τ be an L-abstract. For every L-formula ϕ, 〈L,D〉-assignment σ, and set variable X 6∈ fv[σ[ϕ]],
σX:=Xabs

[ϕ]{τ/X} = σX:=τ [ϕ].
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5.3. Proof of Theorem 5.10

Suppose that 6` H0. The availability of external and internal weakenings ensures that H0 is unprovable
(seen as an extended hypersequent). By Lemma 5.18, there exists a maximal extended L-hypersequent Ω∗

such that H0 v Ω∗. We use Ω∗ to construct a counter-model for H0 in the form of a quasi-L-structure
Q = 〈V,D, P, v〉.

First, we define a bounded linearly ordered set V0, that will be used to construct (using the Dedekind-
MacNeille completion) the Gödel set V. For every L-formula ϕ we define:

L[ϕ] = {L⇒R ∈ Ω∗ : ϕ ∈ L}, R[ϕ] = {L⇒R ∈ Ω∗ : ϕ 6∈ R}.

Let V0 = 〈V0,⊆〉, where

V0 = {L[ϕ] : ϕ is an L-formula} ∪ {R[ϕ] : ϕ is an L-formula} ∪ {Ω∗, ∅}.

Clearly, V0 is partially ordered set, bounded by 0 = ∅ and 1 = Ω∗. To see that V0 is linearly ordered by ⊆,
it suffices to prove the following:

1. L[ϕ1] ⊆ L[ϕ2] or L[ϕ2] ⊆ L[ϕ1] for every pair of L-formulas ϕ1 and ϕ2. To see this, suppose that
there are L1⇒R1 ∈ Ω∗ and L2⇒R2 ∈ Ω∗, such that L1⇒R1 ∈ L[ϕ1] \ L[ϕ2] and L2⇒R2 ∈ L[ϕ2] \ L[ϕ1].
Hence, we have ϕ1 ∈ L1, ϕ1 6∈ L2, ϕ2 ∈ L2 and ϕ2 6∈ L1. Since Ω∗ is internally maximal, by Proposi-
tion 5.16, there exist an L-hypersequent H1 v Ω∗ and an L-sequent Γ1⇒E1, ... ,Γ1⇒En v L1⇒R1

such that ` H1 | Γ1, ϕ2⇒E1 | ... | Γ1, ϕ2⇒En. Similarly, there exist an L-hypersequent H2 v Ω∗ and
an L-sequent Γ2⇒F1, ... ,Γ2⇒Fm v L2⇒R2 such that ` H2 | Γ2, ϕ1⇒F1 | ... | Γ2, ϕ1⇒Fm. By Propo-
sition 3.15, ` H1 | H2 | Γ1, ϕ1⇒E1 | ... | Γ1, ϕ1⇒En | Γ2, ϕ2⇒F1 | ... | Γ2, ϕ2⇒Fm. But, Ω∗ extends
this hypersequent, and this contradicts Ω∗’s unprovability.

2. R[ϕ1] ⊆ R[ϕ2] or R[ϕ2] ⊆ R[ϕ1] for every pair of L-formulas ϕ1, ϕ2. To see this, suppose that there
are L1⇒R1 ∈ Ω∗ and L2⇒R2 ∈ Ω∗, such that L1⇒R1 ∈ R[ϕ1] \R[ϕ2] and L2⇒R2 ∈ R[ϕ2] \R[ϕ1].
Hence, ϕ1 6∈ R1, ϕ1 ∈ R2, ϕ2 ∈ R1 and ϕ2 6∈ R2. Since Ω∗ is internally maximal, by Proposition 5.16,
there exist L-hypersequents H1, H2 v Ω∗ and finite sets Γ1 ⊆ L1 and Γ2 ⊆ L2 such that ` H1 | Γ1⇒ϕ1

and ` H2 | Γ2⇒ϕ2. By applying (com), we obtain ` H1 | H2 | Γ2⇒ϕ1 | Γ1⇒ϕ2. Again, since Ω∗

extends this hypersequent, this contradicts Ω∗’s unprovability.

3. L[ϕ1] ⊆ R[ϕ2] or R[ϕ2] ⊆ L[ϕ1] for every pair of L-formulas ϕ1, ϕ2. To see this, suppose that there are
L1⇒R1 ∈ Ω∗ and L2⇒R2 ∈ Ω∗, such that L1⇒R1 ∈ L[ϕ1] \R[ϕ2] and L2⇒R2 ∈ R[ϕ2] \ L[ϕ1]. Hence,
ϕ1 ∈ L1, ϕ1 6∈ L2, ϕ2 ∈ R1 and ϕ2 6∈ R2. Since Ω∗ is internally maximal, by Proposition 5.16, there
exist L-hypersequents H1, H2 v Ω∗, sequents Γ1⇒E1, ... ,Γ1⇒En v L2⇒R2 and a finite set Γ2 ⊆ L2,
such that ` H1 | Γ1, ϕ1⇒E1 | ... | Γ1, ϕ1⇒En and ` H2 | Γ2⇒ϕ2. By Proposition 3.15, it follows that
` H1 | H2 | Γ1,Γ2⇒E1 | ... | Γ1,Γ2⇒En | ϕ1⇒ϕ2. Again, this contradicts Ω∗’s unprovability.

Now, since V0 might not be complete, we consider its Dedekind-MacNeille completion V = 〈V,⊆〉 defined
by:

V = {Π ⊆ V0 : (Π↑)↓ = Π}

where Π↑ = {Ω ∈ V0 : Ω′ ⊆ Ω for all Ω′ ∈ Π} and Π↓ = {Ω ∈ V0 : Ω ⊆ Ω′ for all Ω′ ∈ Π}. V is a bounded
complete linearly ordered set (see [5]), and thus it forms a Gödel set. Note that using ⊆ as the order relation,
min and max are sets intersection and sets union (respectively). In addition, the function η : V0 → V defined
by η(Ω) = {Ω}↓ is injective and it satisfies the following properties:5

• {∅} = η(∅).
• For every Ω,Ω′ ∈ V0:

– Ω ⊆ Ω′ iff η(Ω) ⊆ η(Ω′).

– η(Ω) ∩ η(Ω′) = η(Ω ∩ Ω′).

5All operations notations from Definition 2.10 are adopted to V0 in the obvious way.
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– η(Ω) ∪ η(Ω′) = η(Ω ∪ Ω′).

– η(Ω)→ η(Ω′) = η(Ω→ Ω′)

• For every Ω ∈ V0 and Π ⊆ V0:

– If Ω ⊆
⋂

Ω′∈Π Ω′, then η(Ω) ⊆ infΩ′∈Π η(Ω′).

– If
⋂

Ω′∈Π Ω′ ⊆ Ω, then infΩ′∈Π η(Ω′) ⊆ η(Ω).

– If Ω ⊆
⋃

Ω′∈Π Ω′, then η(Ω) ⊆ supΩ′∈Π η(Ω′).

– If
⋃

Ω′∈Π Ω′ ⊆ Ω, then supΩ′∈Π η(Ω′) ⊆ η(Ω).

The proofs of these properties are straightforward (note that the linearity of V0 is needed in some of them).
Henceforth, we will identify each element Ω of V0 with the corresponding element {Ω}↓ in V , and freely use
the properties above.

Next, for every formula ϕ, let Ω∗[ϕ] be the non-empty closed interval for V given by: Ω∗[ϕ] = [L[ϕ], R[ϕ]].
To see that Ω∗[ϕ] is a non-empty interval for every L-formula ϕ, note that in the presence of (id), either ϕ 6∈ L

or ϕ 6∈ R for every L⇒R ∈ Ω and L-formula ϕ (otherwise, {ϕ⇒ϕ} v Ω, contradicting the unprovability of
Ω), and consequently, L[ϕ] ⊆ R[ϕ]. Let D = 〈Di,Ds, I〉 be the Herbrand quasi-domain for L, and define P
and v as follows:

• For every n-ary predicate symbol p of L, P [p] = λt1, ... , tn ∈ Di. Ω∗[{p(t1, ... , tn)}].
• For every L-abstract τ ∈ Ds, P [τ ] = λt ∈ Di. Ω∗[τ [t]].

• For every L-formula ϕ and 〈L,D〉-assignment σ, v[ϕ, σ] = Ω∗[σ[ϕ]].

It is easy to verify that conditions (a) and (b) from Definition 5.3 hold. Indeed, Lemma 5.22 ensures
that if y 6∈ fv[ϕ], then for every first-order L-term we have σx:=t[ϕ] = σy:=t[ϕ{y/x}]. This implies that
v[ϕ, σx:=t] = v[ϕ{y/x}, σy:=t] for every t ∈ Di. Condition (b) holds for a similar reason using the second part
of Lemma 5.22.

We show that Q is not a model of H0. Consider the 〈L,D〉-assignment σid defined by σid[x] = x for
every individual variable x of L, and σid[X] = Xabs for every set variable X of L (see Notation 3.9). Let
Γ⇒E ∈ H0. Since H0 v Ω∗, there exists some L⇒ R ∈ Ω∗, such that Γ⇒ E v L⇒ R. We claim that
L⇒R ∈ vl[ϕ, σid] for every ϕ ∈ Γ, and L⇒ R 6∈ vr[ϕ, σid] for every ϕ ∈ E. To see this, it suffices to note
that σid[ϕ] = ϕ for every L-formula ϕ. This fact follows from the definition of σid[ϕ]. As a consequence, we
obtain that

⋂
ϕ∈Γ v

l[ϕ, σid] 6⊆
⋃
ϕ∈E v

r[ϕ, σid], and so σid 6|=Q Γ⇒E.

