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Abstract

Gentzen-type sequent calculi and their natural extensions (such as many-sided sequent
and hypersequent calculi) provide suitable proof-theoretic frameworks for a huge variety
of logics, starting from classical logic and intuitionistic logic, and including modal logics,
substructural logics, many-valued logics, fuzzy logics, and paraconsistent logics. In many
important cases they suggest an “algorithmic presentation” of a logic, which is particu-
larly useful in practical applications of it, as well as for studying its properties. Thus in
the last decades Gentzen-type calculi frequently arise for handling and introducing new
non-classical logics. Each such calculus requires a soundness and completeness theorem
with respect to its corresponding logic, and its proof-theoretic properties should be veri-
fied. Traditionally, this is done each time from scratch. In many cases the fundamental
theorem of cut-elimination is proved. This implies the redundancy of the well-known cut
rule, something which usually ensures the usefulness of the calculus. Another desirable
property of Gentzen calculi is analyticity, namely the fact that proofs may consist only
of syntactic material contained in the sequent to be proved. Often it is an immediate
corollary of cut-elimination, but in various cases cut-elimination fails, and the calculus
can still be shown to be analytic. This calls for an investigation of Gentzen-type calculi

as mathematical objects in their own right.

This thesis aims at such a systematic general investigation of a wide variety of sequent
and hypersequent calculi for many logics of different natures. Our main contribution is
a semantic analysis of several general families of propositional Gentzen-type sequent and
hypersequent calculi, that consists of the following:

1. We provide a uniform (possibly non-deterministic) semantic characterization for
each calculus in the families we study. This has the form of general and modular
soundness and completeness results that establish strong connections between the
syntactic ingredients of a given Gentzen calculus and semantic restrictions on the
corresponding set of models. The semantics provides a complementary view on
Gentzen calculi, and, as we show, for certain general families of calculi it is also
effective, naturally inducing a semantic decision procedure for the corresponding

calculi.

2. We apply this semantic presentation (refining and extending it, when needed) for
investigating crucial proof-theoretic properties of the calculi we study. This includes

general notions of cut-admissibility, analyticity, and axiom-expansion. Indeed, an
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illuminating contribution of a semantic study of proof systems is the ability to
provide semantic proofs (or refutations) of syntactic properties. Even when a tra-
ditional syntactic proof exists, in many cases the semantic proofs are much simpler
and easier to check. Thus we characterize these properties from a semantic point
of view, providing general tools that can be applied in semantic proofs of these
properties. In some of the families we study, this naturally leads to simple and

decidable exact criteria for important proof-theoretic properties.

In addition, to demonstrate the applicability of our ideas and methods beyond the
propositional level, we consider two particular hypersequent calculi for first-order and
second-order Godel logic. By extending the semantic analysis of propositional hyperse-
quent calculi, we prove that these two calculi are indeed sound and complete for first-order
and second-order Godel logic (respectively), and that they enjoy cut-admissibility. In the
case of the calculus for first-order Godel logic this provides a semantic alternative account
for a known result (proven syntactically in other works). In contrast, to the best of our
knowledge cut-elimination was not proved before for the calculus for second-order Godel

logic.
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Chapter 1
Introduction

Ever since the introduction of sequent calculi for classical and intuitionistic logic by
Gentzen [56], sequent calculi have been widely applied in the fields of proof theory, math-
ematical logic, and automated deduction. These systems and their natural extensions
(such as many-sided sequent and hypersequent calculi) provide suitable proof-theoretic
frameworks for a huge variety of non-classical logics, including modal logics [96], substruc-
tural logics [55], many-valued logics [61], fuzzy logics [76], and paraconsistent logics [13].
In many important cases they suggest an “algorithmic presentation” of a logic, which is
particularly useful in practical applications of it, as well as for studying its properties,
such as decidability (for propositional logics), consistency, interpolation, the Herbrand
theorem (for first-order logics) and others. Thus in the last decades Gentzen-type calculi
frequently arise for handling and introducing new non-classical logics. Each such calculus
requires a soundness and completeness theorem with respect to its corresponding logic,
and its proof-theoretic properties should be verified. Traditionally, this is done each time
from scratch. In many cases the fundamental theorem of cut-elimination is proved. This
implies the redundancy of the well-known cut rule, something which usually ensures the
usefulness of the calculus. Another desirable property of Gentzen calculi is analyticity,
namely the fact that proofs may consist only of syntactic material contained in the se-
quent to be proved. Often it is an immediate corollary of cut-elimination, but in various

cases cut-elimination fails, and the calculus can still be shown to be analytic.

This thesis aims at a systematic investigation of Gentzen-type systems as mathemat-
ical objects in their own right. We study a wide variety of sequent and hypersequent
calculi for many logics of different natures. Our main contribution is a semantic anal-
ysis of several general families of propositional Gentzen-type sequent and hypersequent

calculi, that, generally speaking, consists of the following:

1. We provide a uniform and general semantic characterization for each system in the
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families we study. Thus each calculus G corresponds to a certain set of semantic
structures Vg; and the consequence relation induced by Vg (using an appropriate
notion of when a semantic structure in Vg is a model of a given sequent or hyper-
sequent) is shown to be identical to g, the provability relation of G. For each
family of calculi, we present a general uniform method for extracting the set Vg for
a given system G in this family. In many important cases the soundness and com-
pleteness of some known Gentzen-type system with respect to its usual semantics is
then obtained as a particular instance of the proposed general method. The seman-
tics provides a complementary view on Gentzen systems. In addition, we identify
certain families of systems for which the obtained semantics is also effective, i.e.
it naturally induces a semantic decision procedure for the calculi in that family.
Thus we derive new general decidability results for large families of propositional

Gentzen-type systems.

2. We apply this semantic presentation of calculi (and extend and refine it, when
needed) for investigating crucial proof-theoretic properties of the systems we study.
This includes general notions of cut-admissibility, analyticity, and axiom-expansion.
Indeed, an illuminating contribution of a semantic study of proof systems is the
ability to provide semantic proofs (or refutations) of syntactic properties. Even
when a traditional syntactic proof exists, in many cases the semantic proofs are
much simpler and easier to check. Thus we characterize these properties from a
semantic point of view, providing general tools that can be applied in semantic
proofs of these properties. In some of the families we study, these characterizations
naturally lead to simple and decidable exact criteria for the aforementioned proof-

theoretic properties.

Our investigation is carried out in the following five families of propositional fully-
structural Gentzen-type systems (i.e., systems that include all the usual structural rules:

exchange, contraction, and weakening):

Pure Sequent Calculi. These are sequent calculi, whose derivation rules do not enforce
any limitation on the context formulas. In addition to usual two-sided sequent
calculi, we include here also calculi that employ one-sided sequents or many-sided
ones. This family of calculi provides a suitable proof-theoretic framework for several
important propositional logics, including classical logic, many well-studied many-
valued logics, and various paraconsistent logics. In the definition of this family, we
do not assume any predefined set of cut rules or identity axioms, and thus handle

any possible combination of these rules.



Canonical Calculi. This is a subfamily of pure sequent calculi, in which each logical
rule introduces exactly one logical connective, where all formulas in the premises
of a rule are immediate subformulas of the formula introduced in its conclusion.
Such “well-behaved” logical rules (called: canonical rules), have a philosophical
motivation: they naturally serve a guiding principle in the philosophy of logic, due
to Gentzen [56], according to which the meanings of the connectives are determined
by their derivation rules. Like in the more general case of pure sequent calculi,
we again include here many-sided sequent systems with arbitrary combinations of
cut rules and identity axioms. Since this family of calculi is a subfamily of pure
sequent calculi, all results concerning the semantics of pure sequent calculi and
the semantic characterizations of their proof-theoretic properties can be applied for
canonical calculi as well. However, we show that for this more restricted family
of calculi we are always able to obtain simple and effective semantics, as well as

decidable characterizations of their proof-theoretic properties.

Quasi-canonical Calculi. This is another subfamily of pure sequent calculi, that ex-
tends the family of canonical calculi. Here we allow also logical rules in which
unary connectives precede the connective to be introduced in conclusions of logi-
cal rules (allowing, e.g., the introduction of a formula of the form —(p1 A ¢3)), as
well as the formulas in the premises. Calculi of this family are particularly useful
for many-valued logics (e.g. for the relevance logic of first degree entailment [I])
and paraconsistent logics (see, e.g., [I3]). Our investigation of these calculi is not
direct: instead of studying the semantics of quasi-canonical calculi, we show how
to translate each quasi-canonical calculus to a canonical equivalent one, and then

exploit the results concerning canonical calculi.

Basic Calculi. These are multiple-conclusion two-sided sequent calculi whose derivation
rules may allow certain restrictions and manipulations on the context formulas (and
for that reason they are not pure sequent calculi). Various sequent calculi that seem
to have completely different natures belong to this family. Thus it includes all
standard sequent calculi for modal logics, as well as the usual multiple-conclusion

systems for intuitionistic logic, its dual, and bi-intuitionistic logic.

Canonical Hypersequent Calculi. We import the ideas behind canonical sequent cal-
culi to hypersequent calculi, and define a general structure of a canonical hyper-
sequential logical rule. Here there are many options concerning the additional
hypersequential structural rules. To demonstrate our methods, we choose to study
single-conclusion canonical hypersequent calculi that are based on the communica-

tion rule. The prototype example here is the hypersequent calculus for propositional
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Godel logic (see [22]), and thus, we call the calculi of this family canonical Gédel
hypersequent calculi. In particular, it is possible to introduce in these calculi new
non-deterministic connectives and add them to Gédel logic. Note that hypersequent
calculi are now the main proof-theoretic framework for fuzzy logics [76], but Godel
logic is the only fundamental fuzzy logic that has a fully-structural hypersequent

calculus (and thus falls in the scope of this work).

While the aforementioned families of calculi are all propositional, the ideas and meth-
ods for them are applicable for first-order and higher-order calculi as well. We demon-
strate this in two specific calculi: the hypersequent calculus HIF for standard first-order
Godel logic [30], and its extension, that we call HIF? for Henkin-style second-order
Godel logic. In particular, by extending the semantic methods developed for the family
of (propositional) canonical Godel hypersequent calculi, we are able to prove that the
cut rule is admissible in HIF and HIF2. In the case of HIF this provides a semantic
alternative account for the fact that HIF admits cut-elimination (proven syntactically
in [30, 22]). In contrast, to the best of our knowledge cut-elimination was not proved for
HIF? before.

A crucial feature of a systematic procedure relating proof systems and semantics
should be its modularity — the correspondence between semantics and proof systems
should be based on local equivalences between semantic ingredients (requirements from
the semantic structures) and their syntactic counterparts (derivation rules). Such a
correspondence can allow, e.g., to predict the semantic impact of employing the same
rule in different proof systems, or to provide an appropriate rule for a given semantic
condition added to different logics. In particular, all semantic characterizations of cut-
admissibility in each of the families of calculi listed above are based on identifying the
semantic impact of the cut rule(s), and comparing the semantics of the calculi with and
without the cut rule(s). These tasks are of course impossible when the proof system
and its semantics are considered as a whole, and there is no possibility to separate
between the different semantic effects of each particular rule. The major key to have
this modularity, as well to provide semantics to every calculus in the families that we
study, is the use of non-deterministic semantics. Thus, following [I7, 2], we relax the
principle of truth-functionality, and allow cases in which the truth value of a compound
formula is not uniquely determined by the truth values of its subformulas. By allowing
non truth-functional semantic structures, we are able to separately analyze the semantic
effect of each component of the syntactic machinery (each derivation rule, and in fact
also each ingredient of a rule). The full semantics of the calculus is then obtained by
joining the semantic effects of all of its components. For this matter, we develop several

frameworks of non-deterministic semantics:



Many-Valued Systems. These provide a semantic framework for specifying sets of
valuations — functions assigning truth values to formulas of a given propositional
language. Each many-valued system includes a set of semantic conditions, that can
be easily read off the derivation rules of a pure sequent calculi, and used to restrict
its corresponding set of valuations (e.g. “If ¢; has some truth value u;, and -
has some truth value ug, then —=(¢1 A ¢1) should have the truth value us”). This
framework generalizes the “bivaluation semantics” [34, 40], many-valued matrices
[93], [61], and non-deterministic many-valued matrices [17, 21], and is used here to

provide semantics for pure sequent calculi.

Partial Non-deterministic Matrices. These form a special case of many-valued sys-
tems that serve as a simpler semantic framework for canonical and quasi-canonical
calculi. Thus in partial non-deterministic matrices, the semantic conditions for
specifying restrictions on valuation functions can be arranged in generalized truth
tables. Usual logical matrices are particular instances, while non-determinism is in-
troduced as done in non-deterministic matrices (see [17, 21]), by possibly allowing
several options in some entries of the truth tables (thus the value of o(py,...,p,)
is restricted, but not uniquely determined, by the values of py,...,p,). However,
to handle arbitrary canonical and quasi-canonical calculi we had to slightly extend
the framework of non-deterministic matrices by allowing also the option of having
an empty set of options in the entries of the truth tables (which intuitively mean

that certain combinations of truth values are disallowed).

Non-deterministic Kripke Valuations. For basic sequent systems, we introduce a
generalization of Kripke-style semantics for modal and intuitionistic logic, that we
call Kripke valuations. As Kripke models, these semantic structures employ a set of
possible worlds and accessibility relations, and certain conditions connect the truth
value assigned to a formula in each world w with values assigned to other formulas

in the worlds accessible from w.

We show that Kripke valuations that are based on three or four truth values can
be used in semantic characterizaions of basic sequent systems with restricted cut

rule and/or identity axiom (as needed e.g for characterizing cut-admissibility).

Non-deterministic Godel Valuations. For canonical Godel hypersequent calculi, we
introduce Godel valuations. These consist of some linearly ordered set of truth
values, and a function assigning a pair of truth values from this set to each formula
of a given propositional language. Intuitively, the first element in the pair of truth

values assigned to some formula ¢ is used for occurrences of ¢ on the left sides
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of sequents, while the second element in the pair is used for occurrences of ¢
on the right sides. We show that the cut rule and the identity axiom “connect”
these two elements: if they are both available for some formula ¢, then the two
elements in the pair of truth values of ¢ must be equal. In addition, the two
values assigned to each compound formula of the form o(¢1, ..., ¢,) must lie within
certain intervals whose edges are computed from the values assigned to 1, ..., .
The usual algebraic semantics of Godel logic is a particular instance, in which all
of these pairs and intervals are degenerate, and thus the value of o(¢1, ..., @,) is
uniquely determined by the values of ¢q,...,¢,. In turn, we provide a general
construction of the functions for computing these intervals for o-formulas given

some (canonical) rules for introducing each connective .