It remains to prove that Q is legal and comprehensive. We first show that it is legal, namely that
Q[ϕ, σ] ⊆ v[ϕ, σ] for every L-formula ϕ and 〈L,D〉-assignment σ. Let ϕ be an L-formula, and σ be an
〈L,D〉-assignment. Then, exactly one of the following holds:

• ϕ = {p(t1, ... , tn)} for some n-ary predicate symbol p of L, and first-order L-terms t1, ... , tn. By
definition, Q[ϕ, σ] = P [p][σ[t1], ... , σ[tn]] = Ω∗[{p(σ[t1], ... , σ[tn])}] = Ω∗[σ[ϕ]] = v[ϕ, σ].

• ϕ = {(tεT )} for some first-order L-term t, and second-order L-term T . By definition, we have
Q[ϕ, σ] = P [σ[T ]][σ[t]] = Ω∗[σ[T ][σ[t]]] = Ω∗[σ[ϕ]] = v[ϕ, σ].

• ϕ = {⊥}. By definition, Q[ϕ, σ] = {∅}. To see that Q[ϕ, σ] ⊆ v[ϕ, σ], it suffices to note that
vl[ϕ, σ] = ∅. This follows from the fact that σ[ϕ] = {⊥} 6∈ L for every L⇒ R ∈ Ω∗. (Otherwise,
{{⊥}⇒} v Ω∗, but ` {⊥}⇒ by applying the rule (⊥⇒).)

• ϕ = (ϕ1 ∧ ϕ2) for some ϕ1 and ϕ2. By definition, Q[ϕ, σ] = [vl[ϕ1, σ] ∩ vl[ϕ2, σ], vr[ϕ1, σ] ∩ vr[ϕ2, σ]].
We first prove that vl[ϕ, σ] ⊆ vl[ϕ1, σ] ∩ vl[ϕ2, σ]. Suppose that L⇒ R 6∈ vl[ϕ1, σ], and so σ[ϕ1] 6∈ L.
We prove that L⇒R 6∈ vl[ϕ, σ]. (The case that L⇒R 6∈ vl[ϕ2, σ] is symmetric.) By Proposition 5.16,
since σ[ϕ1] 6∈ L, there exist an L-hypersequent H1 v Ω∗, and L-sequents Γ⇒E1, ... ,Γ⇒En v L⇒R,
such that ` H1 | Γ, σ[ϕ1]⇒E1 | ... | Γ, σ[ϕ1]⇒En. The availability of (∧ ⇒ 1) entails that ` H for
H = H1 | Γ, (σ[ϕ1] ∧ σ[ϕ2])⇒E1 | ... | Γ, (σ[ϕ1] ∧ σ[ϕ2])⇒En. Since Ω∗ is unprovable, H 6v Ω∗, and
thus (σ[ϕ1] ∧ σ[ϕ2]) 6∈ L. By definition, (σ[ϕ1] ∧ σ[ϕ2]) = σ[ϕ]. It follows that L⇒R 6∈ vl[ϕ, σ].
Next, we prove that vr[ϕ1, σ] ∩ vr[ϕ2, σ] ⊆ vr[ϕ, σ]. Suppose that L⇒R ∈ vr[ϕ1, σ] ∩ vr[ϕ2, σ]. Then
we have σ[ϕ1] 6∈ R and σ[ϕ2] 6∈ R. By Proposition 5.16, there exist L-hypersequents H1, H2 v Ω∗,
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and finite sets Γ1,Γ2 ⊆ L, such that ` H1 | Γ1⇒σ[ϕ1] and ` H2 | Γ2⇒σ[ϕ2]. The availability of (⇒∧)
entails that ` H for H = H1 | H2 | Γ1,Γ2⇒(σ[ϕ1]∧σ[ϕ2]). Since Ω∗ is unprovable, H 6v Ω∗, and thus
σ[ϕ] = (σ[ϕ1] ∧ σ[ϕ2]) 6∈ R. It follows that L⇒R ∈ vr[ϕ, σ].

• ϕ = (ϕ1 ∨ ϕ2) for some ϕ1 and ϕ2. By definition, Q[ϕ, σ] = [vl[ϕ1, σ] ∪ vl[ϕ2, σ], vr[ϕ1, σ] ∪ vr[ϕ2, σ]].
We first prove that vl[ϕ, σ] ⊆ vl[ϕ1, σ] ∪ vl[ϕ2, σ]. Assume that L⇒R 6∈ vl[ϕ1, σ] ∪ vl[ϕ2, σ]. We prove
that L⇒R 6∈ vl[ϕ, σ]. Our assumption entails that σ[ϕ1] 6∈ L and σ[ϕ2] 6∈ L. By Proposition 5.16, there
are L-hypersequents H1, H2 v Ω∗, and L-sequents Γ1⇒E1, ... ,Γ1⇒En,Γ2⇒F1, ... ,Γ2⇒Fm v L⇒R,
such that ` H1 | Γ1, σ[ϕ1]⇒E1 | ... | Γ1, σ[ϕ1]⇒En and ` H2 | Γ2, σ[ϕ2]⇒F1 | ... | Γ2, σ[ϕ2]⇒Fm. Us-
ing Proposition 3.16 (note that (σ[ϕ1] ∨ σ[ϕ2]) = σ[ϕ]), we obtain that ` H1 | H2 | H3 | H4, where
H3 = Γ1, σ[ϕ]⇒E1 | ... | Γ1, σ[ϕ]⇒En and H4 = Γ2, σ[ϕ]⇒F1 | ... | Γ2, σ[ϕ]⇒Fm. Since Ω∗ is unprov-
able, H1 | H2 | H3 | H4 6v Ω∗, and thus σ[ϕ] 6∈ L. It follows that L⇒R 6∈ vl[ϕ, σ].
Next, we prove that vr[ϕ1, σ] ∪ vr[ϕ2, σ] ⊆ vr[ϕ, σ]. Suppose that L⇒R ∈ vr[ϕ1, σ], and so σ[ϕ1] 6∈ R.
(The case that L⇒ R ∈ vr[ϕ2, σ] is symmetric.) By Proposition 5.16, there exist an L-hypersequent
H1 v Ω∗, and a finite set Γ ⊆ L, such that ` H1 | Γ⇒σ[ϕ1]. The availability of (⇒∨1) entails that ` H
for H = H1 | Γ⇒(σ[ϕ1]∨σ[ϕ2]). Since Ω∗ is unprovable, H 6v Ω∗, and thus σ[ϕ] = (σ[ϕ1]∨σ[ϕ2]) 6∈ R.
It follows that L⇒R ∈ vr[ϕ, σ].

• ϕ = (ϕ1 ⊃ ϕ2) for some ϕ1 and ϕ2. Then, Q[ϕ, σ] = [vr[ϕ1, σ]→ vl[ϕ2, σ], vl[ϕ1, σ]→ vr[ϕ2, σ]]. We
first prove that vl[ϕ, σ] ⊆ vr[ϕ1, σ]→ vl[ϕ2, σ]. Suppose that L⇒R 6∈ vr[ϕ1, σ]→ vl[ϕ2, σ]. Then,
vr[ϕ1, σ] 6⊆ vl[ϕ2, σ] and L ⇒ R 6∈ vl[ϕ2, σ]. Let L′ ⇒ R′ ∈ Ω∗ such that L′ ⇒ R′ ∈ vr[ϕ1, σ],
and L′ ⇒ R′ 6∈ vl[ϕ2, σ]. Hence, σ[ϕ1] 6∈ R′ and σ[ϕ2] 6∈ L′. By Proposition 5.16, there exist L-
hypersequents H1, H2 v Ω∗, a finite set Γ1 ⊆ L′, and L-sequents Γ2⇒E1, ... ,Γ2⇒En v L′⇒R′, such
that ` H1 | Γ1⇒σ[ϕ1], and ` H2 | Γ2, σ[ϕ2]⇒E1 | ... | Γ2, σ[ϕ2]⇒En. By n consecutive applications
of (⊃⇒) (note that (σ[ϕ1] ⊃ σ[ϕ2]) = σ[ϕ]), we obtain that

` H1 | H2 | Γ1,Γ2, σ[ϕ]⇒E1 | ... | Γ1,Γ2, σ[ϕ]⇒En. (1)

Since L⇒R 6∈ vl[ϕ2, σ], we have σ[ϕ2] 6∈ L. By Proposition 5.16, there exist L-hypersequent H3 v Ω∗,
and L-sequents Γ3⇒F1, ... ,Γ3⇒Fm v L⇒R, such that ` H3 | Γ3, σ[ϕ2]⇒F1 | ... | Γ3, σ[ϕ2]⇒Fm. By
another m applications of (⊃⇒), we obtain that

` H1 | H3 | Γ1,Γ3, σ[ϕ]⇒F1 | ... | Γ1,Γ3, σ[ϕ]⇒Fm. (2)

By Proposition 3.15, from (1) and (2) above, we have:

` H1 | H2 | H3 | Γ1,Γ2⇒E1 | ... | Γ1,Γ2⇒En | Γ3, σ[ϕ]⇒F1 | ... | Γ3, σ[ϕ]⇒Fm.

Now, if σ[ϕ] ∈ L, then Ω∗ extends this hypersequent, and this contradicts Ω∗’s unprovability. Therefore,
σ[ϕ] 6∈ L, and consequently L⇒R 6∈ vl[σ[ϕ]].
Next, we prove that vl[ϕ1, σ] → vr[ϕ2, σ] ⊆ vr[ϕ, σ]. Suppose that L⇒R 6∈ vr[ϕ, σ], and so σ[ϕ] ∈ R.
To show that L⇒R 6∈ vl[ϕ1, σ]→ vr[ϕ2, σ], we first show that L⇒R 6∈ vr[ϕ2, σ] and then we show that
vl[ϕ1, σ] 6⊆ vr[ϕ2, σ]:

1. Assume for contradiction that L⇒R ∈ vr[ϕ2, σ], and thus σ[ϕ2] 6∈ R. Then by Proposition 5.16,
there exist an L-hypersequent H v Ω∗, and a finite set Γ ⊆ L, such that ` H | Γ⇒σ[ϕ2]. By ap-
plying internal weakening we obtain ` H | Γ, σ[ϕ1]⇒σ[ϕ2]. Using (⇒⊃) we obtain ` H | Γ⇒σ[ϕ].
This contradicts Ω∗’s unprovability (because H | Γ⇒σ[ϕ] v Ω∗).

2. Note that Ω∗’s unprovability and the availability of (⇒⊃) also entail that 6` H | σ[ϕ1]⇒σ[ϕ2].
Therefore, by Proposition 5.17, Ω∗’s external maximality entails that σ[ϕ1]⇒σ[ϕ2] v Ω∗. Thus
there exists an extended L-sequent L′⇒ R′ ∈ Ω∗, such that σ[ϕ1] ∈ L′ and σ[ϕ2] ∈ R′. Conse-
quently, L′⇒R′ ∈ vl[ϕ1, σ] and L′⇒R′ 6∈ vr[ϕ2, σ]. Hence vl[ϕ1, σ] 6⊆ vr[ϕ2, σ].

• ϕ = (∃ixψ) for some individual variable x 6∈ fv[σ[ϕ]] and L-formula ψ. By definition, we have
Q[ϕ, σ] = [supt∈Di

vl[ψ, σx:=t], supt∈Di
vr[ψ, σx:=t]].

We first prove that vl[ϕ, σ] ⊆ supt∈Di
vl[ψ, σx:=t]. Suppose that L⇒R ∈ vl[ϕ, σ]. Thus σ[ϕ] ∈ L. By

definition, σ[ϕ] = (∃ixσx:=x[ψ]). By Ω∗’s witness property, there exists an individual variable y
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of L, such that σx:=x[ψ]{y/x} ∈ L. By Lemma 5.23, σx:=x[ψ]{y/x} = σx:=y[ψ]. It follows that
L⇒R ∈ vl[ψ, σx:=y], and therefore L⇒R ∈

⋃
t∈Di

vl[ψ, σx:=t].
Next, we prove that supt∈Di

vr[ψ, σx:=t] ⊆ vr[ϕ, σ]. Suppose that L ⇒ R ∈
⋃
t∈Di

vr[ψ, σx:=t].
Thus L⇒R ∈ vr[ψ, σx:=t] for some t ∈ Di. By definition, we have σx:=t[ψ] 6∈ R. By Lemma 5.23,
σx:=t[ψ] = σx:=x[ψ]{t/x}. By Proposition 5.16, there exist an L-hypersequent H v Ω∗, and a finite set
Γ ⊆ L, such that ` H | Γ⇒σx:=x[ψ]{t/x}. By applying (⇒∃i), we obtain ` H | Γ⇒(∃ixσx:=x[ψ]).
Since Ω∗ is unprovable, (∃ixσx:=x[ψ]) 6∈ R. By definition, (∃ixσx:=x[ψ]) = σ[ϕ]. It follows that
L⇒R ∈ vr[ϕ, σ].

• ϕ = (∀sXψ) for some set variable X 6∈ fv[σ[ϕ]] and L-formula ψ. By definition, in this case we have
Q[ϕ, σ] = [infτ∈Ds v

l[ψ, σX:=τ ], infτ∈Ds v
r[ψ, σX:=τ ]].

We first prove that vl[ϕ, σ] ⊆ infτ∈Ds v
l[ψ, σX:=τ ]. Thus we show that vl[ϕ, σ] ⊆ vl[ψ, σX:=τ ] for every

τ ∈ Ds. Suppose that L ⇒ R 6∈ vl[ψ, σX:=τ ] for some τ ∈ Ds. By definition, σX:=τ [ψ] 6∈ L. By
Lemma 5.23, σX:=τ [ψ] = σX:=Xabs

[ψ]{τ/X}. By Proposition 5.16, there exist an L-hypersequent
H v Ω∗, and L-sequents Γ⇒E1, ... ,Γ⇒En v L⇒R, such that

` H | Γ, σX:=Xabs
[ψ]{τ/X}⇒E1 | ... | Γ, σX:=Xabs

[ψ]{τ/X}⇒En.

By n consecutive applications of (∀s⇒), we obtain

` H | Γ, (∀sXσX:=Xabs
[ψ])⇒E1 | ... | Γ, (∀sXσX:=Xabs

[ψ])⇒En.

Since Ω∗ is unprovable, (∀sXσX:=Xabs
[ψ]) 6∈ L. By definition, (∀sXσX:=Xabs

[ψ]) = σ[ϕ]. It follows
that L⇒R 6∈ vl[ϕ, σ].
Next, we prove that infτ∈Ds

vr[ψ, σX:=τ ] ⊆ vr[ϕ, σ]. Suppose that L⇒R 6∈ vr[ϕ, σ]. By definition,
σ[ϕ] = (∀sXσX:=Xabs

[ψ]). By Ω∗’s witness property, there exists a set variable Y of L, such that
σX:=Xabs

[ψ]{Y/X} ∈ R. By Lemma 3.10, σX:=Xabs
[ψ]{Y/X} = σX:=Xabs

[ψ]{Yabs/X}. By Lemma 5.23,
σX:=Xabs

[ψ]{Yabs/X} = σX:=Yabs
[ψ]. Thus, σX:=Yabs

[ψ] ∈ R. It follows that L⇒ R 6∈ vr[ψ, σX:=τ ], for
τ = Yabs ∈ Ds. and therefore L⇒R 6∈

⋂
τ∈Ds

vr[ψ, σX:=τ ].

• The cases ϕ = (∀ixψ) and ϕ = (∃sXψ) are handled similarly.

Finally, we show that Q is comprehensive. Let ϕ be an L-formula, x be an individual variable of
L, and σ be an 〈L,D〉-assignment. Let y 6∈ fv[ϕ] ∪ fv[σ[ϕ]] be an individual variable of L, and let
τ = {◦y | σy:=y[ϕ{y/x}]◦}. Then τ ∈ Ds. We show that P [τ ] = λt ∈ Di. v[ϕ, σx:=t]. Let t ∈ Di. We have
P [τ ][t] = Ω∗[τ [t]] = Ω∗[σy:=y[ϕ{y/x}]{t/y}]. By Lemma 5.22, σy:=y[ϕ{y/x}] = σx:=y[ϕ]. By Lemma 5.23,
σx:=y[ϕ]{t/y} = σx:=t[ϕ]. Thus, P [τ ][t] = Ω∗[σx:=t[ϕ]] = v[ϕ, σx:=t].

6. Completeness for the Ordinary Semantics

In this section, we use the complete semantics of quasi-structures to prove the completeness of HIF2 for
the (ordinary) structures of Henkin-style second-order Gödel logic. To do so, we show that from every legal
quasi-structure which is a counter-model of some hypersequent H, it is possible to extract an (ordinary)
structure, which is also not a model of H, without losing comprehension.

Definition 6.1. Let D = 〈Di,Ds, I〉 be a quasi-domain for L, D′ = 〈Di,D′s, I ′〉 be a domain for L and V,
and δ be a function from Ds to ℘+[D′s].6 A pair 〈σ, σ′〉 of an 〈L,D〉-assignment and an 〈L,D′〉-assignment
(respectively) is called a δ-pair if (i) σ[x] = σ′[x] for every individual variable; and (ii) σ′[X] ∈ δ[σ[X]] for
every set variable.

Theorem 6.2. Let Q = 〈V,D, P, v〉 be a legal and comprehensive quasi-L-structure, where D = 〈Di,Ds, I〉.
Then there exists a comprehensive L-structure U = 〈V,D′, P ′〉, where D′ = 〈Di,D′s, I ′〉, and a function
δ : Ds → ℘+[D′s], such that U [ϕ, σ′] ∈ v[ϕ, σ] for every L-formula ϕ and δ-pair 〈σ, σ′〉 (of an 〈L,D〉-assignment
and an 〈L,D′〉-assignment).

6℘+[D′
s] denotes the set of all non-empty subsets of D′

s.
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Proof. First, we define D′s (the second component in the domain of U). For every D ∈ Ds, denote by FD
the set of fuzzy subsets D′ of Di over V (i.e. D′ : Di → V), such that D′[d] ∈ P [D][d] for every d ∈ Di.
Note that for every D ∈ Ds, FD is non-empty, since P [D][d] is non-empty for every d ∈ Di. Define D′s to be⋃
D∈Ds

FD. Next, I ′ and P ′ are defined as follows:

• For every individual constant symbol c of L, I ′[c] = I[c].

• For every set constant symbol C of L, I ′[C] is defined to be an arbitrary element in FI[C].

• For every function symbol f of L, I ′[f ] = I[f ].

• For every predicate symbol p of L, P ′[p] = P [p]l.

Let δ : Ds → ℘+[D′s] defined by δ = λD ∈ Ds. FD. We prove that U and δ satisfy the requirement in the
theorem: U [ϕ, σ′] ∈ v[ϕ, σ] for every L-formula ϕ and δ-pair 〈σ, σ′〉. Let V = 〈V,≤〉. We use induction on
the complexity of ϕ. Note that since Q is legal, it suffices to show that U [ϕ, σ′] ∈ Q[ϕ, σ] for every δ-pair
〈σ, σ′〉.

First, suppose that cp[ϕ] = 1, and let 〈σ, σ′〉 be a δ-pair of an 〈L,D〉-assignment and an 〈L,D′〉-
assignment. Exactly one of the following holds:

• ϕ = {p(t1, ... , tn)} for some n-ary predicate symbol p of L, and first-order L-terms t1, ... , tn. By
definition, U [ϕ, σ′] = P ′[p][σ′[t1], ... , σ′[tn]] = P [p]l[σ′[t1]], ... , σ′[tn]]]. Now, since σ and σ′ agree
on all individual variables, we have σ′[t] = σ[t] for every first-order L-term t. Hence, we have
U [ϕ, σ′] = P [p]l[σ[t1]], ... , σ[tn]]] ∈ Q[ϕ, σ].