Outline

The structure of this thesis is as follows. Chapter 2]is devoted to precise definitions of pure
sequent calculi and their proof-theoretic properties, as well as some basic consequences of
these properties. Chapter |3|introduces the semantic framework of many-valued systems,
and provides a method to obtain a many-valued system for any given pure sequent
calculus. Based on this semantics, in Section |3.3] we present necessary and sufficient
semantic conditions for analyticity, cut-admissibility and axiom-expansion in pure calculi.

Chapter [4] discusses canonical sequent calculi which are defined as pure sequent calculi
with additional restrictions on the structure of the logical introduction rules. In turn, in
Section we present the corresponding (effective) semantic framework of partial non-
deterministic matrices, as a special restricted instance of many-valued systems. Based on
the results of Chapter [3| we then show that canonical sequent calculi can be character-
ized by partial non-deterministic matrices, and that the aforementioned proof-theoretic
properties can be easily checked using this alternative semantic presentation.

In Chapter 5| we introduce quasi-canonical sequent calculi, and show that each such
calculus can be translated into an equivalent canonical one. In certain important cases,
this translation may be used to obtain a characteristic partial non-deterministic matrix
for a given quasi-canonical calculus.

In Chapter [6] we go beyond the scope of pure sequent calculi by introducing basic
sequent calculi, in which derivation rules may include limitations on the context formulas
used in their applications. Then we show that each basic calculus induces a set of
generalized Kripke valuations for which it is strongly sound and complete. In Section 6.3
we derive characterization of proof-theoretic properties of basic calculi based on this
Kripke semantics. Their nature is similar to the corresponding characterizations from

Section [3.3] We demonstrate their applicability in various examples, including sequent



calculi for modal logics and a sequent calculus for bi-intuitionistic logic.

In Chapter 7| we define and study hypersequent Gédel calculi from a similar angle.
The semantics in this chapter is based on Gaodel valuations, that generalize the usual
many-valued semantics of propositional Godel logic.

Chapters[§land [9 are of a completely different nature, as each of them is devoted to one
particular calculus for one particular logic. Chapter |8|discusses the hypersequent calculus
HIF for first-order Godel logic, and provides a semantic proof for cut-admissibility in
this calculus. Chapter [J] introduces an extension of HIF with usual rules for second-
order quantifiers, called HIF2. We show that HIF? is sound and complete for second-
order Godel logic, and that it enjoys cut-admissibility. Note that the fact that HIF
enjoys cut-admissibility actually follows from the fact that HIF? does. Nevertheless, as
a preparation and for the convenience of the reader, we provide first a full account for
HIF, that is relatively easier to follow than the one for HIF?2.

Finally, in Chapter we conclude with a discussion of some directions for further

research.

Some Related Works

Usually, the study of Gentzen-type systems is tailored to a specific logic or family of

logics. Several notable exceptions include the following:

e [34] studies a general family of sequent systems, and shows that (possibly non-truth
functional) bivaluation semantics can be read off the sequent rules for any given
system in this family. This work is close to what we do in Chapter |3l However, the
sequent systems studied in [34] are just a particular subset of the pure sequent cal-
culi that we study here, as they all employ the usual cut rules and identity axioms.
In addition, [34] does not study at all the effectiveness of this semantic framework,
as well as semantic characterizations of syntactic properties of the studied calculi.
Therefore besides a new look on the sequent calculus, the semantics proposed in

[34] does not seem to have much practical or proof-theoretic applications.

e The introduction and first semantic investigation of canonical sequent calculi were
done in [I7]. That work considered only two-sided sequent calculi with arbitrary
canonical rules and the usual cut rule and identity axiom. It was shown that each
such calculus can be characterized by a non-deterministic matrix (Nmatrix). That
Nmatrix can in turn be used to check whether the calculus is analytic and whether
it enjoys cut-admissibility. Later, in [I9] that work was extended to many-sided
canonical sequent calculi (see also [21]). Our study of canonical calculi in Chapter

considers more general family of systems, with arbitrary set of “primitive rules”
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(these include the cut rules and the identity axioms). In fact, the main results
for previously studied canonical calculi (as the characterization of analyticity and

cut-admissibility) can be easily obtained from the more general theorems given in

Chapter

e [20] studies from a semantic point of view another general family of sequent sys-
tems, which is a proper subfamily of our canonical sequent calculi. The semantic
framework employed there is truth-functional (based on usual logical many-valued
matrices), and thus many sequent calculi cannot be semantically characterized in
this framework. By allowing non-deterministic semantics we are able to cover much
more general family of calculi, and it can be shown that for the calculi studied in

[26] we practically obtain the same (deterministic) semantics.

e A variety of works studies the connection between syntax and semantics in sequent
and hypersequent substructural calculi, with a focus on developing semantic and
algebraic conditions for cut-admissibility in such systems (e.g. [44],[32],[91]). In
this thesis we only consider fully structural Gentzen-type calculi, but nevertheless,
some (obviously, not all) of the calculi in the families that we study fall in the scope
of these works, and their semantic criteria for cut-admissibility are applicable in
these cases. However, the semantic frameworks used in these works (particularly,
phase semantics) is significantly more abstract and complex than the semantic

frameworks that we employ.

At this point it should be noted that the idea of using non-deterministic semantics
for proving cut-admissibility of a sequent system has a very long history. Indeed, in
the quest to verify Takeuti’s conjecture [89] (that was open for several years) regarding
cut-admissibility in the calculus for second-order classical logicﬂ Schiitte developed a
three-valued non-deterministic semantics for the cut-free fragment of this calculus [85].
This provided a semantic equivalent to Takeuti’s conjecture, that was verified by Tait a
few years later [87], when it was shown that it is possible to extract a usual (two-valued)
counter-model from every three-valued non-deterministic Schiitte’s counter-model. As a
simple consequence, one obtains that if there is no cut-free proof of a certain sequent,
then there is no proof at all (see also [58]). Basically, our semantic characterizations of
cut-admissibility, as well as the cut-admissibility proofs in Chapters [7]to[d] are based on

a similar (generalized) approach.

'More precisely, Takeuti’s conjecture concerned full type-theory, namely, the completeness of the
cut-free sequent calculus that includes rules for quantifiers of any finite arity. However, the proof for
second-order fragment was the main breakthrough. Note that the usual syntactic arguments to prove
cut-elimination dramatically fail when it comes to higher-order logic.



Finally, besides the aforementioned works on canonical calculi, we are not aware of
any works aiming to study analyticity of general Gentzen-type systems, regardless of
cut-admissibility. In many cases our criteria of analyticity turn out to be much simpler
than those of cut-admissibility.

Publications Related to this Dissertation

Most of the contributions described in this thesis have first appeared in other publications.

They are roughly divided as follows:

Chapters 4-5:

[6
e Chapter 6: [15], [73].
e Chapter 7: [71], [69].
e Chapter 8: [16], [72].

The material in Chapters 2,3 and 9 was not published before.
More details about the connections between these publications and this thesis will be

given in the beginning of each chapter.



Chapter 2
Pure Sequent Calculi

In this chapter we introduce the family of pure sequent calculi. These will be the object of
a semantic investigation in the next chapter. Roughly speaking, pure sequent calculi are
propositional fully-structural sequent calculi (sequent calculi that include all the usual
structural rules: exchange, contraction, and weakening), whose derivation rules do not
enforce any limitation on the side formulas (following [5], the adjective pure stands for
this requirement). This family of calculi provides a suitable proof-theoretic framework for
several important propositional logics, including classical logic, important many-valued
logics, and various paraconsistent logics. Our scope is broader than what is usually

considered as a sequent system:

e We consider many-sided sequents, rather than just ordinary two-sided ones. This

allows us to naturally capture a large family of many-valued logics (see, e.g., [67]).

e We do not presuppose that all systems include identity axioms or cut rules of a
given form. This will play a major role in the semantic characterizations of proof-
theoretic properties of these systems (e.g., we will be able to compare the semantics

of a given system with cut, and the semantics of the same system without cut).

This chapter is organized as follows. We start by defining the notion of a propositional
logic in Section [2.1] Then, we precisely formulate the framework of pure sequent calculi,
and the logics they induce (Section . In Section we introduce some fundamental
proof-theoretic properties of pure sequent calculi that we will study later from a semantic

perspective.

Publications Related to this Chapter

The material in this chapter was not published before.
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2.1. PRELIMINARIES 11

2.1 Preliminaries

Definition 2.1.1. A propositional language L consists of a countably infinite set of
variables at; = {p1, ps, ...} (whose elements are called atomic formulas), and a finite set
& of propositional connectives. Each ¢ € {, has a fixed finite arity ar(¢) > 0. The set
of all n-ary connectives of £ (for n > 0) is denoted by 7.

Note that propositional constants are considered as nullary connectives.

Notation 2.1.2. We shall specify proportional languages by a set of connectives, and
indicate their arities in superscripts. For example, {—!, A?} denotes a language with two

connectives: a unary one denoted by —, and a binary one denoted by A.

Given a propositional language £, L-formulas are constructed as usual. We usually
use ¢, 1 as metavariables for L-formulas, I'; A for finite sets of L-formulas, and T, F, C for
(possibly infinite) sets of L-formulas. Henceforth, £ stands for an arbitrary propositional
language. We shall usually identify the set of £-formulas with £ itself, e.g. when writing

“p € L7 instead of “p is an L-formula”.

Definition 2.1.3. An L-substitution is a function o : at; — L. It is recursively extended
to £7 by 0(0(9017 sevy Spar(O))) = 0(0@01)7 70-(g0ar(<>))) for every ¢ € <>L-

We follow [21] in taking the following definitions of Tarskian consequence relations

and Tarskian propositional logics:
Definition 2.1.4. A relation I between sets of £-formulas and £-formulas is{]

Reflexive:  if T IF ¢ whenever p € T.

Monotone: if T' I+ ¢ whenever T I+ ¢ and T C T".

Transitive: if T,T" Ik ¢ whenever T I and T, ¢ IF .

Structural: if o(T) IF o(p) for every L-substitution o whenever T I ¢.

Definition 2.1.5. A relation between sets of L-formulas and L-formulas which is re-
flexive, monotone and transitive is called a Tarskian consequence relation (tcr) for L. A
(Tarskian propositional) logic is a pair (L, ), where L is a propositional language, and
IF is a structural tcr for L.
Definition 2.1.6. A logic (£,IF) is finitary if T’ IF ¢ for some finite I' C T whenever
T IF .

The most important (and popular) propositional logic is of-course classical logic. Its

language is {—', A% Vv? D?} and it is denoted below by L4. The well-known ter of
classical logic will be denoted by I (see Example [2.2.20)).

"'We use the symbol IF to relate sets of formulas and formulas. The usual symbol - will be used to
denote derivability of a sequent from a set of sequents.
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2.2 Pure Calculi

Usual sequent systems are two-sided, and sequents are often written as expressions of the
forms @1, ..., ©n = Y1, ..., . Dealing with many sided-sequents, we find it convenient
to use a (finite) set of labels, for specifying the position(s) inside the sequent in which a
certain formula occurs. Thus, in what follows £ denotes a finite non-empty set of labels.
We usually use x as a metavariable for a label in £, and X for sets of such labels. Sequents

are defined as follows:

Definition 2.2.1. An £-labelled L-formula is an ordered pair (x,¢), denoted by x:¢p,
where x € £ and ¢ € L. An (L, £)-sequent is a finite set of £-labelled L£-formulas.

We usually use «, 5 as metavariables for labelled formulas, and s,c for sequents.
Substitutions are extended to labelled formulas, sequents, sets of sequents, etc. in the

obvious way. In particular, o(0)) = 0.

Notation 2.2.2. For X C £ and ¢ € L, the expression (X:p) denotes the sequent
{x:p | x € X}.

Notation 2.2.3. Usual two-sided sequents can be seen as (L, £2)-sequents, where £
denotes the set of labels {f,t}. The labels f,t denote the “left side” and the “right

side” respectively. The more usual notation ¢i,...,¢, = ¥1,...,%,, is interpreted as
{£:01, ..., £:0n, 1, oty )

The use of £ and t at this point is just a matter of tradition, as the labels should
not be confused with truth values! Only in certain specific (important) cases, the truth
values employed in the semantic characterization presented in Chapter [3| have one-to-one

correspondence with the set £ of labels.

Remark 2.2.4. For our purposes, we find it most convenient to define sequents using
sets. In particular, the (£, £2)-sequents {f:p,t:pa}, {tipa, 01}, {f:p1, f:p1, tipa} are
all the same object. This immediately entails that the exchange rule, the contraction
rule and the expansion rule (the converse of contraction) are all built-in in all sequent
calculi that we study. To have a fully-structural system, we should only further require

the presence of the weakening rules (one weakening rule for each label, as defined below).
Next, we define the form of derivation rules that are allowed in pure sequent systems.

Definition 2.2.5. A pure (L, £)-rule is a pair of the form §/s, where S is a finite set
of (L, £)-sequents, and s is a single (L, £)-sequent. The elements of S are called the

premises of the rule, and s is called the conclusion of the rule. To improve readability, we
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usually drop the set braces of the set of premises. An application of a pure (L, £)-rule
S1, ..., 8y /s is any inference step of the following form:
o(s1)Uecr ... o(sp)Ucy
o(s)UcU...Ug,

where o is an L-substitution, and ¢; is an (£, £)-sequent for every 1 < i < n. The

sequents o(sy)Ucy,...,0(s,) Uc, are called the premises of the application, while the
sequent o(s)Ucy U...Ug, is called the conclusion of the application. In addition, the

sequents ¢y, ..., ¢, are called the context sequents (of the application).

Note that the propositional variables of the “object language” L are also employed
in the formulation of the rules. In particular, meta-variables (which are usually used
to represent derivation rules by schemes) are not used. Roughly speaking, applications
of some rule are obtained by applying a substitution on the premises si, ..., s, and the

conclusion s of the rule, and freely adding context formulas.