• ϕ = {(tεT )} for some first-order L-term t, and second-order L-term T . By definition, we have
U [ϕ, σ′] = σ′[T ][σ′[t]]. As in the previous case, we have σ′[t] = σ[t]. We also have that σ′[T ] ∈ Fσ[T ]

(in case T is a variable, this holds since 〈σ, σ′〉 is a δ-pair, and if T is a constant then it holds by
definition). Therefore, σ′[T ][σ′[t]] = σ′[T ][σ[t]] ∈ P [σ[T ]][σ[t]] = Q[ϕ, σ].

• ϕ = {⊥}. Then by definition, U [ϕ, σ′] = 0 ∈ {0} = Q[ϕ, σ].

Next, suppose that cp[ϕ] > 1, and that the claim holds for L-formulas of lower complexity. Let 〈σ, σ′〉 be a
δ-pair. Exactly one of the following holds:

• ϕ = (ϕ1 ∧ ϕ2) for L-formulas ϕ1 and ϕ2 of lower complexity. By the induction hypothesis, we have
U [ϕ1, σ

′] ∈ [vl[ϕ1, σ], vr[ϕ1, σ]], and U [ϕ2, σ
′] ∈ [vl[ϕ2, σ], vr[ϕ2, σ]]. Therefore:

U [ϕ, σ′] = min{U [ϕ1, σ
′],U [ϕ2, σ

′]} ∈ [min{vl[ϕ1, σ], vl[ϕ2, σ]},min{vr[ϕ1, σ], vr[ϕ2, σ]}] = Q[ϕ, σ].

• ϕ = (ϕ1 ∨ ϕ2) for L-formulas ϕ1 and ϕ2 of lower complexity. This case is similar to the previous case
(replace min by max).

• ϕ = (ϕ1 ⊃ ϕ2) for L-formulas ϕ1 and ϕ2 of lower complexity. By the induction hypothesis, we have
U [ϕ1, σ

′] ∈ [vl[ϕ1, σ], vr[ϕ1, σ]], and U [ϕ2, σ
′] ∈ [vl[ϕ2, σ], vr[ϕ2, σ]]. Therefore:

U [ϕ, σ′] = U [ϕ1, σ
′]→ U [ϕ2, σ

′] ∈ [vr[ϕ1, σ]→ vl[ϕ2, σ], vl[ϕ1, σ]→ vr[ϕ2, σ]] = Q[ϕ, σ]

(here we use the fact that if u1 ≤ u′ ≤ u2 and u3 ≤ u′′ ≤ u4, then u2 → u3 ≤ u′ → u′′ ≤ u1 → u4).

• ϕ = (Qixψ) for some Qi ∈ {∀i,∃i}, individual variable x of L, and L-formula ψ of lower complexity.
We continue with Qi = ∀i (the proof is similar for ∃i). Clearly, for every d ∈ Di, 〈σx:=d, σ

′
x:=d〉 is a

δ-pair. Thus by the induction hypothesis, for every d ∈ Di, U [ψ, σ′x:=d] ∈ v[ψ, σx:=d]. Hence,

U [ϕ, σ′] = inf
d∈Di

U [ψ, σ′x:=d] ∈ [ inf
d∈Di

vl[ψ, σx:=d], inf
d∈Di

vr[ψ, σx:=d]] = Q[ϕ, σ].

• ϕ = (QsXψ) for some Qs ∈ {∀i,∃i}, set variable X of L, and L-formula ψ of lower complexity. We
continue with Qs = ∀s (the proof is similar for ∃s). In this case, we should prove that:

inf
D′∈D′

s

U [ψ, σ′X:=D′ ] ∈ [ inf
D∈Ds

vl[ψ, σX:=D], inf
D∈Ds

vr[ψ, σX:=D]].
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– First, we show that infD∈Ds v
l[ψ, σX:=D] ≤ infD′∈D′

s
U [ψ, σ′X:=D′ ], by showing that we have

infD∈Ds
vl[ψ, σX:=D] ≤ U [ψ, σ′X:=D′ ] for every D′ ∈ D′s. Let D′ ∈ D′s, and let D be an arbitrary

element in Ds such that D′ ∈ FD. Then 〈σX:=D, σ
′
X:=D′〉 is a δ-pair. By the induction hypothesis,

vl[ψ, σX:=D] ≤ U [ψ, σ′X:=D′ ]. Thus, infD∈Ds
vl[ψ, σX:=D] ≤ U [ψ, σ′X:=D′ ].

– Next, we show that infD′∈D′
s
U [ψ, σ′X:=D′ ] ≤ infD∈Ds v

r[ψ, σX:=D], by showing that we have
infD′∈D′

s
U [ψ, σ′X:=D′ ] ≤ vr[ψ, σX:=D] for every D ∈ Ds. Let D ∈ Ds, and let D′ be an arbitrary

element in FD. Then D′ ∈ D′s, and 〈σX:=D, σ
′
X:=D′〉 is a δ-pair. By the induction hypothesis,

U [ψ, σ′X:=D′ ] ≤ vr[ψ, σX:=D]. Thus, infD′∈D′
s
U [ψ, σ′X:=D′ ] ≤ vr[ψ, σX:=D].

Finally, we show that U is comprehensive. Let ϕ be an L-formula, x be an individual variable, and
σ′ be an 〈L,D′〉-assignment. We show that U [ϕ, σ′, x] ∈ D′s. Define an 〈L,D〉-assignment σ as follows:
(i) σ[x] = σ′[x] for every individual variable x; and (ii) for every set variable X, σ[X] is an (arbitrary)
element of Ds such that σ′[X] ∈ Fσ[X]. Since Q is comprehensive, there exists some D ∈ Ds such that
P [D] = λd ∈ Di. v[ϕ, σx:=d]. We claim that U [ϕ, σ′, x] ∈ FD (and so, U [ϕ, σ′, x] ∈ D′s). By definition, we
should show that U [ϕ, σ′, x][d] ∈ P [D][d] for every d ∈ Di. Let d ∈ Di. Obviously, 〈σx:=d, σ

′
x:=d〉 is a δ-pair,

and thus by the claim proved above, we have U [ϕ, σ′, x][d] = U [ϕ, σ′x:=d] ∈ v[ϕ, σx:=d] = P [D][d].

Corollary 6.3. If 6` H, then there exists a comprehensive L-structure which is not a model of H.

Proof. Suppose that 6` H. Then, by Theorem 5.10, there exists a legal and comprehensive quasi-L-
structure Q = 〈V,D, P, v〉, which is not a model of H. This implies that there exists an 〈L,D〉-assignment
σ, such that σ 6|=Q Γ⇒E for every Γ⇒E ∈ H. Let U = 〈V,D′, P ′〉 be a comprehensive L-structure and δ
be a function, satisfying the requirement in Theorem 6.2. Let σ′ be an 〈L,D′〉-assignment such that 〈σ, σ′〉
is a δ-pair (there exists such an assignment since the range of δ does not include the empty set). We show
that σ′ 6|=U H. Let Γ⇒E ∈ H. Since σ 6|=Q Γ⇒E, we have minϕ∈Γ v

l[ϕ, σ] > maxϕ∈E v
r[ϕ, σ]. The fact

that U [ϕ, σ′] ∈ v[ϕ, σ] for every ϕ entails that minϕ∈Γ U [ϕ, σ′] > maxϕ∈E U [ϕ, σ′], and so σ′ 6|=U Γ⇒E.

Corollary 6.4. For every L-formula ϕ, if `G2
L ϕ then `⇒ϕ.

Finally, recall that HIF2 is cut-free, so we automatically obtain the admissibility of the cut rule:

Corollary 6.5. Let HIF2
c be the extension of HIF with the rule:

(cut)
H | Γ⇒ϕ H | Γ, ϕ⇒E

H | Γ⇒E

Then, an L-hypersequent H is provable in HIF2
c iff it is provable in HIF2.

Proof. The left to right direction is obvious. For the converse, we first prove that applications of (cut)
are sound. Indeed, suppose that H | Γ⇒E is derived from H | Γ⇒ϕ and H | Γ, ϕ⇒E using (cut). Let
U = 〈V,D, P 〉 be an L-structure, and σ be an 〈L,D〉-assignment. If σ |=U s for some component s ∈ H,
then we are done. Otherwise, σ |=U Γ⇒ϕ and σ |=U Γ, ϕ⇒E. Hence, minψ∈Γ U [ψ, σ] ≤ U [ϕ, σ] and
minψ∈Γ∪{ϕ} U [ψ, σ] ≤ maxψ∈E U [ψ, σ]. Thus minψ∈Γ U [ψ, σ] ≤ maxψ∈E U [ψ, σ], and so σ |=U Γ⇒E. Con-

sequently, σ |=U H | Γ⇒E. Now, it follows that if an L-hypersequent H is provable in HIF2
c , then every

comprehensive L-structure is a model of H. By Corollary 6.3, this implies that ` H.

Remark 6.6. While we allowed any Gödel set to serve as the set of truth values in L-structures, we could
equivalently take the real interval [0, 1]. Obviously, soundness for [0, 1] is a particular instance. Completeness
for [0, 1] can be obtained by embedding 〈V0,⊆〉 in the proof of Theorem 5.10 into the rational numbers in
[0, 1] (note that 〈V0,⊆〉 is countable). The result 〈V,⊆〉 of the completion would then be the real interval
[0, 1] with its standard order. Finally, the extracted ordinary counter-model employs the same Gödel set.
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7. Further Work

The properties proved in [16] for HIF are slightly stronger than those shown in this paper for HIF2.
Obtaining these stronger results for HIF2 seems to be straightforward. This includes:

1. In [16] we considered derivations from (possibly) non-empty sets of hypersequents, serving as assump-
tions. In this case the cut rule must be added to the calculus, and obviously one cannot have full
cut-admissibility. However, it was (semantically) proved that in HIF-proofs cuts can be confined to
formulas appearing in the set of assumptions (this property is called strong cut-admissibility).