Example 2.2.6. Suppose that £ contains the binary “implication” connective D. The

following pure (L, £3)-rules are usually used for introducing this connective:

{t:p1}, {f:p2}/{f:p1 D p2} and {f:p1,t:pa}/{t:p1 D P2}
Their applications have (respectively) the forms:
{t:tp1} U {f:p} Ucy and {f:p1, 2} Uc

{f:p1 D2} UciUcy {t:p1 Do} Uc
In [62], a different implication connective is used, whose introduction rules can be easily

formulated as pure rules. The f-rule (whose conclusion is {f:p; D ps}) is the same rule
as above, but the t-rule has the form: {t:po}/{t:p1 D pa}. Its applications have the form:
{tip2} Uc
{t:p1 Do} Uc

Example 2.2.7. Suppose that £ contains the binary “implication” connective D, and
let £3={f,i,t}. The following pure (L, £3)-rules are used for introducing O in the

calculus for three-valued Lukasiewicz’s logic presented in [97]:
{tipi}, {£:p2}/{£:p1 D po}
({1, t}p1), {dmp, Lipaf, {Eep1, £ipo} /{i:p1 D pa}
({f, 1}:p1) U{t:pa}, {£:p1) U ({1, t1:p2)/{E2p1 D 2}

Example 2.2.8. The following rule scheme appears in a sequent system from [12] for da
Costa’s paraconsistent logic Cy:
F'=¢p,A T'=-p A
L _‘(90 A _‘SD) = A
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This rule scheme can be formulated as the following pure (£, £2)-rule (where = € {7}
and A € $2):

{tp}s {t=pap/{£:=(p1r A —p1) }-

Convention 2.2.9. Obviously the names of the variables in pure (£, £)-rules are imma-
terial (e.g., {t:p2}/{t:p1 D pa} is completely equivalent to {t:ps}/{t:ps D ps3}). To avoid
further technical complications, we assume that a unique representative is chosen from
every equivalence class of rules in some reasonable way, and only these representatives
are considered as pure (£, £)-rules. For example, when only one variable is involved in

a rule (as in Example [2.2.8)), we may suppose that this variable is p;.

A special family of pure rules is the family of primitive rules. These rules are used
to perform simple manipulations on the labels, and they do not mention any specific

connective of the language £. Formally they are defined as follows:

Notation 2.2.10. Given an £-labelled £L-formula «, we denote by frm[a] the £-formula
appearing in «.. frm is extended to sets of £-labelled L-formulas, sets of sets of £-labelled

L-formulas, etc. in the obvious way.

Definition 2.2.11. A primitive £-rule is any pure (L, £)-sequent rule S/s such that
Jrm[S U {s}] = {p:1}.

By definition, all primitive £-rules have the form (Xi:p1), ..., (X,:p1)/(X:p1) for some
X1,..., X, X € £. An application of the primitive £-rule (Xi:p1), ..., (X,:p1)/(X:p1) is any
inference steps of the following form:

(X)) Uer .. Xnp) U,
(X:p)Ucr U...Ug,
where ¢ is an L-formula, and ¢; is a (£, £)-sequent for every 1 <i <mn.

Example 2.2.12. Let £ = {f,i,t}, and consider the primitive £-rule

{£:p1}, {2}/ ({1, 0):p).
This rule allows to infer ({i,t}:¢) Ucy Ucy from {f:p}Uc; and {i:¢p} U ey for every two
(L, £)-sequents c1, ¢ and L-formula .

The following primitive rules are usually present in Gentzen-type systems:

Weakening Rules For each x € £, the weakening rule (x:weak) is the primitive £-rule
{0} /{x:p1}. Tts applications have the form:

{x:p}Uc
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Cut Rules These are primitive £-rules of the form (Xi:p1), ..., (X,:p1)/0 for non-empty

X1, ..., X,. An application of a cut rule of this form has the form:
(Xi:p)Uer oo (Xnip) Ucy,
caU...Uc,

@ is called the cut-formula of the application. Two-sided sequent systems usually
employ {f:p1}, {t:p1}/0 as the only cut rule. We denote this rule by (cut).

Identity Axioms These are primitive £-rules of the form §)/(X:p;) for non-empty X. An

application of an identity axiom of this form has the form:

(X:p)
@ is called the id-formula of the application. Note that applications of identity
axioms do not include context formulas. However, when the weakening rules are
available for every x € £, it is possible to derive (X:p) U ¢ from (X:p) for every
sequent ¢. Two-sided sequent systems usually employ 0/{f:p1,t:p1} as the only
identity axiom. We denote this rule by (id).

Remark 2.2.13. Note that there are several useful options for cut rules and identity
axioms when |£]| > 2. For example, the systems in [27] have a cut rule {x:p;}, {y:p1}/0
for every x # y in £, and (0/(£:p,) is their only identity axiom; while the systems in [24]
employ one cut rule of the form {{x:p1} | x € £}/0, and an identity axiom 0/({x,y}:p1)
for every x # y in £. Other useful combinations arise when quasi-canonical systems are

translated into canonical ones (see Chapter [3)).

Next, we define the family of pure sequent calculi. In addition to the structural rules
of contraction, exchange and expansion that are implicit in our calculi, we also require
that pure sequent calculi contain all weakening rules. Thus we refer to these systems as

fully-structural.

Definition 2.2.14. A pure (L, £)-calculus consists of a finite set of pure (L, .£)-rules,
that includes (x:weak) for every x € £. A proof in a pure (L, £)-calculus G of an
(L, £)-sequent s from a set S of (L, £)-sequents (called assumptions) is a finite listf] of
(L, £)-sequents ending with s, such that every sequent in the list is either an element of
S, or a conclusion of some application of some rule of G, provided that all premises of

this application appear before. We write S kg s to denote the existence of such a proof.

Convention 2.2.15. Henceforth, we assume that G does not include the (trivial) pure

(L, £)-rule 0/0.

2Similarly, one can use finite trees or DAGs.
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Notation 2.2.16. Given a pure (L, £)-calculus, we denote by Pg and Rg the set of
primitive £-rules of G except for the weakening rules, and the set of non-primitive rules

of G (respectively).
The following simple observations will be useful in the sequel.
Proposition 2.2.17. Let G be a pure (£, £)-calculus.

1. fSU{s} g ¢, then SU{sUc} g s Uc for every (L, £)-sequent c.
2. If Skqg s then 0(S) kg o(s) for every L-substitution o.

Recall that sequent calculi are a tool to characterize logics. As defined below, each

pure (£, £)-calculus naturally induces 2/4! logics, each of which is based on some subset

of £.

Definition 2.2.18. Let G be a pure (£, £)-calculus, and X C £ a set of labels. The
ter induced by G and X, denoted by IS, is the relation between sets of £-formulas and
L-formulas defined by: T IFg ¢ iff {(X:0) | ¥ € T} Fa (Xip).

It is easy to verify that for every G and X, IF§ is indeed a ter (see Definition [2.1.4]).

In fact, we have the following:
Proposition 2.2.19. For every G and X as above, (£,IF) is a finitary logic.

Proof. The fact that IFY is structural directly follows from Proposition [2.2.17] The fact
that it is finitary follows from the definitions. m

Example 2.2.20. The most important sequent calculus is the fundamental Gentzen’s
system LK for classical logic [56]. Its propositional fragment can be straightforwardly
presented as a pure (L, £3)-calculus, which we denote by LK. The rules of LK are
presented in Figure 2.1} The consequence relation I, of propositional classical logic is
equal to Il—ité — the logic induced by LK and the set {t}.

Remark 2.2.21. In the case of LK, there is another natural way to define the induced
logic: T Ik @ iff Frx {f:¢0 | ¥ € T} U {t:p} for some finite I' C T. It is easy to see that
in LK, and actually in every pure (L, £2)-calculus G such that Pg = {(cut), (id)}, we
have that T H;} ¢ (according to Deﬁnition iff g {f:00 | ¥ € I'}U{t:p} for some
finite I' C 7. Therefore, the two alternatives to define I, are equivalent. However, the
formulation we gave in Definition is more general, as it ensures that we obtain a

logic for every pure calculus with arbitrary primitive rules.
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fiweak) {0}/{f:p1} tiweak) {0} /{t:p:}

( (

(cut) {f:p1}, {tp1}/0 (id 0/{f:p1,t:p1}

(7)) {ep/{fp) (t=) £}/ {tp}

(£:N) {f:p1, £:p2}/{f:p1 A D2} (t:A) {t:p1}, {tp2}/{t:p1 A pa}
(£:V)  Afpp AEp}/{Ep Vipey  (8V) {tipntipe}/{tp Vi)

( (t:

Hh
U
~—
ct

{tipi}, {£:p2}/{£:p1 D p2} D) AL, tip}/{tp1 D pa}

Figure 2.1: The pure (L, £2)-calculus LK

In addition to LK, the family of canonical calculi, that was defined and studied in
[17], falls under the definition of pure calculi. Many other previously studied useful
sequent calculi can be naturally presented as pure calculi. This includes all calculi for
paraconsistent logics from [12], all labelled calculi for finite valued logics from [26], and

the signed calculi from [20].

Example 2.2.22. In [12] a pure (L, £2)-calculus for da Costa’s historical paraconsistent
logic C; was introducedﬁ This calculus, denoted here by Gg,, is obtained from LK by
discarding the rule (f:—) and adding the following rules:
(£:mm)  {fp}/{f:pi}
=AY e {eop /{E (o0 A )}

) A e H{E (0 Ap2)}
£V {fpu ), {£:pe, £}/ {E:0(p1 V po) }

) AL, froput {foe b /{0 (1 Vip2) }
Y AL} {£:pe, fiopa} /{E (01 D p2)}
) Afpy £} {f o} {E (01 D o)}

Remark 2.2.23. One can choose to define sequents using lists (as in the original work of
Gentzen) or multisets, and explicitly include contraction and exchange in the definition of
a pure sequent calculus. Obviously, this would not affect the derivability relation Fqg. In
fact, for all aspects of proof systems studied in this thesis (semantics, cut-admissibility,
analyticity, etc.) this choice is immaterial, since any result in one formulation trivially
holds in the other. Of course, this might not be the case when studying other properties
(like e.g. in [49]). Similarly, we formulated the applications of rules as multiplicative
(context-independent) rather than additive (context-sharing) applications (see [57],[92]).
Clearly, in the presence of all structural rules, the multiplicative version and the additive

one are interderivable. Again, this decision does not affect any property we discuss below.

3Here and henceforth, when we say that a two-sided calculus G is a calculus for a logic L, we mean
that IF{Gf Vs equal to the consequence relation of the logic L.
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2.3 Proof-Theoretic Properties

In this section we define several important proof-theoretic properties of pure calculi. In

the next chapter we will provide a semantic counterpart for each of these properties.

2.3.1 Analyticity

Analyticity is a crucial property of fully-structural propositional proof systems, as it
usually implies its decidability and consistency (the fact that the empty sequent is not
derivable) . Roughly speaking, a sequent calculus is analytic if whenever a sequent s is
provable in it, then s can be proven using only the syntactic material available inside s.
Now, there is more than one way to precisely define the “material available within some
sequent”. Usually, it is taken to consist of all subformulas occurring in the sequent, and
then analyticity amounts to the global subformula property (i.e., if there exists a proof
of a sequent s, then there exists a proof of s using only its subformulas). However, it is
also possible (and sometimes necessary, see, e.g., Example to consider analyticity
properties that are based on different relations defining the “material available within
sequents”. While these substitutes might be weaker than the global subformula property,
they still suffice to imply the consistency and the decidability of a proof system. Next

we define a generalized analyticity property, based on an arbitrary safe partial order.

Definition 2.3.1. Let < be a partial order on L. For every formula ¢, we denote by
1= [p] the set {» € L | ¥ < ¢}. This notation is extended to sets of formulas, sequents,
and sets of sequents in the natural way: |S[T]| = Uper 1=[p] for a set T of formulas;
1=[s] = L= [frm[s]] for a sequent s; and |=[S] = [J,cs 1= [s] for a set S of sequents. < is
called safe if |=[y] is finite for every ¢ € £, and Ap € L.]=[p] is computable.

Henceforth, < denotes an arbitrary safe partial order on £. A particularly important
one is the subformula relation (here we mean the reflexive-transitive closure of the direct

subformula relation). For this relation we employ the following notation:

Notation 2.3.2. We denote by sub the subformula relation between formulas. In the

case of sub, we simply write sub[ -] instead of }*“[-].

Definition 2.3.3. Given a set F of L-formulas, a formula ¢ is called an F-formula if
¢ € F. In turn, an £-labelled F-formula is an £-labelled L-formula x:¢ with ¢ € F;
and an (F, £)-sequent is an (L, £)-sequent consisting only of £-labelled F-formulas.

Notation 2.3.4. For a pure (£, £)-calculus G, we write S % s if there is a proof in G
of s from S consisting only of (F, £)-sequents.
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Definition 2.3.5. A pure (£, £)-calculus G is <-analytic if for every (L, £)-sequent s:
g s implies that I—g[s] s.

The above notion of analyticity considers only proof from empty set of assumptions

(speaking only about the theorems of the system). A strong version is defined as follows:

Definition 2.3.6. A pure (L, £)-calculus G is strongly <-analytic if for every set S of
(L, £)-sequents and (L, £)-sequent s: S Fg s implies that S l_éﬁ[w{s}] s.

In the next chapters we focus only on strong <-analyticity. Obviously, <-analyticity
follows from strong <-analyticity (take S = ()). Next, we show that in the simple (and
most common) case of two-sided calculi that include (cut) and (id) these two properties
are actually equivalent. The main idea of this proof appeared already [6], where it was
proved that cut-admissibility implies strong cut-admissibility (see definition below) for

the specific case of LK.

Theorem 2.3.7. Let G be a pure (£, £3)-calculus, that includes (cut) and (id). If G is
<-analytic then it is strongly <-analytic.

Proof. Suppose that G is <-analytic. We show that S Fg s implies & l_g[&){s}] S
Clearly, it suffices to prove this for finite S (otherwise, take a finite subset S* of S
such that §* Fg s). We use induction on the number of (£, £3)-sequents in S. The
case that S is empty follows from our assumption. Suppose the claim holds when
the number of sequents in S is n, and let S" = {so,..., s} be a set of n + 1 (L, £2)-
sequents, such that &’ g s. Proposition implies that {syUc,sy,...,8,} Fg sUc,
for every (L, £2)-sequent c. In particular, for every £s-labelled L-formula x:p € s,
{s0o U{Z:¢}, 81, ..., 80} Fa s U {X:p}, where £ = t and T = £. Now, for every x:p € s,
the sequent sy U {X:p} is derivable in G using only (id) and weakenings, and there-
fore we have {s1,...,s,} Fa s U {x:i¢p}. By the induction hypothesis we obtain that
{s1,.,Sn} I—g[SU{SH s U{x:p} for every £x-labelled L-formula x:¢p € sg. The sequent
s can then be inferred from these sequents and sy by |sg| applications of (cut) without

introducing any formulas outside |=[S U {s}]. O
The following are three major consequences of (strong) <-analyticity.