2. For applications, it is sometimes useful to enrich Gödel logic with a globalization connective (also
known as Baaz Delta connective, see [19]). [16] studies the extension of HIF with rules for this
connective, and the same can be done for HIF2.

In addition, the following extensions of the current result are left for a future work:

1. It is interesting to consider equality, both between first-order terms and second-order ones. In this
case, rules for extensionality should be added.

2. Extending the calculus for richer second order signatures, that include arbitrary predicate symbols that
take sets as arguments, as well as quantification over n-ary predicates seem to be possible. Additionally,
we believe that our approach can be straightforwardly generalized to handle full type theory. In the
case of classical logic, cut-free completeness for the extended system was proved shortly after Tait’s
proof for the second-order one by Takahashi and Prawitz, [20, 21]. This extension is necessary in order
to obtain a proof system for (the Gödel fragment) of fuzzy set theory (see [12]).
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Appendix A. Some Proofs

In this appendix we provide the proofs for some technical lemmas that appear above. The following
lemmas will be useful:

Lemma Appendix A.1. Let U = 〈V,D, P 〉 be an L-structure, where D = 〈Di,Ds, I〉.

1. Let x be an individual variable of L and let d ∈ Di. For every L-formula ϕ such that x 6∈ fv[ϕ], and
〈L,D〉-assignment σ: U [ϕ, σx:=d] = U [ϕ, σ].

2. Let X be a set variable of L and let D ∈ Ds. For every L-formula ϕ such that X 6∈ fv[ϕ], and
〈L,D〉-assignment σ: U [ϕ, σX:=D] = U [ϕ, σ].

Proof. After proving the claim for first-order L-terms (that σ[t] = σx:=d[t] for every first-order L-term
such that x 6∈ fv[t], and 〈L,D〉-assignment σ), the claim is obtained by usual induction on the complexity
of ϕ. The second item is similar.

Lemma Appendix A.2. Let τ be an L-abstract, t and t′ be first-order L-terms, and x be an individual
variable such that x 6∈ fv[τ ]. Then, τ [t′]{t/x} = τ [t′{t/x}].

Proof. It is straightforward to prove that ϕ{t′/y}{t/x} = ϕ{t′{t/x}/y} for every L-formula ϕ, first-order
L-terms t and t′, and individual variables x and y, such that x 6∈ fv[ϕ]. The claim then easily follows from
our definitions.

In addition, to prove Lemma 4.4, we use the following lemma:

Lemma Appendix A.3. Let D be a domain for L and V, σ be an 〈L,D〉-assignment, t be a first-order
L-term, and x be an individual variable of L. For every first-order L-term t′: σ[t′{t/x}]] = σx:=σ[t][t

′].

Proof. By usual induction on the structure of t′.

Proof (Lemma 4.4). Suppose that D = 〈Di,Ds, I〉. We prove the claim by induction on the complexity
of ϕ. First, suppose that cp[ϕ] = 1, and let σ be an 〈L,D〉-assignment. Exactly one of the following holds:
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• ϕ = {⊥}. In this case the claim obviously holds.

• ϕ = {p(t1, ... , tn)}. In this case, ϕ{t/x} = {p(t1{t/x}, ... , tn{t/x})}. Thus U [ϕ{t/x}, σ] is equal to
P [p][σ[t1{t/x}], ... , σ[tn{t/x}]]. By Lemma Appendix A.3,

P [p][σ[t1{t/x}], ... , σ[tn{t/x}] = P [p][σx:=σ[t][t1], ... , σx:=σ[t][tn]].

By definition, this is equal to U [ϕ, σx:=σ[t]].

• ϕ = {(t′εT )}. In this case, ϕ{t/x} = {(t′{t/x}εT )}. Thus U [ϕ{t/x}, σ] = σ[T ][σ[t′{t/x}]]. By
Lemma Appendix A.3, σ[t′{t/x}] = σx:=σ[t][t

′]. Clearly, σ[T ] = σx:=σ[t][T ]. Hence, σ[T ][σ[t′{t/x}]] =
σx:=σ[t][T ][σx:=σ[t][t

′]]. By definition, this is equal to U [ϕ, σx:=σ[t]].

Next, suppose that cp[ϕ] > 1, and that the claim holds for L-formulas of lower complexity. Let σ be an
〈L,D〉-assignment. Exactly one of the following holds:

• ϕ = (ϕ1 � ϕ2) for some � ∈ {∧,∨,⊃}, and L-formulas ϕ1 and ϕ2 of lower complexity. By defi-
nition, ϕ{t/x} = (ϕ1{t/x} � ϕ2{t/x}). We continue with � =⊃ (the proof is similar for ∧ and ∨).
Thus, U [ϕ{t/x}, σ] = U [ϕ1{t/x}, σ] → U [ϕ2{t/x}, σ]. By the induction hypothesis, U [ϕ1{t/x}, σ] →
U [ϕ2{t/x}, σ] = U [ϕ1, σx:=σ[t]]→ U [ϕ2, σx:=σ[t]]. By definition, this is equal to U [ϕ, σx:=σ[t]].

• ϕ = (Qiyψ) for some Qi ∈ {∀i,∃i}, individual variable y 6∈ {x} ∪ fv[t] of L, and L-formula ψ of lower
complexity. By definition, ϕ{t/x} = (Qiyψ{t/x}). We continue with Qi = ∀i (the proof is similar for
∃i). Thus, U [ϕ{t/x}, σ] = infd∈Di U [ψ{t/x}, σy:=d]. By the induction hypothesis, U [ψ{t/x}, σy:=d] =
U [ψ, σy:=d,x:=σ[t]] for every d ∈ Di (note that y 6= x), and so U [ϕ{t/x}] = infd∈Di U [ψ, σy:=d,x:=σ[t]]. By
definition, infd∈Di

U [ψ, σy:=d,x:=σ[t]] = U [ϕ, σx:=σ[t]].

• ϕ = (QsXψ) for some Qs ∈ {∀s,∃s}, set variable X of L, and L-formula ψ of lower complexity.
By definition, ϕ{t/x} = (QsXψ{t/x}). We continue with Qs = ∀s (the proof is similar for ∃s).
Thus, U [ϕ{t/x}, σ] = infD∈Ds U [ψ{t/x}, σX:=D]. By the induction hypothesis, U [ψ{t/x}, σX:=D] =
U [ψ, σX:=D,x:=σ[t]] for every D ∈ Ds, and so U [ϕ{t/x}, σ] = infD∈Ds

U [ψ, σX:=D,x:=σ[t]]. The claim
follows, since by definition infD∈Ds

U [ψ, σX:=D,x:=σ[t]] = U [ϕ, σx:=σ[t]].

Proof (Lemma 4.5). If X 6∈ fv[ϕ], then ϕ{τ/X} = ϕ and the claim follows by Lemma Appendix A.1.
Suppose otherwise. We prove the claim by induction on the complexity of ϕ. First, suppose that cp[ϕ] = 1.
Let σ be an 〈L,D〉-assignment, and let D0 = U [τ [x], σ, x]. Suppose that D0 ∈ Ds. Since X ∈ fv[ϕ], we must
have ϕ = {(tεX)} for some first-order L-term t. In this case, ϕ{τ/X} = τ [t]. Then, by Lemma Appendix
A.2, τ [t] = τ [x{t/x}] = τ [x]{t/x}. Thus U [ϕ{τ/X}, σ] = U [τ [x]{t/x}, σ]. By Lemma 4.4, U [τ [x]{t/x}, σ] =
U [τ [x], σx:=σ[t]]. Now, by definition, U [τ [x], σx:=σ[t]] = D0[σ[t]] = U [ϕ, σX:=D0 ].

Next, suppose that cp[ϕ] > 1, and that the claim holds for L-formulas of lower complexity. Let σ be an
〈L,D〉-assignment, and again let D0 = U [τ [x], σ, x]. Suppose that D0 ∈ Ds. Exactly one of the following
holds:

• ϕ = (ϕ1 � ϕ2) for some � ∈ {∧,∨,⊃}, and L-formulas ϕ1 and ϕ2 of lower complexity. By defini-
tion, ϕ{τ/X} = (ϕ1{τ/X} � ϕ2{τ/X}). We continue with � =⊃ (the proof is similar for ∧ and ∨).
Thus, U [ϕ{τ/X}, σ] = U [ϕ1{τ/X}, σ] → [ϕ2{τ/X}, σ]. By the induction hypothesis (and the case in
which X 6∈ fv[ϕ]), U [ϕ1{τ/X}, σ] = U [ϕ1, σX:=D0

] and U [ϕ2{τ/X}, σ] = U [ϕ2, σX:=D0
]. By definition,

U [ϕ1, σX:=D0
]→ U [ϕ2, σX:=D0

] = U [ϕ, σX:=D0
].

• ϕ = (Qiyψ) for some Qi ∈ {∀i,∃i}, individual variable y 6∈ {x} ∪ fv[τ ] of L, and L-formula
ψ of lower complexity. By definition, ϕ{τ/X} = (Qiyψ{τ/X}). We continue with Qi = ∀i (the
proof is similar for ∃i). Thus, U [ϕ{τ/X}, σ] = infd∈Di

U [ψ{τ/X}, σy:=d]. Now, using Lemma Ap-
pendix A.1, we have D0 = U [τ [x], σy:=d, x] for every d ∈ Di (since y 6∈ fv[τ [x]]). Therefore,
by the induction hypothesis, infd∈Di U [ψ{τ/X}, σy:=d] = infd∈Di U [ψ, σy:=d,X:=D0 ]. By definition,
infd∈Di U [ψ, σy:=d,X:=D0 ] = U [ϕ, σX:=D0 ].