Proposition 2.3.8 (Consistency). Let G be pure (£, £)-calculus, which is <-analytic

for some safe partial order <. Then, g 0.

Proof. Assume that g (. Since G is <-analytic, there exists a proof of the empty
sequent using no formulas at all. The only way to have this is using the rule (}/(); which
was disallowed in pure systems (Convention [2.2.15)). [
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Proposition 2.3.9 (Conservativity). Let £; and £y be two propositional languages,
such that £, is an extension of £; by some set of connectives. Let G1 and Gg be a pure
(Lq, £)-calculus and a pure (Lo, £)-calculus (respectively). Assume that G is obtained
from G; by adding to the latter rules involving connectives in £, \ £ (i.e., at least one
connective in £y \ £1 appears in each rule in G \ G1). Let < be a safe partial order
on L, such that £; is closed under < (i.e., |S[£y] = £;). If G is strongly <-analytic,
then Gg is a conservative extension of Gy (i.e., if frm[SU{s}] C Ly then S F¢g, s iff
Ska, s).

Proof. Obviously, § g, s implies § Fg, s. For the converse, assume that S kg, s.
Since Gy is strongly <-analytic, there exists a proof in Gg of s from § consisting of
15 [S U {s}]-formulas only. Since frm[S U {s}] C L, and L; is closed under <, this is
also a proof in G, and so § F¢g, s. O]

Proposition 2.3.10 (Decidability). Let G be a pure (L, £)-calculus. Suppose that
G is strongly <-analytic for some safe partial order <. Then, given a finite set S of

(L, £)-sequents and an (L, £)-sequent s, it is decidable whether S g s or not.

Proof. Exhaustive proof-search is possible. Since G is strongly <-analytic, S Fqg s iff
there exists a proof in G of s from S consisting of |=[S U {s}]-sequents only. Since < is
safe, one can construct the (finite) set S’ of all |=[S U {s}]-sequents. Clearly, S Fq s iff
there exists a proof in G of s from S of length less than or equal to |S’|, consisting only
of sequents from &’. Thus one can construct all possible candidates. By definition G is
finite, and hence it is possible to check whether a certain candidate is indeed a proof in
G of s from S. O

2.3.2 Cut-Admissibility

Usual two-sided sequent calculi include the rule (cut), which is very problematic from a
proof-search perspective. The admissibility of (cut) (i.e. the fact that for every sequent
s, Fg s implies that there is a cut-free proof in G of s) is then desirable. However,
forbidding all applications of cut rules seems to be too strong while dealing with arbitrary
pure (L, £)-calculi. Indeed, consider applications of a cut rule in which the cut-formula
occurs inside the context sequents (i.e. inferring a sequent of the form ¢; U ... U ¢, from
the sequents (Xy:0) U cq, ..., (Xn:) U ¢, where ¢ € frmc; U ... U ¢,]). Such applications
are not harmful for proof-search, as every formula in the conclusion of the application
also occurs (as is) in one of its premises. These considerations lead to the following

formulation of cut admissibility in pure calculi:
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Definition 2.3.11. A pure (£, £)-calculus G enjoys cut-admissibility if for every (L, £)-
sequent s: Fg s implies that there exists proof P of s in G such that the cut-formula
of every application of a cut rule in P occurs in one of the context sequents of that

application.

As for analyticity, this notion of cut-admissibility refers only to proofs without as-
sumptions (i.e., proofs from (). Obviously, we cannot expect full cut-admissibility when
the set of assumptions is not empty (in usual calculi, the only way to derive the empty
sequent from {f:p;} and {t:p;} is using (cut)). Thus we consider the property called

strong cut-admissibility in [6], which is formulated as follows in our framework:

Definition 2.3.12. A pure calculus G enjoys strong cut-admissibility if S g s implies
that there exists a proof P of s from § in G such that the cut-formula of every application

of a cut rule in P occurs either in one of the context sequents of that application or in

frm[S].

Obviously, cut-admissibility follows from strong cut-admissibility (take S = 0).

Equivalent definition of cut-admissibility and strong cut-admissibility are obtained
by considering an enrichment of G with non-cut rules, so that all applications of the cut
rules in which the cut-formula occurs in the context can be replaced by applications of

the new rules. This is done as follows:

Definition 2.3.13. Let G be a pure (L, £)-calculus. s(G) denotes the pure (L, £)-
calculus obtained by augmenting G with the primitive £-rules (Xi:p1), ..., (X.:p1)/{x:p1}
for every cut rule (X1:p1), ..., (X,:p1)/0 of G and x € £ such that {x} & {Xi,...,X,}.

Example 2.3.14. Let £ = {f,1,t} and suppose that is {£:p1}, {i:p1}/0 is the only cut
rule of G. s(G) is obtained by adding to G the primitive rule {f:p;}, {i:p1}/{t:p1}.

Note that for a pure (£, £3)-calculus G whose only cut rule is (cut), we have that
s(G) = G.

Proposition 2.3.15. tyg)=F¢g for every pure (£, £)-calculus G.

Proof. All applications of the new rules in s(G) can be simulated in G by applications

of the corresponding cut rule, followed by an application of a weakening rule. O

Notation 2.3.16. Given a pure (£, £)-calculus G, we denote by G.s the calculus ob-
tained from G by discarding all cut rules of G. In particular, s(G).r is the calculus
obtained from G by replacing every cut rule of the form (X1:p1), ..., (Xn:p1)/0 with all
rules of the form (Xy:p1), ..., (Xn:p1)/{x:p1} such that x € £ and {x} & {Xy,..., X, }.
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Notation 2.3.17. Given a set C C L, a pure (£, £)-calculus G, a set S of (L, £)-
sequents, and an (L, £)-sequent s, we write S F&C s if there exists a proof in G of s

from S in which the cut-formula of every application of a cut rule is an element of C.
Proposition 2.3.18. Let G be a pure (£, £)-calculus.

1. G enjoys cut-admissibility iff Fyq), ;S whenever yq) s.

2. G enjoys strong cut-admissibility iff S I—g?g;ﬁm[s] s whenever S Fyq) s.
Proof. Note that every application of a cut rule in G in which the cut-formula occurs
in the context sequents can be simulated in s(G).s (by using its new primitive rules
or weakening). Similarly, every application of a new primitive £-rule in s(G).; can be
simulated in G by applying weakening and the corresponding cut rule where the cut-

formula occurs in the context sequents. The claims then follow from the definitions. [

It follows that a pure (L, £3)-calculus G whose only cut rule is (cut) (and thus
s(G) = G) enjoys cut-admissibility iff FgClq,,. Such a calculus enjoys strong cut-
admissibility iff S Fg s implies that there exists a proof of s from & in G such that
the cut-formula of every application of a cut rule is an element of frm[S]. Hence Def-
inition and Definition indeed generalize the known notions for ordinary
two-sided sequent calculi. In addition, in ordinary two-sided calculi that include (cut)

and (id) cut-admissibility is equivalent to strong cut-admissibility (like in the case of
analyticity, see Theorem [2.3.7)).

Theorem 2.3.19. Let G be a pure (L, £2)-calculus, that includes (cut) and (id). If G

enjoys cut-admissibility then G enjoys strong cut-admissibility.

Proof. Similar to the proof of Theorem [2.3.7] O

2.3.3 Axiom-Expansion

Another property which is often studied in two-sided sequent calculi (that include (id)) is
the property of axiom-expansion [44]. This property means that non-atomic applications
of (id) (deriving sequents of the form {f:p,t:¢} where ¢ is not atomic) are redundant ff

In our broader context it can be formulated as follows:

Notation 2.3.20. Given a pure (£, £)-calculus G, G,y denotes the pure (£, £)-calculus
obtained from G by discarding all identity axioms of G.

4The term “axiom-expansion” is commonly used, but it is somewhat unfortunate. In fact, this
property concerns the reducibility of arbitrary axioms to atomic ones.
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Definition 2.3.21. A pure (£, £)-calculus G enjoys aziom-expansion if

{(X:p) | 0/(X:p1) € Pa,p € ate} ba,, (Yip)
for every 0/(Y:p;) € Pg and ¢ € L.

It is easy to see that we have the following:

Proposition 2.3.22. A pure (£, £)-calculus G enjoys aziom-expansion if

{Xeps) | 0/(Xep1) € Pa, 1 <i < ar(o)} Fa,, (Yio (D1, s Pare)))
for every 0/(Y:p;) € Pg and ¢ € .

Proof. A simple inductive argument (using Proposition [2.2.17)) suffices. m
Thus, following [44], we define this property for a given connective as follows:

Definition 2.3.23. A connective ¢ € {, admits aziom-expansion in a pure (L, £)-
calculus G if {(X:p;) | 0/(X:p1) € Pg,1 <i < ar(o)} Fa,, (Y: 0 (p1y - Par(e))) for every
0/(Y:p1) € Pg.

Remark 2.3.24. Unlike [44], we do not require that there exists a cut-free proof of
(Y: % (plv 7par(<>)))~

Note that a pure (£, £)-calculus G enjoys axiom-expansion iff each connective of £

admits axiom-expansion in G.

Example 2.3.25. It is easy to see that each connective of £, admits axiom-expansion

in LK, and thus LK enjoys axiom-expansion.



Chapter 3
Semantics for Pure Sequent Calculi

In this chapter we introduce a method for providing (possibly non-deterministic) many-
valued semantics for any given pure calculus. The semantics is then used to characterize
the proof-theoretic properties of pure calculi that were introduced in the previous chap-
ter. It should be noted that while dealing with the general framework of pure calculi,
one cannot expect to obtain effective semantics in all cases. Indeed, the proposed se-
mantics is quite close to the input proof system. However, it provides a complementary
presentation of pure calculi, sheds light on their syntactic properties, reveals deep useful
connections between semantics and proof theory, and turns out to be useful for proving
these properties in particular examples. In addition, applying the tools of this chapter
for narrower families of pure calculi (as done in the next chapter for canonical calculi)

leads to effective semantics and decidable criteria for proof-theoretic properties/l]

Publications Related to this Chapter

The material in this chapter was not published before.

3.1 The Semantic Framework

The proposed semantic framework is a denotational semantics, based on valuations, which

are simply functions whose domain is L:

IThis inherent limitation of an investigation of such general frameworks was summarized by J.Y.
Béziau in [34] as follows:

“What is involved in this paper is mainly general abstract nonsense. The main dif-
ficulty of our results is rather conceptual. But what we show is that when this general
abstract nonsense is rightly organized we can get meaningful results with a lot of powerful
applications.”

24
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Definition 3.1.1. An L-valuation is a function v from £ to some set U of truth values.

We denote by I'm, the image of v.

Note that we do not specify what are truth values, and in fact anything can serve as a

truth value. To define restrictions on L-valuations we introduce L-semantic conditions.
Definition 3.1.2. Let U be some set of truth values.

1. An L-semantic disjunction over U is a finite set of pairs (p, u), denoted by ¢ = u,
where u € U and ¢ € L. L-substitutions are naturally extended to L-semantic
disjunctions by o(I) = {o(¢) =u | p =u € I}.

2. An L-semantic condition over U is a pair (Z, ), denoted by Z = I, where Z is a
finite set of L-semantic disjunctions over U, and [ is a single £-semantic disjunction
over U.

3. An L-valuation v with Im, C U satisfies:

(a) an L-semantic disjunction I over U if p = v(p) € I for some ¢ € L.

(b) an L-semantic condition T = I over U if for every L-substitution o, v satisfies

o(I) whenever it satisfies o(I") for every I’ € T.

(c) a set A of L-semantic conditions over U if it satisfies every Z = I € A.

We write v = X to denote that v satisfies X, where X is either an £-semantic disjunction,

an L-semantic condition, or a set of L-semantic conditions ]

Example 3.1.3. Suppose that o,> € $%, and let U = {u;,us}. Consider the semantic
disjunctions: I} = {p1 = uy,ps = us}, and Iy = {p; ©ps = uy,p2>p1 =u1}. Let v be
an L-valuation with I'm, C U. Then, v = I iff v(p1) = uy or v(ps) = uz. v | Iy iff
v(p1 © pa) = ug or v(pa > pr) = uy. v satisfies the L-semantic condition {I;} = I, iff for
every o1, o € L: if v(p1) = uy or v(ps) = ug, then v(py © o) = uy or V(s > Y1) = uy.

Example 3.1.4. Obviously, restrictions arising from “truth tables” can be represented
as semantic conditions. For example, to capture the classical truth table of implica-
tion, we use the following conditions over {f,t}: {{p1 =t},{p2 = f}} = {p1 D p2 = [}
and {{p1 = f,p2 =t}} = {p1 D p2 =t}. An L-valuation satisfies these two L-semantic

conditions iff it respects the usual truth table of D.

To obtain semantic characterizations of logics we introduce a class of structures called
many-valued systems, that generalizes the usual notion of a many-values matrix (see, e.g.,

[93]), by allowing arbitrary semantic conditions.

ZNote that v |= ) is ambiguous: it holds for the empty set of £-semantic conditions, and does not
hold for the empty L-semantic disjunction.
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Definition 3.1.5. A many-valued system M for L consists of:

1. A set V\ of truth values.
2. A subset Uy C Vi of legal truth values.
3. A subset Dy € Vv of designated truth values.

4. A set Ay of L-semantic conditions over V.
M is called finite if so are Vi and Apyg.
Definition 3.1.6. Let M be a many-valued system for L.

1. An L-valuation v is called M-legal if Im, C Up and v = A
2. An L-valuation v is said to be a model (with respect to M) of:

(a) an L-formula ¢, written v M o, if v(p) € Dy
(b) a set T of L-formulas, written v EM T, if v M ¢ for every ¢ € T.

3. An L-formula ¢ follows from a set T of L-formulas with respect to M (denoted by:
T Ikam ) if for every M-legal L-valuation v: v EM ¢ whenever v M T

Proposition 3.1.7. For every many-valued system M for £, (£, IFy) is a logic.