• ϕ = (QsY ψ) for some Qs ∈ {∀s,∃s}, set variable Y 6∈ {X} ∪ fv[τ ] of L, and L-formula ψ of lower
complexity. By definition, ϕ{τ/X} = (QsY ψ{τ/X}). We continue with Qs = ∀s (the proof is similar
for ∃s). Thus, U [ϕ{τ/X}, σ] = infD∈Ds U [ψ{τ/X}, σY :=D]. Now, using Lemma Appendix A.1, we
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have D0 = U [τ [x], σY :=D, x] for every D ∈ Ds (since Y 6∈ fv[τ [x]]). Therefore, by the induction
hypothesis, infD∈Ds

U [ψ{τ/X}, σY :=D] = infD∈Ds
U [ψ, σY :=D,X:=D0

] (note that Y 6= X). By definition,
infD∈Ds

U [ψ, σY :=D,X:=D0
] = U [ϕ, σX:=D0

].

Proof (Lemma 5.22). Let D = 〈Di,Ds, I〉. First, we show that for every first-order L-terms t′ and t,
〈L,D〉-assignment σ, and individual variables x, y such that y 6∈ fv[t′], σx:=t[t

′] = σy:=t[t
′{y/x}]. This claim

is proved by induction on the structure of t′:

• Suppose that t′ = c for some individual constant symbol c of L, or t′ = z for some individual variable
z 6∈ {x, y}. Then t′{y/x} = t′, and σx:=t[t

′] = σy:=t[t
′].

• Suppose that t′ = x. Then σx:=t[t
′] = t, and σy:=t[t

′{y/x}] = σy:=t[y] = t.

• Suppose that t′ = f(t1, ... , tn) for some n-ary function symbol f of L, and first-order L-terms
t1, ... , tn. Then, σx:=t[t

′] = f(σx:=t[t1], ... , σx:=t[tn]). By the induction hypotheses this term equals
f(σy:=t[t1{y/x}], ... , σy:=t[tn{y/x}]), which in turn equals σy:=t[f(t1, ... , tn){y/x}].

Next, we prove the claims in Lemma 5.22:

1. We use induction on the complexity of ϕ. First, suppose that cp[ϕ] = 1. Let σ be an 〈L,D〉-assignment,
and let x, y be individual variables such that y 6∈ fv[ϕ]. Exactly one of the following holds:

• ϕ = {p(t1, ... , tn)} for some n-ary predicate symbol p of L, and first-order L-terms t1, ... , tn.
Then, by definition σx:=t[ϕ] = {p(σx:=t[t1], ... , σx:=t[tn])}. Since y 6∈ fv[ti] for every 1 ≤ i ≤ n,
this formula equals {p(σy:=t[t1{y/x}], ... , σy:=t[tn{y/x}])}, which is, by definition, σy:=t[ϕ{y/x}].

• ϕ = {(t′εT )} for some first-order L-term t′, and second-order L-term T . Then, σx:=t[ϕ] =
σx:=t[T ][σx:=t[t

′]]. Since y 6∈ fv[t′], this formula equals σx:=t[T ][σy:=t[t
′{y/x}]]. Since x and y

does not occur in T , this is equal to σy:=t[T ][σy:=t[t
′{y/x}]]. By definition, this formula is equal

to σy:=t[{(t′{y/x}εT )}], which is σy:=t[{(t′εT )}{y/x}].
• ϕ = {⊥}. Then, σx:=t[ϕ] = {⊥} = σy:=t[ϕ{y/x}].

Next, suppose that cp[ϕ] > 1, and that the claim holds for L-formulas of lower complexity. Let σ
be an 〈L,D〉-assignment, and let x, y be individual variables such that y 6∈ fv[ϕ]. Exactly one of the
following holds:

• ϕ = (ϕ1 � ϕ2) for � ∈ {∧,∨,⊃} and L-formulas ϕ1 and ϕ2 of lower complexity. Then, σx:=t[ϕ] =
(σx:=t[ϕ1] � σx:=t[ϕ2]). By the induction hypothesis, this L-formula is equal to (σy:=t[ϕ1{y/x}] �
σy:=t[ϕ2{y/x}]). And, by definition, this is equal to σy:=t[ϕ{y/x}].

• ϕ = (Qizψ) for Qi ∈ {∀i,∃i}, L-formula ψ of lower complexity, and individual variable z of
L such that z 6∈ {x, y} ∪ σ[ϕ] ∪ fv[t]. Then, σx:=t[ϕ] = (Qizσx:=t,z:=z[ψ]). By the induction
hypothesis, this L-formula is equal to (Qizσy:=t,z:=z[ψ{y/x}]). And this is (by definition) equal
to σy:=t[(Q

izψ{y/x})], which is equal to σy:=t[ϕ{y/x}].
• ϕ = (QsXψ) for Qs ∈ {∀s,∃s}, L-formula ψ of lower complexity, and set variable X of L

such that X 6∈ fv[σ[ϕ]]. Then, σx:=t[ϕ] = (QsXσx:=t,X:=Xabs
[ψ]). By the induction hypothe-

sis, this L-formula is equal to (QsXσy:=t,X:=Xabs
[ψ{y/x}]). And this is (by definition) equal to

σy:=t[(Q
sXψ{y/x})], which in turn equals σy:=t[(ϕ{y/x}].

2. If X 6∈ fv[ϕ], then σX:=τ [ϕ] = σ[ϕ] = σY :=τ [ϕ{Y/X}]. Suppose now that X ∈ fv[ϕ]. We use induction
on the complexity of ϕ. First, suppose that cp[ϕ] = 1. Let σ be an 〈L,D〉-assignment, and let X,Y
be set variables such that Y 6∈ fv[ϕ]. Assume that X ∈ fv[ϕ]. Thus we have ϕ = {(tεX)} for some
first-order L-term t. Then, σX:=τ [ϕ] = τ [σX:=τ [t]]. Since X and Y do not occur in t, this is equal
to τ [σY :=τ [t]], which in turn equals σY :=τ [ϕ{Y/X}]. Next, suppose that cp[ϕ] > 1, and that the claim
holds for L-formulas of lower complexity. Let σ be an 〈L,D〉-assignment, and let X,Y be set variables
such that Y 6∈ fv[ϕ]. Exactly one of the following holds:

• ϕ = (ϕ1 �ϕ2) for � ∈ {∧,∨,⊃} and L-formulas ϕ1 and ϕ2 of lower complexity. Then, σX:=τ [ϕ] =
(σX:=τ [ϕ1] � σX:=τ [ϕ2]). By the induction hypothesis (and the case in which X 6∈ fv[ϕ]), this
L-formula is equal to (σY :=τ [ϕ1{Y/X}] � σY :=τ [ϕ2{Y/X}]). And, by definition, this is equal to
σY :=τ [ϕ{Y/X}].

26



O. Lahav and A. Avron / Fuzzy Sets and Systems 00 (2014) 1–30 27

• ϕ = (Qixψ) for Qi ∈ {∀i,∃i}, L-formula ψ of lower complexity, and individual variable x of
L such that x 6∈ fv[τ ] ∪ fv[σ[ϕ]]. Then, σX:=τ [ϕ] = (QixσX:=τ,x:=x[ψ]). By the induction
hypothesis, this L-formula is equal to (QixσY :=τ,x:=x[ψ{Y/X}]). And this is (by definition) equal
to σY :=τ [ϕ{Y/X}].

• ϕ = (QsZψ) for Qs ∈ {∀s,∃s}, L-formula ψ of lower complexity, and set variable Z of L such
that Z 6∈ fv[τ ] ∪ {X,Y } ∪ fv[σ[ϕ]]. Then, σX:=τ [ϕ] = (QsZσX:=τ,Z:=Zabs

[ψ]). By the induction
hypothesis, this L-formula is equal to (QsZσY :=τ,Z:=Zabs

[ψ{Y/X}]). And this is (by definition)
equal to σY :=τ [ϕ{Y/X}].

Proof (Lemma 5.23). Let D = 〈Di,Ds, I〉. First, we show that for every first-order L-terms t′ and t,
〈L,D〉-assignment σ, and individual variables x, z such that z 6∈ fv[σ[t′]], σx:=z[t

′]{t/z} = σx:=t[t
′]. This

claim is proved by induction on the structure of t′:

• Suppose that t′ = c for some individual constant symbol c of L. Then:

σx:=z[t
′]{t/z} = I[c]{t/z} = c{t/z} = c = I[c] = σx:=t[t

′].

• Suppose that t′ = y for some individual variable y 6= x. Then σx:=z[t
′]{t/z} = σ[y]{t/z}. Since

z 6∈ fv[σ[y]], we have σ[y]{t/z} = σ[y]. The claim then follows since σ[y] = σx:=t[y].

• Suppose that t′ = x. Then, σx:=z[t
′]{t/z} = z{t/z} = t = σx:=t[x].

• Suppose that t′ = f(t1, ... , tn) for some n-ary function symbol f of L, and first-order L-terms t1, ... , tn.
Then, σx:=z[t

′]{t/z} = f(σx:=z[t1], ... , σx:=z[tn]){t/z} = f(σx:=z[t1]{t/z}, ... , σx:=z[tn]{t/z}). By the
induction hypotheses this term equals f(σx:=t[t1], ... , σx:=t[tn]), which in turn equals σx:=t[t

′].

Next, we prove the claims in Lemma 5.23:

1. We use induction on the complexity of ϕ. First, suppose that cp[ϕ] = 1. Let σ be an 〈L,D〉-assignment,
and let x, z be individual variables such that z 6∈ fv[σ[ϕ]]. Exactly one of the following holds:

• ϕ = {p(t1, ... , tn)} for some n-ary predicate symbol p of L and first-order L-terms t1, ... , tn.
Then, σx:=z[ϕ]{t/z} = {p(σx:=z[t1], ... , σx:=z[tn])}{t/z} = {p(σx:=z[t1]{t/z}, ... , σx:=z[tn]{t/z})}.
Since z 6∈ fv[σ[ti]] for every 1 ≤ i ≤ n, the claim above for terms entails that this formula equals
{p(σx:=t[t1], ... , σx:=t[tn])}, which is, by definition, σx:=t[ϕ].

• ϕ = {(t′εT )} for some first-order L-term t′ and second-order L-term T . In this case, we have
σx:=z[ϕ]{t/z} = σx:=z[T ][σx:=z[t

′]]{t/z} = σ[T ][σx:=z[t
′]]{t/z}. By Lemma Appendix A.2, since

z 6∈ fv[σ[T ]], this formula equals σ[T ][σx:=z[t
′]{t/z}]. Since z 6∈ fv[σ[t′]], the proof above for

terms entails that this formula equals σ[T ][σx:=t[t
′]]. Since x does not occur in T , this is equal to

σx:=t[T ][σx:=t[t
′]], which is, by definition, σx:=t[ϕ].

• ϕ = {⊥}. Then, σx:=z[ϕ]{t/z} = {⊥} = σx:=t[ϕ].

Next, suppose that cp[ϕ] > 1, and that the claim holds for L-formulas of lower complexity. Let σ be
an 〈L,D〉-assignment, and let x, z be individual variables such that z 6∈ fv[σ[ϕ]]. Exactly one of the
following holds:

• ϕ = (ϕ1 � ϕ2) for � ∈ {∧,∨,⊃} and L-formulas ϕ1 and ϕ2 of lower complexity. Then, we have
σx:=x[ϕ]{t/x} = (σx:=z[ϕ1]{t/z} � σx:=z[ϕ2]{t/z}). By the induction hypothesis, this L-formula is
equal to (σx:=t[ϕ1] � σx:=t[ϕ2]). And, by definition, this is equal to σx:=t[ϕ].

• ϕ = (Qiyψ) for Qi ∈ {∀i,∃i}, L-formula ψ of lower complexity, and individual variable y
of L such that y 6∈ fv[t] ∪ {x, z} ∪ fv[σ[ϕ]]. Then, σx:=z[ϕ]{t/z} = (Qiyσx:=z,y:=y[ψ]){t/z} =
(Qiyσx:=z,y:=y[ψ]{t/z}). By the induction hypothesis, this L-formula is equal to (Qiyσx:=t,y:=y[ψ]).
And this is (by definition) equal to σx:=t[ϕ].

• ϕ = (QsXψ) for Qs ∈ {∀s,∃s}, L-formula ψ of lower complexity, and set variable X of L such that
X 6∈ fv[σ[ϕ]]. Then, σx:=z[ϕ]{t/z} = (QsXσx:=z,X:=Xabs

[ψ]){t/z} = (QiXσx:=z,X:=Xabs
[ψ]{t/z}).

By the induction hypothesis, this L-formula is equal to (Qiyσx:=t,X:=Xabs
[ψ]). And this is (by

definition) equal to σx:=t[ϕ].
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2. If X 6∈ fv[ϕ], then σX:=Xabs
[ϕ] = σ[ϕ] = σX:=τ [ϕ]. Since X 6∈ fv[σ[ϕ]], we also have σ[ϕ]{τ/X} = σ[ϕ]

as well. Suppose now that X ∈ fv[ϕ]. We use induction on the complexity of ϕ. First, suppose that
cp[ϕ] = 1. Let σ be an 〈L,D〉-assignment, and let X 6∈ fv[σ[ϕ]]. Since X ∈ fv[ϕ], we must have
ϕ = {(tεX)} for some first-order L-term t. Then,

σX:=Xabs
[ϕ]{τ/X} = Xabs[σ[t]]{τ/X} = {(σ[t]εX)}{τ/X} = τ [σ[t]] = σX:=τ [ϕ].

Next, suppose that cp[ϕ] > 1, and that the claim holds for L-formulas of lower complexity. Let σ be
an 〈L,D〉-assignment, and let X 6∈ fv[σ[ϕ]]. Exactly one of the following holds:

• ϕ = (ϕ1 � ϕ2) for � ∈ {∧,∨,⊃} and L-formulas ϕ1 and ϕ2 of lower complexity. Then, we have
σX:=Xabs

[ϕ]{τ/X} = (σX:=Xabs
[ϕ1]{τ/X} � σX:=Xabs

[ϕ2]{τ/X}). By the induction hypothesis (and
the case in which X 6∈ fv[ϕ]), this L-formula is equal to (σX:=τ [ϕ1] � σX:=τ [ϕ2]). And, by
definition, this is equal to σX:=τ [ϕ].

• ϕ = (Qixψ) for Qi ∈ {∀i,∃i}, L-formula ψ of lower complexity, and individual variable x of
L such that x 6∈ fv[τ ] ∪ fv[σ[ϕ]]. Then, σX:=Xabs

[ϕ]{τ/X} = (QixσX:=Xabs,x:=x[ψ]){τ/X} =
(QixσX:=Xabs,x:=x[ψ]{τ/X}). By the induction hypothesis, this L-formula is equal to σX:=τ [ϕ].

• ϕ = (QsY ψ) for Qs ∈ {∀s,∃s}, L-formula ψ of lower complexity, and set variable Y of L such
that Y 6∈ fv[τ ] ∪ {X} ∪ fv[σ[ϕ]]. Then, σX:=Xabs

[ϕ]{τ/X} = (QsY σX:=Xabs,Y :=Yabs
[ψ]){τ/X} =

(QiY σX:=Xabs,Y :=Yabs
[ψ]{τ/X}). By the induction hypothesis, this L-formula is equal to σX:=τ [ϕ].

Appendix B. Proofs for Section 5.1

Proof (Proposition 5.16).

1. Let L⇒R ∈ Ω such that ϕ 6∈ L. By internal maximality, Ω | L, ϕ⇒R is provable, and so there exists an
L-hypersequent H ′ v Ω | L, ϕ⇒R, such that ` H ′. Let H = {s ∈ H ′ : {s} v Ω}. Note that for every
L-sequent Γ⇒E ∈ H ′ \H, we have ϕ ∈ Γ, Γ \ {ϕ} ⊆ L, and E ⊆ R. Let Γ1⇒E1, ... ,Γn⇒En be an
enumeration of these sequents, and let Γ =

⋃
Γi \ {ϕ}. By applying internal weakenings on H ′, we

obtain ` H | Γ, ϕ⇒E1 | ... | Γ, ϕ⇒En. Clearly, H v Ω and Γ⇒E1, ... ,Γ⇒En v L⇒R.

2. Let L⇒R ∈ Ω such that ϕ 6∈ R. By internal maximality, Ω | L⇒ϕ, R is provable, and so there exists an
L-hypersequent H ′ v Ω | L⇒ϕ, R, such that ` H ′. Let H = {s ∈ H ′ : {s} v Ω}. Note that for every
L-sequent Γ⇒E ∈ H ′ \H, we have E = {ϕ} and Γ ⊆ L. Let Γ1⇒ϕ, ... ,Γn⇒ϕ be an enumeration
of theses sequents. Let Γ =

⋃
Γi. By applying internal weakenings on H ′, we obtain ` H | Γ⇒ϕ.

Clearly, H v Ω and Γ ⊆ L.

To prove Lemma 5.18, we need some additional lemmas:

Lemma Appendix B.1. Let H = Γ1⇒∆1 | ... | Γn⇒∆n be an unprovable finite extended L-hypersequent.
Then there exists an unprovable finite extended L-hypersequent H ′ of the form Γ′1⇒∆′1 | ... | Γ′n⇒∆′n, such
that Γi ⊆ Γ′i and ∆i ⊆ ∆′i for every 1 ≤ i ≤ n, and H ′ admits the witness property.

Proof. This extension is done in steps.7 In every step, we take some extended L-sequent Γ⇒∆ ∈ H, and
proceed as follows:

• If Γ contains a formula of the form (∃ixϕ), we take an individual variable y of L, which is not a free
variable in the current hypersequent, and add the formula ϕ{y/x} to Γ.

• If ∆ contains a formula of the form (∀ixϕ), we take an individual variable y of L, which is not a free
variable in the current hypersequent, and add the formula ϕ{y/x} to ∆.

• If Γ contains a formula of the form (∃sXϕ), we take a set variable Y of L, which is not a free variable
in the current hypersequent, and add the formula ϕ{Y/X} to Γ.

7Formally, this extension should be defined inductively, but the intention should be clear.
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• If ∆ contains a formula of the form (∀sXϕ), we take a set variable Y of L, which is not a free variable
in the current hypersequent, and add the formula ϕ{Y/X} to ∆.

We continue this procedure until the obtained extended L-hypersequent admits the witness property. Note
that since the number of formulas in H is finite, and the complexity of the formulas which are added is
decreasing, this procedure would terminate after a finite number of steps. H ′ is the finite extended L-
hypersequent obtained from H by this procedure. We show that every such extension keeps the extended
L-hypersequent unprovable (and thus H ′ is unprovable):

• Suppose that an unprovable extended L-hypersequent H1 contains an extended L-sequent Γ⇒∆,
where Γ contains a formula of the form (∃ixϕ). Let H2 be the extended L-hypersequent obtained from
H1 by adding ϕ{y/x} to Γ, where y is an individual variable which does not occur in fv[H1]. Assume
for contradiction that H2 is provable. Hence there exist an L-hypersequent H v H2, and L-sequents
Γ′⇒E1, ... ,Γ

′⇒En v Γ⇒∆, such that ` H | Γ′, ϕ{y/x}⇒E1 | ... | Γ′, ϕ{y/x}⇒En. Proposition 3.17
entails that ` H | Γ′, (∃ixϕ)⇒E1 | ... | Γ′, (∃ixϕ)⇒En. This contradicts the fact the H1 is unprovable.