Proof. Easily follows from the definitions. To prove that IFy; is structural, note that if v

is an M-legal L-valuation, then so is v o ¢ for every L-substitution o. O

Example 3.1.8. Classical logic (L4, IFy) is obtained by taking a many-valued system
M, with Vs, = Unm, = {f,t}, Dm, = {t}, and A, consist of the semantic conditions
over {f,t} that correspond to the classical truth tables (e.g. as in Example [3.1.4)).

Example 3.1.9. Many-valued systems generalize the notion of a logical many-valued
matrix [93, 61]. Thus any many-valued logic that is defined by such a matrix is captured
in this general framework. In addition, non-deterministic many-valued matrices [17), 21]

can be easily presented as particular cases of many-valued systems. This will be discussed
in Chapter

Example 3.1.10. The framework of bivaluations [34, 40] corresponds to two-valued
systems (that is, many-valued systems with |V | = [Un| = 2 and |Dy| = 1. In addition,

the dyadic semantics of [39] is also a subclass of two-valued many-valued systems.

In many cases in the sequel, we need a many-valued system M just to specify a set
of (M-legal) valuations, rather than to define a logic. The set Dy of designated truth
values is redundant in these cases, and can be discarded. The obtained structures will

be called many-valued pre-systems:
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Definition 3.1.11. A many-valued pre-system M for L is defined exactly like a many-
valued system (Definition [3.1.5)), except that we exclude the set Dy of designated truth

values.

Remark 3.1.12. Evidently, it suffices to consider many-valued systems with Uy = V.
Indeed, given a many-valued system M, we can always define a many-valued system M’
by Vmr = Uny = Unt, Dy = Dy N UM, and Ay is obtained from Ay by discarding all
occurrences of pairs ¢ = u with u € Uy from the semantic conditions. Clearly, M-legal
L-valuations are exactly M’'-legal L-valuations, and we also have IFy=IFyy. However,
we find the distinction between Uy; and Vi technically convenient, as it allows us to
change the set of legal truth values in many-valued (pre-) systems, without changing any
of its other components. This is mainly beneficial for the modularity of the constructions

below.

3.1.1 Partial Valuations and Semantic Analyticity

An important attractive property that we would like a semantic framework to have is
effectiveness, namely the fact that it can be used to provide a semantic decision procedure
for the logics it induces. The framework of many-valued systems is too wide to have
this property in general. In this section we identify a sufficient condition for the the
effectiveness of a many-valued system. This condition will also play a main role below

for characterizing <-analyticity in pure sequent calculi.

Generally speaking, the naive approach to check whether I' IFy; ¢ for a many-valued
system M (given a finite set of formulas I and a formula ¢) would be to consider one by
one all possible M-legal L-valuations, and return “true” iff none of them is a counter-
model — a model of I but not of ¢ (with respect to M). Obviously, this cannot serve as
a decision procedure since there are infinitely many L-valuations to check, and each of
them is infinite. Thus, as is usually done in decision procedures based on denotational
semantic frameworks, one has to consider partial valuations defined only on the syntactic
material included in I" and (. This, however, requires that the existence of a counter-
model in the form of a partial valuation always indicates the existence of an (infinite) full
counter-model. Obviously, this requirement holds when every partial valuation can be
extended to a full one. Next, we define partial valuations, and precisely formulate these

observations.

Definition 3.1.13. A partial L-valuation is a function v from some set Dom, C L to

some set U of truth values. We denote by Im, the image of v.

The previous notions for L£-valuations are adapted to partial £-valuations as follows:
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Definition 3.1.14. A partial L-valuation v satisfies:
1. an L-semantic disjunction I if ¢ = v(p) € I for some ¢ € Dom,,.

2. an L-semantic condition T = I if for every L-substitution ¢ such that o(¢) € Dom,,
and for every ¢ that occurs in Z = I, v satisfies o(I) whenever it satisfies o(1") for
every I' € T.

3. a set A of L-semantic conditions if it satisfies every Z = I € A.

We write v = X to denote that v satisfies X, where X is either an £-semantic disjunction,

an L-semantic condition, or a set of L-semantic conditions.

Given a many-valued pre-system M for £, M-legal partial L£-valuations are defined
exactly as M-legal (full) L-valuations (i.e. Im, C Upn and v = Am). Note that Def-
initions and generalize the corresponding notions defined above for (full)
L-valuations. Indeed, by taking Dom, = L, we obtain exactly the definitions for L-

valuations.

Definition 3.1.15. Let v and v" be two partial £L-valuations. We say that v" extends v
if Dom,, C Dom,, and v'(y) = v(p) for every ¢ € Dom,,.

Definition 3.1.16. Let < be a partial order on £. A many-valued (pre-) system M is
called <-analytic if any M-legal partial L-valuation whose domain is finite and closed

under < can be extended to an M-legal (full) £-valuation.

Example 3.1.17. Revisiting the many-valued system M, from Example for classi-
cal logic, we note that this system is sub-analytic. Indeed, M-legal partial £ -valuation,
whose domain is finite and closed under <, are usual classical partial valuations which

can be obviously extended to full classical valuations (i.e. M-legal L -valuations).

Note that we use the same term “<-analytic” in two different contexts. When referring
to many-valued (pre-) systems as <-analytic we mean the semantic extension property
defined above (the term “analyticity” was used to describe a similar property in previous
works, see e.g. [21]). On the other hand, we call a pure sequent system <-analytic if
it satisfies the syntactic property given in Definition In Theorem below we

establish a correspondence between these two notions of analyticity.

Next, we prove that <-analyticity (for a safe relation <) suffices for the effectiveness

of a given many-valued system.

Theorem 3.1.18. Let M be a finite many-valued system for £. Suppose that M is
<-analytic for some safe partial order < on L. Given a finite set I of L-formulas and an

L-formula ¢, it is decidable whether I" Iy ¢ or not.
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Proof. Since < is safe, |<[I'U{p}] is finite. Thus, to decide whether T' IFp; o one
can enumerate all partial £-valuations v with Dom, = |= [T U {¢}] and Im, = Uy, and
check if one of them satisfies the following three conditions: (1) v is M-legal; (2) v EM T;
and (3) v M . Each of these conditions is obviously decidable for a given v. We claim
that ' IFpg o iff such a function is not found. To see this, note that if I' ¥y ¢, then by
definition there exists an M-legal L-valuation v’ such that " EM T" but v M . Its
restriction to }=[['U {p}] is a function v : [= [ U {p}] — U satisfying the conditions
above. On the other hand, if there exists such a function v, then since M is <-analytic,
v can be extended to an M-legal (full) L-valuation v'. Clearly, v EM T but v M .
Consequently, I' ¥pp ¢ in this case. O

Examining the proof above, we are able to provide a slightly weaker requirement:

Theorem 3.1.19. Let M be a finite many-valued system for £, and < a safe partial
order on L. Suppose that given an M-legal partial £-valuation v, whose domain is finite
and closed under <, it is decidable whether v can be extended to an M-legal (full) £-
valuation or not. Then, given a finite set I' of L-formulas and an L-formula ¢, it is

decidable whether I' IFys ¢ or not.

Proof. The proof goes as the proof of Theorem [3.1.18 with the addition of a forth

condition: (4) v can be extended to an M-legal L-valuation. O

In Chapters [4] and [5| we will use this theorem to prove the decidability of a large
family of logics induced by many-valued systems of a certain restricted form (of which
many-valued matrices and their non-deterministic counterparts are particular instances).
The decidability of important subfamilies of pure sequent calculi will be obtained as a

consequernce.

Remark 3.1.20. In the literature of non-deterministic matrices (see, e.g., [9]) effective-
ness is usually identified with (semantic) analyticity. However, the observations above
show that this property is not a necessary condition for decidability. To guarantee the
latter, instead of requiring that all partial valuations are extendable, it is sufficient to

have an algorithm that establishes which of them are.

3.2 Semantics for Pure Sequent Calculi

In this section we show that the logics induced by pure calculi can be semantically
characterised by finite many-valued systems. Thus, our goal is to construct a finite
many-valued system M for a given pure (£, £)-calculus G and a set of labels X C £,

for which we would have IFg=IFyp, . To obtain this, we begin with a construction of a
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many-valued pre-system Mg for a given pure (£, £)-calculus G, together with a definition
of when an Mg-legal L-valuation v is a model of an (L, £)-sequent s. Then we show
that Mg induces the same consequence relation between sequents that is induced by
the calculus G. Our construction is modular: each syntactic ingredient corresponds to
a certain semantic component, and the semantics of the whole calculus is obtained by

joining all semantic components. We start with precise definitions of each component.

Truth Values Intuitively, the truth value assigned to an L-formula ¢ should carry
enough information to determine for which labels x € £ the £-labelled L-formula x:¢ is
“true”. In general, there can be 2/€l options for that. Thus we take the truth values in
the many-valued system for a given pure (£, £)-calculus G to be the subsets of £ (that

is, Vme = 2%), and use the following definition:

Definition 3.2.1. An L-valuation v with Im, C 2¢ is said to be a model of an £-labelled
L-formula x:p, written v = x:p, if x € v(p).

Note that the last definition concerns an L-valuation v with Im, C 2¢ regard-
less of a many-valued system. Clearly, given such an L-valuation v and a formula ¢,
v(ip) = {x € £ |v E x¢}. Thus if we have a many-valued system M for £ with
Vm = 2%, then v M ¢ (according to Definition iff the set {x € £ | v Ex:p} isin
Dn. In turn, sequents are intuitively interpreted as disjunctions of labelled formulas, and

sets of sequents (that constitute the sets of assumptions) are conjunctions of sequents.
Definition 3.2.2. An L-valuation v with Im, C 2% is said to be a model of:

1. an (L, £)-sequent s, written v |= s, if v |= a for some « € s.
2. a set S of (L, £)-sequents, written v = S, if v |= s for every s € S.

These notions naturally lead to the following definition of the consequence relation

between sequents induced by a many-valued (pre-) system with Vyy = 2¢:

Definition 3.2.3. Let M be a many-valued (pre-) system for £ with Vg = 2. An
(L, £)-sequent s follows from a set S of (L, £)-sequents with respect to M (denoted by:

S b s) if every M-legal L-valuation which is a model of S is also a model of s.

Remark 3.2.4. The general framework of many-valued (pre-) systems presented above
allows anything to serve as a truth value. However, a semantic consequence relation Fpp
between sequents is defined here only for many-valued (pre-) systems whose truth values

consist of sets of labels (Vi = 2%).
The soundness of the weakening rules directly follows from the definitions:

Proposition 3.2.5. {s} Fn s U {a} for every many-valued (pre-) system M for £ with
Vm = 2%, (L, £)-sequent s, and £-labelled L-formulas a.
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Legal Truth Values While Vg, is taken to be all subsets of £, the set Un, of
legal truth values (those that are actually allowed to be used in Mg-legal valuations) is
determined according to the primitive rules of G. Indeed, each primitive rule of G forbid
some of the 21€l options. For example, say that f,1 € £, and consider the primitive rule
{f:p1}/{i:p1}. Semantically, this rule means that an £-labelled £-formula of the form
i:p should be “true” whenever f:¢ is “true”. This semantic requirement can be easily
reflected by disallowing truth values that include the label £ but not i. We will denote
by £(r) the set of subsets of £ that are not forbidden by the primitive rule r. Formally,
£(r) is defined as follows:
Definition 3.2.6. Let r = (X;:p1), ..., (Xu:p1)/(X:p1) be a primitive £-rule. Then:
L£r)={YC £|XNY=0 for some1<i<norXNY=#({}.
This definition is naturally extended to sets R of primitive £-rules by: £(R) = (,c5 £(7).
Example 3.2.7. Let £ = {f,1,t}. For a primitive £-rule r = ({£,t}:p1), {i:p1}/{t:p1},
£(r) consists of all subsets of £ except for {f,1i}.
Example 3.2.8. For a cut rule r = (X;:p1), ..., (Xn:p1)/0,
Lr)y={YC £ |XNY=0 for some1<i<n}.

For an identity axiom r = 0/(X:p),

Lr)y={YC £|XNY#0D}.
In particular, £(0/(£:p1)) = 2\ {0}. Note that if a pure (£, £)-calculus G has at least

one cut rule then £ ¢ £(Pg), and similarly, if G has at least one identity axiom then
0 ¢ £(Pc).
For a given pure (£, £)-calculus G, we will take Uy, = £(Pg) (recall that Pg denotes

the set of primitive rules of G).

Example 3.2.9. For a pure (£, £3)-calculus G with Pg C {(cut), (id)} we have:
({1} {e}) Pa = {(cut), (id)}

{0, {2}, {t}} Pg = {(cut)}

{{t}. {e}.{f,t}}  Pc={(id)}

{0 {£}, {e}.{f,t}} Pc=10

Thus for an ordinary pure (£, £2)-calculus with Pg = {(cut), (id)} we get a two-valued

£(Pg) =

semantics; for pure (£, £3)-calculus with Pg = {(id)} or Pg = {(cut)} we get a three-

valued semantics; and if Pg = () we obtain a four-valued semantics.

Semantic Conditions The semantic conditions in Ay, are straightforwardly derived
from the rules in Rg according to the next definitions (recall that Rg denotes the set of

non-primitive rules of G):
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Definition 3.2.10. I(-), the L-semantic disjunction over 2% induced by:
1. an £L-labelled L-formula x:p, is defined by I(x:p) = {p =X | {x} CX C £}.

2. an (L, £)-sequent s, is defined by I(s) = ., [ ().

acs
Definition 3.2.11. The L-semantic condition over 2% induced by a pure (L, £)-rule
S/s, denoted by Sem(S/s), is defined by:
Sem(S/s) ={I(s') | s € S} = I(s).
This definition is extended to sets R of pure (£, £)-rules in the obvious way:
Sem(R) = {Sem(r) | r € R}.
Example 3.2.12. Suppose that D€ (2%, and consider the usual (£, £3)-rules for D:
(f: D) = {1}, {£:p2}/{£:p1 D p2} and (t: D) = {f:p1, t:p2}/{t:p1 D p2} (see Exam-
ple [2.2.6). Then:
Sem((f: D)) = {{pl = {t}7p1 = {fat}}a {pQ = {f}apZ = {fat}}} =
{p1 D p2 = {f},p1 Dp2 = {£,t}}.
Sem((t: 2)) = {{p = {£hp1 = (£t} = {8} = {£,8}}} =
{p1 D p2 = {t},p1 Dp2 = {£,t}}.
Note that an L-valuation v (with Im, C 2%) satisfies these two semantic £-conditions

iff for every @1, 0 € L£: (1) if t € v(p1) and £ € v(p2), then £ € v(p; D pa); and (2) if
f cv(pr)ort € v(ps), then t € v(p; D o).

Example 3.2.13. Suppose that A € $% and — € . For the (L, £2)-rule from Exam-
ple2.2.8 r = {1}, {t:p1 }/{f:=(p1 A —p1)}, Sem(r) is
{pr = {ttm ={t. e}, {m = {t}, - = {£,t}}} =
{=(pr A=p1) = {£}, =21 A —p1) = {£,t}}.
Note that an L-valuation v (with I'm, C 2%) satisfies this semantic L-conditios iff for
every p € L: if t € v(p) and t € v(—gp), then £ € v=(p A —p)).

To conclude, Mg is defined as follows:

Definition 3.2.14. Let G be a pure (£, £)-calculus. The many-valued pre-system Mg
is defined by: Vi, = 2%, Ung = £(Pg), and Ay, = Sem(Rg).

The following theorem establishes the connection between pure calculi and their cor-

responding many-valued pre-systems. Its proof is given in Section [3.4]

Theorem 3.2.15. Let G be a pure (£, £)-calculus. Then Fg=Fpn. In other words:
there exists a proof in G of an (£, £)-sequent s from a set S of (£, £)-sequents, iff every

Mg-legal L-valuation which is a model of § is also a model of s.
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Corollary 3.2.16. Let G be a pure (£, £)-calculus. and < a safe partial order on L.
Suppose that given an Mg-legal partial £-valuation v, whose domain is finite and closed
under <, it is decidable whether v can be extended to an Mg-legal (full) L-valuation
or not. Then, given a finite set S of (£, £)-sequents and a single (£, £)-sequent s, it is
decidable whether S g s or not.

Proof. Construct Mg according to the definitions above. Then, enumerate all partial £-
valuations v : | =[S U {s}] = Uni, and check if one of them is Mg-legal, can be extended
to an Mg-legal (full) £-valuation, and is model of S but not of s. As in Theorem [3.1.19]

we have that & b s iff such a partial L-valuation is not found. O

Now, to obtain a many-valued system for the logic induced by G and a set X of labels,
one should take the designated truth values to be subsets of £ that contain at least one
label from X:

Definition 3.2.17. Let G be a pure (L, £)-calculus, and let X € £. The many-
valued system MY is obtained by augmenting the many-valued pre-system Mg with
Dy, ={X' C £ [X'NX#0D}.

Corollary 3.2.18. Let G be a pure (£, £)-calculus, and X C £ a set of labels. Then

F=lrag,

Proof. Note that an Mg-legal valuation v is a model of a sequent of the form (X:p) iff it
is a model of ¢ with respect to M¥. Therefore, the claim is an immediate corollary of
Theorem [3.2.15] For the convenience of the reader, we prove one direction with all details:
Suppose that T IF%, ¢. Then, by Definition 2.2.18] {(X:¢) | v € T} g (X:¢). By Theo-
rem [3.2.15] we have that every Mg-legal £-valuation which is a model of {(X:¢0) | ¢ € T},
is also a model of (X:). We prove that T Ibyp, ¢. Thus, by Definition we should
show that for every M¥4-legal L-valuation v: v =Mé ¢ whenever v EM& T Let v be
an MX-legal L-valuation such that v =M¢ 7. By definition, v(¢)) € Dyp, for every
Y € T. Now, the definition of Dy, entails that v(¢)) NX # () for every ¢ € T. It follows,
according to Definitions [3.2.1 and [3.2.2] that v = (X:)) for every ¢ € T. Consequently,
v {(X)) [ ¢ € T}, and so v = (Xip). Thus v(p) NX # 0, and so v(p) € Dy, It
follows that v =Me . O

Example 3.2.19. As a particular instance we obtain the soundness and completeness
of LK and {t} for classical logic. Indeed, consider the pure (L, £2)-calculus LK from
Example [2.2.20, By Corollary |3.2.18, we have II—Eézll—Mﬁ.
verify that Myk-legal valuations are practically classical two-valued valuations. Indeed,
since LK includes both (cut) and (id), we have Unt, . = {{f},{t}}. The semantic L.-

conditions arising from the non-primitive rules of LK provide the usual definition of truth

It is straightforward to
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values of compound formulas in classical logic (the rules for each connective enforce its

usual truth table, see, e.g., Example |3.2.12)).

Example 3.2.20. By applying Corollary to the pure (L., £2)-calculus G, from
Example and X = {t}, we obtain effective semantics for da Costa’s paraconsistent
logic C;. The many-valued system M = Mg(}jl is given by: Unr = {0, {£},{t}, {f,t}};

= {{£},{t}}; Dm = {{t}}; and Am consists of one L.-semantic condition over
VM for each non-primitive rule of Gg,. For example, for the rule (f:=A') we have the
semantic condition given in Example Similarly, (£:=—) and (f:=A?) yield the
following L.-semantic conditions:

Sem((f:-7)) = {{p1 = {£},p1 = {£, t}}} = {=w1 = {£}, 1 = {£,t}}
Sem((£:=A%)) = {{=p1 = {£}, -1 = {£,t}}, {=p2 = {£}, 2 = {£,t}}} =
{_'(pl /\p2) = {f}’ _'(pl /\p2) = {f7t}}

It is easy to see that the conditions in Ay (including the ones mentioned above) dictate

the following requirements from M-legal L -valuations v for every formula w:ﬁ

(t:m) If p = =~ and £ € v(yp), then t € v(P).

(£:A) If ¢ =1 Ao and (f € v(gpy) or £ € v(pa)), then £ € v(1).

(t:A) I h = o1 Ao, t €v(p1) and t € v(ips), then t € v(1).

(£:V) If 1 = @1 V o, £ € v(¢p1) and £ € v(pa), then £ € v(¢).

(t:V) If ¢ = @1 Vo and (t € v(p1) or t € v(p2)), then t € v(¢).

(£: D) If 1 = 1 D 2, t € v(p1) and £ € v(p2), then £ € v(¢).

(t: D) If ¢ =1 D g and (f € v(p1) or t € v(pa)), then t € v(v).

(f:==) If ¢ = ==y and £ € v(p), then £ € v(¢)).

(f:=AY) Tf Y = =(p A=), t € v(p) and t € v(—gp), then £ € v(v).

(£:2A2) TEp = = (p1 A o), £ € v(—py) and £ € v(—ps), then £ € v(v).

(f:=VY) Tf ¢ = = (1 V o), £ € v(—p1) and (f € v(yps) or £ € v(—yy)), then £ € v(v).
(£:=V2) I p = = (1 V a), (£ €v(p1) or £ € v(—py)) and £ € v(—gps), then £ € v(v).
(£:= DY) I = =(pp1 D o), £ € v(p1) and (£ € v(py) or £ € v(—ps)), then £ € v(1).
(f:= 2%) If¢p = =1 D 2), (f €Ev(ip1) or £ € v(—py)) and £ € v(—py), then £ € v(1).

It is easy to verify that these requirements correspond exactly to the conditions on C}-
bivaluations described in [34].

Now, M is not sub-analytic (see Definition . Indeed, consider the partial £-
valuation v with Dom,, = {p1, p2, =p1, =2, 71, 7p1 A =p2, ~(—p1 A —p2) }, and:

3Note that since Upg = {{£}, {t}}, we can write v(¢) = {x} instead of x € v(p) (for x € {£,t}). We
prefer the latter since we will reuse this list of conditions in Example [3.3.10| where {f,t} is also included
in UM
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o v(p1) =v(p2) = v(——p1) = {£},

o v(=p1) = v(=p2) = v(=p1 A 7p2) = v(=(=p1 A p2)) = {t}.

Dom, is finite and closed under subformulas, and v is M-legal. Now, assume for a
contradiction that there is an M-legal (full) £-valuation v that extends v. (f:——) enforces
that v'(=—p2) = {£}. On the other hand, if v'(=—ps) = {£}, then (£:-A?) enforces that
o ((p1 A pa)) = {£}. But, o/(~(=p1 A ~p2)) = v(~(p1 A p2)) = {t}.

Nevertheless, it can be shown that M is nsub-analytic, where nsub denotes the tran-
sitive closure of subU{(—¢;, =(p1 0 9a)) | v1,92 € L,0 € {A,V,D},i =1,2}. Indeed, let
v be an M-legal partial L. -valuation, whose domain is finite and closed under nsub. We
construct an M-legal (full) Ly -valuation v’ that extends v. Let t,1s,... be an enu-
meration of all £, formulas such that: i < j whenever (¢;,1;) € nsub. We recursively
construct v’. Let ¢ > 1, and suppose that v'(¢;) was defined for every j < i. v'(¢;) is
defined as follows. First, if ¢»; € Dom,, then v'(¢;) = v(1);). Otherwise, if ¢; is an atomic
formula v'(¢;) = {£} (say). Otherwise, 1; is a compound formula and then v'(1;) is set
to be either {£} or {t} based on “classical logic reasoning” using the subformulas of 1
(for example, if ¢; = —1); then v/(v);) = {£} if V/(¢);) = {t}, and otherwise v'(¢;) = {t}).
Obviously, v" extends v. It remains to show that v" is M-legal. For that we prove by
induction on i that all the properties above hold for v' and ¢ = 1);. Suppose they hold

for ¢; for every j < i. We do here several cases (the others are similar):

(t:=) Suppose that ) = = and v'(p) = {£}. If » € Dom,, then ¢ € Dom, as well, and
V() = {t} follows since v is M-legal. Otherwise, v'(¢) = {t} as well, but this
time because of the classical truth tables.

(f:7=) Suppose that ¢» = ——p and V() = {£}. If ¥ € Dom,, then ¢ € Dom, as
well, and v'(¢) = {£} follows since v is M-legal. Otherwise, v'(=p) = {t} (by the
induction hypothesis since ¢ = 1, for some j < 4, and the condition (t:—)), and
thus v'(¢) = {f} according to the classical truth tables.

(f:=AY) Suppose that ¥ = =(¢ A =), v'(p) = {t} and v'(=p) = {t}. If ¥ € Dom,,
then ¢, —¢ € Dom, as well, and v'(1)) = {£} follows since v is M-legal. Otherwise,
V(¢ A —p) = {t} (by the induction hypothesis since p A =¢p = 1); for some j < i,
and the condition (t:A)), and so v'(¢) = {f} according to the classical truth tables.

(£f:=A?) Suppose that 1 = = (1 A @2), V(=) = {£} and v'(—p2) = {£}. If b € Dom,,
then =1, =g € Dom,, as well, and v'(¢)) = {£} follows since v is M-legal. Other-
wise, v'(¢1) = v'(¢2) = {t} according to the classical truth tables (by the induction
hypothesis since —p; = 1);, and =gy = 1, for some ji,jo < 4, and the condition
(t:=)). Thus v'(¢1 A w2) = {t} (by the induction hypothesis since @1 A @y = 1; for
some j < 7, and the condition (t:A)), and so v'(¢) = {£} according to the classical
truth tables.
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Note that nsub is safe, and thus it follows that M provides an effective semantics for
the logic da Costa’s paraconsistent logic C;. We note that a semantic decision for this
logic was included in [47]. While its formulation is completely different than ours, the
procedure in [47] is based on similar ideas. In particular, a notion equivalent to nsub-

analyticity plays a major role there as well.

3.3 Characterization of Proof-Theoretic Properties

In this section we use the above general soundness and completeness theorem (and pro-
vide some extensions of it) for deriving semantic characterizations of the proof-theoretic

properties of pure calculi discussed in Section [2.3]

3.3.1 Strong Analyticity

Analyticity for a given calculus is traditionally obtained as a corollary of cut-admissibility
(this was the case in the seminal work of Gentzen [50]). Indeed, if all rules in a pure calcu-
lus system (except for (cut)) admit the local subformula property (i.e., the premises of each
rule consist only of subformulas of the formulas its conclusion), then cut-admissibility
implies sub-analyticity[] However, there are many cases in which a calculus does not
enjoy cut-admissibility, and it is analytic nevertheless. Thus we provide a semantic char-
acterization of strong analyticity which is independent of cut-admissibility. To do so, we
need to identify semantics for proofs in which only some formulas may appear. This can
be easily done by considering partial valuations (see Definition , whose domain

consists of all formulas that may be used in proofs.

First, Definitions [3.2.1] and |3.2.2] are adapted to partial L£-valuations as follows:

Definition 3.3.1. A partial £-valuation v with Im, C 2¢ is said to be a model of:

1. an £L-labelled L-formula x:¢ if ¢ € Dom,, and x € v(yp).
2. an (L, £)-sequent s if s is a (Dom,,, £)-sequent and v is a model of some « € s.

3. asetS of (L, £)-sequents if v is a model of every (Dom,, £)-sequent s € S.

We write v = X to denote that v is a model of X, where X is either an £-labelled
L-formula, an (£, £)-sequent, or a set of (£, £)-sequents.

4 Quoting Ono [79]:
“The most important proof-theoretic property is the subformula property, and the most

convenient way of showing the subformula property is to show the cut elimination theorem.”

Generally, we agree with the first observation (though, we believe that other notions of analyticity based
on different relation than “subformula” have similar importance). However, we aim to show that in
many cases cut elimination is not necessarily “the most convenient” technique.
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Obviously, Definitions [3.2.1] and [3.2.2] are obtained from Definition by taking

Dom, = L. Note also that in Item [2| a partial L-valuation v can only be a model of

sequents consisting solely of formulas in Dom,,. Nevertheless, it can be a model of a set of
sequents containing formulas which are not in Dom,,, because only (Dom,,, £)-sequents

are considered in Ttem [3]

Now, the following theorem strengthens Theorem [3.2.15 by showing that proofs that
consist only of formulas from a set F precisely correspond to the semantics given by

partial valuations whose domain is F.

Theorem 3.3.2. Let G be a pure (£, £)-calculus, F a set of L-formulas, S a set of
(L, £)-sequents, and s an (F, £)-sequent. Then, S F§ s (i.e. there exists a proof in G
of s from S consisting only of (F, £)-sequents, see Notation [2.3.4) iff for every Mg-legal

partial L-valuation v with Dom, = F: if v is a model of S then it is also a model of s.

The proof is given in Section 3.4, We can now establish the connection between

the (syntactic) strong <-analyticity of G and the (semantic) <-analyticity of Mg (see

Definition (3.1.16)).

Theorem 3.3.3. A pure (£, £)-calculus G is strongly <-analytic iff Mg is <-analytic.