• Suppose that an unprovable extended L-hypersequent H1 contains an extended L-sequent Γ⇒ ∆,
where ∆ contains a formula of the form (∀ixϕ). Let H2 be the extended L-hypersequent obtained
from H1 by adding ϕ{y/x} to ∆, where y is an individual variable which does not occur in fv[H1].
Assume for contradiction that H2 is provable. Hence there exist an L-hypersequent H v H2, and a
finite set Γ′ ⊆ Γ, such that ` H | Γ′⇒ϕ{y/x}. By applying (⇒∀i), we obtain ` H | Γ′⇒(∀ixϕ). This
contradicts the fact the H1 is unprovable.

• The set quantifiers are handled similarly, using Proposition 3.18 in the case of ∃s.

Lemma Appendix B.2. Let H = Γ1⇒∆1 | ... | Γn⇒∆n be an unprovable finite extended L-hypersequent.
Let ϕ be an L-formula, and s be an L-sequent. Then there exists an unprovable finite extended L-
hypersequent H ′, such that:

• H ′ = Γ′1⇒∆′1 | ... | Γ′n′⇒∆′n′ , where n′ ∈ {n, n+ 1}, Γi ⊆ Γ′i and ∆i ⊆ ∆′i for every 1 ≤ i ≤ n.

• H ′ is internally maximal with respect to ϕ.

• H ′ is externally maximal with respect to s.

• H ′ admits the witness property.

Proof. Suppose s = Γ∗ ⇒ E. First, if H | s is unprovable, let n′ = n + 1 and define Γn+1 = Γ∗ and
∆n+1 = E. Otherwise, let n′ = n. We recursively define a finite sequence of finite extended L-hypersequents,
H0 = Γ0

1⇒∆0
1 | ... | Γ0

n′⇒∆0
n′ , ... , Hn′ = Γn

′

1 ⇒∆n′

1 | ... | Γn
′

n′⇒∆n′

n′ , in which Γij ⊆ Γi+1
j and ∆i

j ⊆ ∆i+1
j for

every 1 ≤ j ≤ n′ and 0 ≤ i ≤ n′ − 1.
First, define Γ0

j = Γj , ∆0
j = ∆j for every 1 ≤ j ≤ n′. Let 0 ≤ i ≤ n′ − 1. Assume that the hypersequent

Hi = Γi1⇒∆i
1 | ... | Γin′⇒∆i

n′ is defined. We show how to construct Hi+1 = Γi+1
1 ⇒∆i+1

1 | ... | Γi+1
n′ ⇒∆i+1

n′ :

1. If Γi1⇒∆i
1 | ... | Γii+1, ϕ⇒∆i

i+1 | ... | Γin′⇒∆i
n′ is unprovable, then Γi+1

i+1 = Γii+1 ∪ {ϕ}, ∆i+1
i+1 = ∆i

i+1,

and Γi+1
j = Γij and ∆i+1

j = ∆i
j for every j 6= i+ 1.

2. Otherwise, if Γi1 ⇒ ∆i
1 | ... | Γii+1 ⇒ ∆i

i+1, ϕ | ... | Γin′ ⇒ ∆i
n′ is unprovable, then Γi+1

i+1 = Γii+1,

∆i+1
i+1 = ∆i

i+1 ∪ {ϕ}, and Γi+1
j = Γij and ∆i+1

j = ∆i
j for every j 6= i+ 1.

3. If both do not hold, then Γi+1
j = Γij and ∆i+1

j = ∆i
j for every 1 ≤ j ≤ n′.

It is easy to verify that Hn′ = Γn
′

1 ⇒∆n′

1 | ... | Γn
′

n′⇒∆n′

n′ is an unprovable finite extended L-hypersequent.
By Lemma Appendix B.1, there exists an unprovable finite extended L-hypersequent, H ′ of the form
Γ′1⇒∆′1 | ... | Γ′n′⇒∆′n′ , such that Γn

′

j ⊆ Γ′j and ∆n′

j ⊆ ∆′j for every 1 ≤ j ≤ n′, and H ′ admits the
witness property. It is again easy to see that H ′ has all the required properties. For example, we show that
H ′ is internally maximal with respect to ϕ. Let Γ⇒∆ ∈ H ′. Suppose that Γ = Γ′j and ∆ = ∆′j .

• Assume that ϕ 6∈ Γ. Since Γjj ⊆ Γ, this implies that Γj−1
1 ⇒∆j−1

1 | ... | Γj−1
j , ϕ⇒∆j−1

j | ... | Γj−1
n′ ⇒∆j−1

n′

is provable. It easily follows that H ′ | Γ, ϕ⇒∆ (which extends this finite extended L-hypersequent)
is provable.
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• Assume that ϕ 6∈ ∆. If ϕ ∈ Γ, then since ϕ⇒ ϕ is an axiom of HIF2, H ′ | Γ⇒ϕ,∆ is provable.
Otherwise, ϕ 6∈ Γ, and since Γjj ⊆ Γ and ∆j

j ⊆ ∆, our construction ensures that the hypersequent

Γj−1
1 ⇒∆j−1

1 | ... | Γj−1
j ⇒∆j−1

j , ϕ | ... | Γj−1
n′ ⇒∆j−1

n′ is provable. It easily follows that H ′ | Γ⇒ ϕ,∆
(which extends this finite extended L-hypersequent) is provable.

Proof (Lemma 5.18). Suppose that H = Γ1 ⇒ E1 | ... | Γn ⇒ En. Let ϕ0, ϕ1 ... be an enumeration
of all L-formulas, in which every formula occurs infinitely often. Let s0, s1 ... be an enumeration of all
L-sequents. We recursively define an infinite sequence of unprovable finite extended L-hypersequents,
H0 = Γ0

1⇒∆0
1 | ... | Γ0

n0
⇒∆0

n0
, H1 = Γ1

1⇒∆1
1 | ... | Γ1

n1
⇒∆1

n1
, ... such that: n0 ≤ n1 ≤ ..., and Γij ⊆ Γi+1

j and

∆i
j ⊆ ∆i+1

j for every i ≥ 0 and 1 ≤ j ≤ ni.
First, let n0 = n and Γ0

j = Γj , ∆0
j = Ej for every 1 ≤ j ≤ n0. Let i ≥ 0. Assume that the

hypersequent Hi = Γi1⇒∆i
1 | ... | Γini

⇒∆i
ni

is defined. By Lemma Appendix B.2, there exists an unprovable
L-hypersequent H ′ such that:

• H ′ = Γ′1⇒∆′1 | ... | Γ′n′⇒∆′n′ where n′ ∈ {ni, ni + 1}, and Γi ⊆ Γ′i and ∆i ⊆ ∆′i for every 1 ≤ i ≤ ni.
• H ′ is internally maximal with respect to ϕi.

• H ′ is externally maximal with respect to si.

• H ′ admits the witness property.

Let ni+1 = n′, and Γi+1
j = Γ′j , ∆i+1

j = ∆′j for every 1 ≤ j ≤ n′.

Note that after every step we have an unprovable finite extended L-hypersequent, so Lemma Appendix
B.2 can be applied. Finally, let N be max{n0, n1, ...} + 1, if such a maximum exists, and infinity other-
wise. Let n(j) = min{i : j ≤ ni} for every 1 ≤ j < N . Define Lj = ∪i≥n(j)Γ

i
j and Rj = ∪i≥n(j)∆

i
j for every

1 ≤ j < N . Let Ω be the extended L-hypersequent L1⇒R1 | L2⇒R2 | .... Obviously, Ω extends H. We prove
that Ω is maximal:

Unprovability Suppose by way of contradiction that ` H for some L-hypersequent H v Ω. Assume that
H = Γ1⇒∆1 | ... | Γn⇒∆n. The construction of Ω ensures that for every 1 ≤ i ≤ n, there exists ki ≥ 1
such that Γi ⊆ Lki and ∆i ⊆ Rki . This entails that for every 1 ≤ i ≤ n, there exists mi ≥ 0 such that
Γi ⊆ Γmi

ki
and ∆i ⊆ ∆mi

ki
. By the construction of the Γij ’s and ∆i

j ’s, we have that for every 1 ≤ i ≤ n

and l ≥ mi, Γi ⊆ Γlki and ∆i ⊆ ∆l
ki

. Let m = max{m1, ... ,mn}. Then, by definition H v Hm. Since
` H, it follows that Hm is provable. But, this contradicts the fact that H0 is unprovable, and that
each application of Lemma Appendix B.2 yields an unprovable extended L-hypersequent.

Internal Maximality Let ϕ be an L-formula, and let Lj⇒ Rj ∈ Ω. Since we included ϕ infinite number
of times in the enumeration of the formulas, there exists some i ≥ n(j) such that ϕi = ϕ. Our
construction ensures that Hi+1 is internally maximal with respect to ϕ, and so if ϕ 6∈ Γi+1

j then

Hi+1 | Γi+1
j , ϕ⇒∆i+1

j is provable, and if ϕ 6∈ ∆i+1
j then Hi+1 | Γi+1

j ⇒ ϕ,∆i+1
j is provable. Since

Hi+1 v Ω, it follows that if ϕ 6∈ Lj then Ω | Lj , ϕ⇒Rj is provable, and if ϕ 6∈ Rj then Ω | Lj⇒ϕ, Rj is
provable.

External Maximality Let s be an L-sequent. Assume that s = si (i ≥ 0), our construction ensures that
Hi+1 is externally maximal with respect to s. Hence, either {s} v Hi+1, or Hi+1 | s is provable. Since
Hi+1 v Ω, either {s} v Ω, or Ω | s is provable.

The Witness Property Let 1 ≤ j < N . We show that Lj ⇒ Rj admits the witness property. Assume
(∀ixϕ) ∈ Rj . Then (∀ixϕ) ∈ ∆i

j for some i ≥ n(j). We can assume that i > 0 (if it holds for i = 0
then it holds for i = 1 as well). Our construction ensures that Hi admits the witness property, and so
there exists an individual variable y such that ϕ{y/x} ∈ ∆i

j . Since ∆i
j ⊆ Rj , we have that ϕ{y/x} ∈ Rj .

The cases involving the other quantifiers are analogous.
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