Proof. (=) Suppose that Mg is not <-analytic. Let v be an Mg-legal partial £-valuation
whose domain is finite and closed under <, but there does not exist an Mg-legal L-
valuation that extends v. Let S and s be the set of (£, £)-sequents and the (£, £)-sequent
defined by:

S = {{x¢} | ¢ € Dom,,x € v(p)}, s={xwp | ¢ € Dom,,x € v(p)}.

Then, by definition v = S and v [~ s. By Theorem we have S /2™ s. We
show that S g s. Since Dom, is closed under <, |=[S U {s}] = Dom,, and it would
follow that G is not strongly <-analytic. Let v’ be an Mg-legal L-valuation. Our
assumption entails that v does not extend v. Therefore there is some ¢ € Dom, such
that v'(¢) # v(p). Thus, at least one of the following holds: (i) there is some x € £, such
that x € V() and x € v(p); (ii) there is some x € £, such that x € v(¢) and x & v'(y).
If (7) holds, then v’ |= s. If (i) holds, then v' = {x:p}, and thus v' = S. It follows that
v’ is either a model of s, or not a model of S. Consequently, every Mg-legal L-valuation
which is a model of S is also a model of s. Hence Theorem |3.2.15 implies that S g s.

(<) Suppose that Mg is <-analytic. We show that G is strongly <-analytic. Let
S U {s} be a set of (£, £)-sequents. Suppose that S (/& s for F = [S[SU{s}]. We
show that S /g s. It suffices to show that for every finite subset &’ C S, 8§’ /g s. Let
S’ C S be a finite subset. Obviously, S’ /g s for ' = |=[S' U {s}]. By Theorem m
(note that s is an (F’, £)-sequent), there is some Mg-legal partial L-valuation v with
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Dom, = F', which is a model of &' but not of s. F’ is finite and closed under <, and
thus our assumption entails that there exists an Mg-legal L-valuation v’ that extends v.

By definition, v’ is a model of some (Dom,,, £)-sequent s iff v is a model of s'. It follows
that v’ is a model of &’ but not of s. Hence Theorem |3.2.15implies that S’ Fg s. O

Example 3.3.4. Consider again the pure (L, £2)-calculus G¢, from Example .
Following Example , the many-valued pre-system Mg, is not sub-analytic. Thus,
by Theorem [3.3.3] G, is not strongly sub-analytic. However, in the same example
we showed that Mg, is nsub-analytic for the (safe) partial order nsub defined there.
Therefore Theorem implies that G, is strongly nsub-analytic. Note that we prove
below that G, enjoys strong cut-admissibility (using another semantic characterization,
see Example [3.3.10). The fact that it is strongly nsub-analytic follows from this proof
too since all rules of G, except for (cut) are closed under nsub (that is, for each formula

¢ in a premise of a rule, there is some 4 in its conclusion such that (p,v) € nsub).

Example 3.3.5. Suppose that £ consists of one binary connective ¥. Let G be a pure
(L, £)-calculus, with Pg = {(cut), (id)}, and the following pure (L, £5)-rules:

(EX) {f:pi} {T:po}/{Epipo} (800 {t:p1}, {e:p2}/{t:ppa}
(sym) 0/{£:p1Xpa, t:po¥p }
Then partial £-valuations (whose domain is closed under subformulas) are Mg-legal iff

they satisfy the following conditions:
o v(p) € {{f}, {t}} for every p € Dom,,.

o If XXy € Dom, for some 1, s € L, then:

— If v(p1) = v(p2) = {£} then v(piXp2) = {£}.
— It v(p1) = v(p2) = {t} then v(p1Xp2) = {t}.
— If poXXpy € Dom,, then v(p1Xpa) = V(X1 ).

To see the reason for the last condition, note that
Sem((sym)) = 0 = {pp2 = {£}, pip2 = {£,t}, p2Xip1 = {t}, p2Xp1 = {£,t}}.

A partial L-valuation v with Im, C {{f},{t}} satisfies Sem((sym)) if for every L-
substitution o such that {o(p1Xp2), o(p2Xp1)} € Dom,, we have that £ € v(o(p;Xp2)) or
t € v(o(p2Xp1)). Equivalently, v satisfies Sem((sym)) if for every L-formulas ¢, and @9
such that {p1Xpa, paXX@1} € Dom,,, we have that v(p1Xpe) = {f} or v(p2Xp1) = {t}.
By “switching the roles of ¢1 and ¢y”, we obtain that v satisfies Sem((sym)) if for every
L-formulas @1 and ¢y such that {1 X2, p2Xp1} € Dom,, we have that (v(p1Xps) = {£}
or v(paXp1) = {t}) and (v(p2Xp1) = {£} or v(w1Xpa) = {t}). The last condition above

is equivalent to this requirement.
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Using Theorem [3.3.3] it easily follows that G is strongly sub-analytic. Roughly speak-
ing, given an Mg-legal partial £-valuation v (whose domain is closed under subformu-
las), we can recursively extend v to an L-valuation by setting v(p1Xg2) = v(p;) if
v(p1) = v(p2); otherwise v(p1Xp2) = v(paXXpy) if v(P2Xp1) was defined before; and
v(p1Xpe) = {£} (say) otherwise.

3.3.2 Strong Cut-Admissibility

To obtain a simple semantic characterization of strong cut-admissibility, we slightly ex-
tended Theorem [3.2.15 by: (a) considering “extended sequents” that may be infinite;
and (b) restricting the truth values of certain formulas (those on which cut is allowed) to

a certain subset of V.

Definition 3.3.6. An extended (L, £)-sequent is a (possibly infinite) set of £-labelled
L-formulas. An L-valuation v with I'm, C 2% is said to be a model of an extended

(L, £)-sequent p, written v |= p, if v = « for some a € p.

Definition 3.3.7. Let M be a many-valued pre-system for £, U C Vy a set of truth
values, and C a set of L-formulas. An M-legal L-valuation v is called (U, C)-restricted

v(p) € U for every ¢ € C.

Theorem 3.3.8. The following are equivalent for every pure (£, £)-calculus G, set C of
L-formulas, set S of (£, £)-sequents, and extended (L, £)-sequent p:

o SHUSC s for some (L, £)-sequent s C u (recall that S &S s denotes that there
exists a proof in G of s from S in which the cut-formula of every application of a
cut rule is an element of C).

e Every (Unmg,C)-restricted Mg,,-legal L-valuation which is a model of S is also a
model of p (recall that G is the calculus obtained from G by discarding all cut

rules).

The proof is given in Section [3.4l Using this soundness and completeness theorem, we

obtain the following semantic characterization of strong cut-admissibility in pure calculi.

Theorem 3.3.9. A pure (£, £)-calculus G enjoys strong cut-admissibility iff for every

M (q).,-legal L-valuation v, there exists an Myq),,-legal L-valuation v’ such that for
every o € L: v'(p) = v(p) iff v(p) # L]

Recall that for a pure (£, £3)-calculus G whose only cut rule is (cut), we have that s(G) = G (see
Definition [2.3.13). In this case M(q),, can be replaced by Mg,
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Before proving this theorem, we demonstrate its usefulness in the particular case of

Go,.

Example 3.3.10. Consider again the pure (L, £2)-calculus G¢, from Examples
and In [12] it was shown that Gg, enjoys cut-admissibility (and thus, by The-
orem it enjoys strong cut-admissibility as well). We use Theorem to show
that this fact can be obtained by our semantic criterion above. The only cut rule of
G, is (cut), and thus s(Gc,) = Gg,. The many-valued pre-system M = Mg .,
has Uy = {{f}, {t}, {f,t}}. The conditions in Ay = Sem(Rg,,) are those described
in Example [3.2.20f Now, let v be an M-legal L -valuation. We construct an M-legal
L -valuation v’ that satisfies the condition in Theorem [3.3.9] Let 11, s, ... be an enumer-
ation of all £, formulas such that ¢ < j whenever (¢, ;) € nsub (see Example for
the definition of nsub). We recursively construct v'. Let ¢ > 1, and suppose that v'(1);)
was defined for every j < i. v'(¢;) is defined as follows. First, if v(¢;) # {f,t}, then
v'(1;) = v(1;). Otherwise, if 1; is an atomic formula v/(1);) = {f} (say). Otherwise,
is a compound formula and then v/(1);) is set to be either {£} or {t} based on “classical
logic reasoning” using the subformulas of ¢; (for example, if ¢; = =t); then v/(¢);) = {£}
if v'(1;) = {t}, and otherwise v'(3;) = {t}). Obviously, v'(¢) = v(yp) iff v(p) # {£f,t}.
It remains to show that v’ is M-legal. For that we prove by induction on 7 that all the
requirements of Ay (listed in Example hold for v" and ¢ = ;. Suppose they hold
for 9, for every j < 1.

(t:7) Suppose that ¢ = —p and £ € V'(¢) (i.e. v'(p) = {£f}). Then £ € v(p),
and since v is M-legal, v() is either {t} or {f,t}. In the first, case we have
V() = v(v) = {t}. In the latter, v'(¢)) = {t} as well, but this time because of
the classical truth tables.

(f:-—) Suppose that » = ——p and £ € V/(p) (i.e. v'(p) = {£f}). Then £ € v(yp),
and since v is M-legal, v(¢) is either {f} or {f,t}. In the first, case we have
V() = v(®) = {£f}. In the latter, we have v'(=p) = {t} (by the induction
hypothesis since -¢ = ; for some j < 4, and the condition (t:=)), and thus
v'(1p) = {£} according to the classical truth tables.

(f:=A!) Suppose that ¢ = —(p A =), t € V'(p) and t € V'(~p) (ie. V' (p) = {t}
and v'(=p) = {t}). Then t € v(p) and t € v(—y). Since v is M-legal, v(v)) is
either {f} or {f,t}. In the first, case we have v'(¢)) = v(v0) = {£}. In the latter,
V(¢ A =p) = {t} (by the induction hypothesis since p A =¢p = 1); for some j < i,
and the condition (t:A)), and so v'(¢)) = {f} according to the classical truth tables.

(£:=A?) Suppose that 1) = =(¢1 A ¢2), £ € V'(—p1) and £ € V(=) (ie. v'(—p1) = {£}
and v'(—pe) = {£f}). Then £ € v(—yp;) and £ € v(—ps). Since v is M-legal, v(v))
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is either {f} or {f,t}. In the first, case we have v'(¢)) = v(¢)) = {£f}. In the
latter, v'(¢1) = {t} and v'(p2) = {t} according to the classical truth tables (by
the induction hypothesis since -, = 1;, and —gy = 1;, for some ji,jo < 7, and
the condition (t:=)). Thus v'(¢1 A ¢2) = {t} (by the induction hypothesis since
1 Ao = 1p; for some j < 4, and the condition (t:A)), and so v'(¢)) = {f} according
to the classical truth tables.

(£:V!) Suppose that ¢ = =(p1 V 2), £ € V'(mg1) (e v'(mg1) = {£}) and (£ € v'(¢2)
or £ € v'(—ps2)). Then £ € v(—¢p;) and (£ € v(p2) or £ € v(—gy)). Since v is M-
legal, v(1)) is either {£} or {f,t}. In the first, case we have v'(¢)) = v(¢)) = {£f}. In
the latter, v'(¢1) = {t} (by the induction hypothesis since —p; = 1; for some j < i,
and the condition (t:—)). Thus v'(p1Ves) = {t} (by the induction hypothesis since
1 Vg = 1, for some j < 4, and the condition (t:V)), and so v'(¢)) = {f} according
to the classical truth tables.

The other cases are similar. It follows that G¢, enjoys strong cut-admissibility.
To prove Theorem |[3.3.9, we use the following lemma.

Lemma 3.3.11. Let G be a pure (£, £)-calculus.

L Un,g,,, = Un,e U{L}-
2. An L-valuation v is Myg)-legal iff it is M) ,-legal and v'(¢) # £ for every
peL.

Proof. 2 directly follows from 1 since the only difference between Myq) and M), ;18
in the set of legal truth values. We prove 1. Since Pyaq)., € Psq), we obviously have
Uni, ) & uMs(Gw
r € Pya),,, and thus £ € UMS<G)cf. Now, let X € MMS(G)Cfv and suppose that X € Un, g, -
We show that X = £. By definition, X C £. To show that £ C X, let x € £. Since
XgUn, g X & L(r) for some r € Pyq). The fact that X € UMS(G)Cf entails that r» must
be a cut rule, namely r = (X1:p1), ..., (Xn:p1)/0 for some Xy, ..., X,, C £. Since X & Unt, )
we have X; N X # () for every 1 < i < n. Now, if {x} € {Xi,...,X,}, then we have that
x € X and we are done. Otherwise, by definition, s(G).; includes the primitive £-rule
e = (Xi:p1), -y, Xip1)/{x:p1}. The fact that X € uMs«;)cf then entails that X € £(ry).
It follows that {x} N X # 0, and thus x € X. O

. In addition, since there are no cut rules in s(G).r, £ € £(r) for every

Proof of Theorem[3.3.9. (=) Suppose that v is an M;q).,-legal L-valuation, and there
does not exist an Mygq),,-legal L-valuation v" such that for every ¢ € L: v'(p) = v(p)
iff v(p) # £. Let S and u be the set of (£, £)-sequents and the extended (L, £)-sequent
defined by:

S={{xp} [peLivlp) # L,xcv(p)} and p={xp|peL,x&v(p)}
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Then, by definition v = S and v F£ p. Now, frm[S] C {p € L |v(p) # £}, and
thus v is (Unm,g,, frm[S])-restricted (using Lemma |3.3.11). By Theorem we have
S b(z(uésﬁm[s] s for every (L, £)-sequent s C p. We show that S Fyq) s for some (L, £)-
sequent s C p. By Proposition [2.3.18] it would then follow that G does not enjoy
cut-admissibility. Let v’ be an Mg)-legal L-valuation. By Lemma , it is Myq).,

legal and v'(y) # £ for every ¢ € L. Thus our assumption entails that there is some
¢ € L such that v'(p) # v(p) and v(p) # £. Thus, at least one of the following holds:
(1) there is some x € £, such that x € v'(p) and x & v(p); (i7) there is some x € £, such
that x € v(p) and x & v'(p). If (i) holds, then v' |= p. If (i7) holds, then v' [~ {x:p}, and
thus v’ £ S. It follows that v’ is either a model of y, or not a model of S. Consequently,
every Myq)-legal L-valuation which is a model of S is also a model of y. Theorem m
implies that S F4q) s for some (£, £)-sequent s C p.

(<) If G does not have any cut rule, then the claim is trivially true. Assume other-
wise. Suppose that for every Myq),,-legal L-valuation v, there exists an Myq),,-legal
L-valuation v’ such that for every ¢ € L: v'(¢) = v(p) iff v(p) # £. We prove that for
every set S of (£, £)-sequents and (L, £)-sequent s, S l—cmsfm[s}
By Proposition [2.3.18 it would follow that G enjoys strong cut-admissibility. Suppose
that S Vg?g;frm[s] s. Let C = frm[S]. By Theorem [3.3.8, there is a (Unm, g, ,C)-restricted

M;(q),,-legal L-valuation v which is a model of S, but not of s. Our assumption entails

s whenever S Fyq) s.

that there exists an M(q),,-legal L-valuation v’ such that for every ¢ € L: v'(¢) = v(y)
iff v(¢) # £. Note that in particular, we must have v'(¢) # £ for every ¢ € L, and thus,
by Lemma [3.3.11} v" is Mq)-legal. Now, since G has at least one cut rule, £ & Un, g, -
(@) C)-restricted, v(p) # £ for every ¢ € frm[S]. Thus v'(p) = v(yp) for
every ¢ € frm[S], and so v’ = S as well. Since v'(¢) C v(p) for every ¢ € L, we have

v' £ s. By Theorem [3.2.15) S @) s. ]

Since v is (Unm,

3.3.3 Axiom-Expansion

Using the soundness and completeness theorem above (Theorem|3.2.15)), we automatically
obtain a semantic characterization of axiom-expansion for a given connective in a given

pure calculus.

Corollary 3.3.12. A connective ¢ € <, admits axiom-expansion in a pure (L, £)-
calculus G iff for every Mg, ,-legal L-valuation v: if XN wv(p;) # () for every X C £ such
that 0/(X:p1) € Pg and 1 < i < ar(o), then X N v(o(p1, ..., Par(e))) # O for every X C £
such that (/(X:p;) € Pq.

Proof. By definition, ¢ admits axiom-expansion in G iff for every 0/(Y:p;) € Pg, we have
{(Xeps) | 0/ (Xep1) € P, 1 < i< ar(o)} Fa,; (Y:o (p1, s Par(e)))- The given condition is
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equivalent by Theorem [3.2.15 [

For ordinary pure (£, £2)-calculi in which the only identity axiom is (id) we obtain
that a connective o € <, admits axiom-expansion in G iff for every Mg,,-legal L-
valuation v: if v(p;) # 0 for every 1 < i < ar(o) then v(o(p1, ..., Dar(e))) # 0.

3.4 Soundness and Completeness Proofs

In this section we provide proofs of the three soundness and completeness theorems above

(Theorems [3.2.15] [3.3.2] and [3.3.8)). To avoid repetitions, we will prove one more general

result, from which these theorems directly follow. We consider (U,C)-restricted Mg -
legal partial L-valuations. These are defined as Mg-legal partial £L-valuations with the
additional requirement that v(y) € U for every ¢ € CN Dom,,. In addition, we say that a
(U, C)-restricted Mg-legal partial L-valuation v is a model of an extended (L, £)-sequent
wif p is an extended (Dom,,, £)-sequent (that is, all L-formulas that occur in p are in
Dom,), and v |= a for some a € p. The general soundness and completeness theorem is

given by:

Theorem 3.4.1. Let G be a pure (L, £)-calculus, F,C sets of L-formulas, S a set of
(L, £)-sequents, and p an extended (F, £)-sequent. Then the following are equivalent:

1. There exists a proof P in G of some (£, £)-sequent s C u from S, that consists
only of (F, £)-sequents, and the cut-formula of every application of a cut rule in
P is an element of C.

2. For every (Unmg,C)-restricted Mg_,-legal partial L-valuation v with Dom,, = F, it
holds that if v is a model of S then it is also a model of .

Note that the availability of the weakening rules ensures that when p is finite (forming
a usual (F, £)-sequent), then 1 can be equivalently written as: there exists a proof P
in G of u from S that consists only of (F, £)-sequents and the cut-formula of every

application of a cut rule in P is an element of C. Therefore:

e Theorem follows by taking C = L (since (Un, £)-restricted Mg_,-legal par-
tial L£-valuations are exactly Mg-legal partial L-valuations).

o Theoremfollows by taking F = C = L (since (Ung, £)-restricted Mg, ,-legal
partial L-valuations with Dom, = L are exactly Mg-legal L-valuations).

In addition, Theorem follows by taking F = L (since (Unp,C)-restricted Mg, -
legal partial L-valuations with Dom, = L are exactly (Uni,C)-restricted Mg, ,-legal

L-valuations).

The following simple proposition will be useful in the proof below:
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Proposition 3.4.2. Let v be a partial £-valuation with I'm, C 2%, s an (£, £)-sequent,
and o an L-substitution such that o(s) is a (Dom,, £)-sequent. Then, v |= o(I(s)) iff

v = o(s) (see Definition (3.2.10)).

Proof. Directly follows from the definitions (note that o(I(s)) = I(o(s))). O

Next, we prove Theorem [3.4.1]

Soundness

Assume that 1 holds. Let v be an (Ung,C)-restricted Mg_,-legal partial £-valuation
with Dom, = F. Suppose that v = S§. Using induction on the length of P, we show
that v |= s for every sequent s occurring in P. It follows that v |= u. This trivially holds
for the sequents of & (note that only (Dom,, £)-sequents in S can appear in P). We
show that this property is also preserved by applications of the rules of G. Suppose that
s=o0(s)Uci U...Ug, is derived from o(s1) Ucy,...,0(s,) Uc, using a pure (£, £)-rule
r = S1,...,8,/8 of G. Assume that v = o(s;) U¢; for every 1 < i < n. We show that
v = s. Since s occurs in P, s is a (Dom,, £)-sequent. Thus, by definition it suffices to
show that v |= a for some o € s. If v |= « for some « € ¢; U ... U ¢y, then we are done.
Assume otherwise. Then our assumption entails that v = o(s;) for every 1 <i <n. We

show that v = o(s’). Distinguish between two cases:

e Suppose that r is a primitive £-rule. Then, o(s;) = (X;:p) for 1 < ¢ < n and
o(s") = (X:p) for some Xi,...,%X,,X C £ and ¢ € L. For every 1 < i < n, since
v = o(s;), there exists some x € X; such that x € v(p). In other words, for every
1 <i<n, X Nov(p) # 0. Now, note that r cannot be a weakening rule. Indeed,
if 7 were a weakening rule then n = 1 and X; = (), and this contradicts the fact
that X; Nv(p) # 0. In addition, r cannot be a cut rule (i.e. we must have X # ().
Indeed, if » were a cut rule, then since the cut-formula of every application of a
cut rule in P is an element of C, we would have that ¢ € C. In this case, since v
is (Ung,C)-restricted, v(p) € Ung, and in particular v(p) € £(r). It would then
follow that X N wv(p) # (), but this is not possible when X = (). Therefore, we have
that r € Pg,,. Since v is Mg_,-legal, v(p) € Unig, - In particular, v(p) € £(r),
and we obtain that X N v(p) # 0. Thus x:p € o(s') for some x € v(p). It follows
that v = o(s).

e Suppose that r is not a primitive £-rule. For every 1 < i < n, since v | o(s;),
we have that v = o([(s;)) (using Proposition [3.4.2). Since v is Mg,,-legal, v
satisfies Sem(r) = {I(s;) | 1 <i<n} = I(s'). Since o(¢) € Dom, for every ¢

that occurs in Sem(r) (since o(s;) for 1 <i < n and o(s’) occur in the proof P),
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and v | o(I(s;)) for every 1 < i < n, we have that v = o(I(s")) as well. By

Proposition [3.4.2, v |= o(s').

Completeness

We prove that 2 implies 1. For this proof, call an extended (L, £)-sequent p’ provable
if there is a proof P in G of some (L, £)-sequent s’ C p’ from S, that consists only of
(F, £)-sequents, and the cut-formula of every application of a cut rule in P is an element
of C. Otherwise, say that y’ is unprovable. Suppose that u is unprovable. We construct
an (Unmg, C)-restricted Mg_,-legal partial £L-valuation v with Dom, = F, that is a model
of §, but not of . Call an extended (L, £)-sequent u* mazimal if it satisfies the following

conditions:

1. frm{p*] C F.
2. u* is unprovable.

3. For every £-labelled F-formula o & p*, {a} U p* is provable.

We first construct a maximal extended (£, £)-sequent p*, such that p C p*. Let aq, ao, ...
be an enumeration of all £-labelled F-formulas. Recursively define an (infinite) sequence
of extended (L, £)-sequents pig, ji1, ..., as follows. Let pg = pu. For k > 1, let ux = pgp_1
iff {ou} U pg—1 is provable. Otherwise, let py, = {ou} U py—1. Finally, let p* = U, q it
It is easy to verify that p* has all required properties. B

Now, define a partial L-valuation v by Dom, = F and v(p) = {x € £ | x:p & p*} for
every ¢ € F. Note that the following property holds:

(a) For every (F, £)-sequent s, v |= s iff sUc is provable for some (F, £)-sequent ¢ C p*.

Proof. Let s be an (F, £)-sequent. Suppose that there exists an (F, £)-sequent
¢ C u such that s U ¢ is provable. The maximality of p* entails that s’ Z p*. Thus
x:p & p* for some x:p € §'. The definition of v entails that x € v(p), and so v |= §.
For the converse, assume that v |= s’. Hence there exists some x:p € s’ such that
x € v(p). By definition, x:p & p*. The maximality of p* entails that there exists a
sequent ¢ C p* such that {x:p} U c is provable. The availability of the weakening

rules entails that s’ U ¢ is provable as well. O

Next, we show that v is Mg,,-legal. We first prove that v(p) € uMccf for every
¢ € F. Thus we prove that for every ¢ € F, v(p) € £(r) for every r € Pg,,. Let
¢ € F,and let r = (Xi:p1), ..., (Xn:p1)/(X:p1) be a primitive £-rule in Pg_,. To see that
v(p) € £(r), we show that if X; Nv(p) # O for every 1 < i < n, then X Nv(p) # 0.
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Suppose that X; Nv(p) # 0 for every 1 < i < n. Hence v | (X;:¢). (a) entails that
for every 1 < i < n, there exists some (F, £)-sequent ¢; C p* such that (X;:p) U ¢; is
provable. Using the rule r, we obtain that (X:p) Uc¢; U ... U¢, is provable. (a) again
entails that v = (X:p), and so X Nwv(p) # 0.

Now, we prove that v = AMGCf, that is: v = Sem(r) for every r € Rg (by
definition, Rg = Rg,,). Let r = s1,...,8,/s be a pure (£, £)-rule in Rg. By defi-
nition, Sem(r) = {I(s;) | 1 <i<n} = I(s). Let o be an L-substitution, such that
o(p) € Dom, = F for every ¢ that occurs in Sem(r). Suppose that v = o(I(s;)) for
every 1 < i <n. Thus v = o(s;) (Proposition for every 1 < i < n. (a) entails that
for every 1 < i < n there exists some (F, £)-sequent ¢; C p* such that o(s;) Uc¢; is prov-
able. Now, using these proofs for 1 < i < n and the rule r we obtain that o(s)Uc;U...Uc,
is provable. (a) entails that v = o(s). By Proposition vEo(l(s)).

Next, we show that v is (Ung, C)-restricted. Let ¢ € CNF. To see that v(y) € Unig it
suffices to show that v(p) € £(r) for every cut rule r € Pg (we already have v(p) € £(r)
for every other primitive rule r of G). Let (Xi:p1),..., (Xu:p1)/0 be a cut rule in Pg.
To see that v(p) € £(r), we show that X; N v(p) = () for some 1 < i < n. Suppose
otherwise. Then for every 1 < i < n v = (X;:p), and (a) entails that there exists some
(F, £)-sequent ¢; C p* such that (X;:p) Ug; is provable. Applying the rule r (with ¢ € C
as the cut-formula), we obtain that ¢; U ... U ¢, is provable. But since ¢; U ... U ¢, C u*,
this contradicts the properties of p*.

Finally, we show that v =S but v £ . Let s € S be an (F, £)-sequent. Obviously,
s is provable, and by (a), v = s. To see that v & u, note that since u C p*, x & v(y) for
every X:p € .



Chapter 4
Canonical Calculi

In the previous chapter we established a strong connection between pure calculi and
many-valued systems. However, there is a price to pay for the high generality. Evidently,
the set of semantic conditions of the many-valued pre-system Mg for some calculus G
might be very complicated, which makes the search for a refuting valuation as com-
plicated as proof-search in G. In such cases the semantic criteria for cut-admissibility
and analyticity might be useless. Thus it makes sense to study narrower families of se-
quent calculi, for which we can obtain effective semantics, as well as simple and decidable
characterizations of their proof-theoretic properties.

A particular interesting family of this sort is the family of canonical systems, that was
introduced in [17]. The idea behind canonical systems implicitly underlies a long tradition
in the philosophy of logic, established by Gentzen in his seminal paper [56]. According
to this tradition, the meaning of a connective ¢ is determined by the derivation rules
which are associated with it. For that matter, one should have rules of some “ideal”
type, in each of which ¢ is mentioned exactly once, and no other connective is involved.
Formulating this idea, [I7] introduced the notion of a “canonical (introduction) rule”,
and “canonical propositional Gentzen-type systems” were defined as two-sided sequent
systems in which: (i) all logical rules are canonical rules; (ii) the usual cut rule, identity-
axiom and all structural rules are included. The semantics of canonical systems was
given using non-deterministic matrices (Nmatrices), a natural generalization of logical
many-valued matrices. This revealed a remarkable triple correspondence in canonical
systems between cut-admissibility, sub-analyticity, and the existence of a characteristic
two-valued Nmatrix. Later the theory was generalized to many-sided sequent calculi that
employ certain (fixed) cut rules and identity axioms [19, 21].

In this chapter we generalize previously studied canonical systems, and study a wide
family of pure calculi employing canonical logical rules. Since all of them are pure

sequent calculi, we utilize the general results of the previous chapter. We show that in

47
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this more restricted settings, the obtained many-valued systems are very simple, and
they can be seen as a slight generalization the framework of Nmatrices from [17]. We
call these many-valued systems partial non-deterministic matrices (PNmatrices). As
Nmatrices, the main attractive property of (finite) PNmatrices is their effectiveness, as
they always induce decision procedures for their underlying logics. In addition, we show
that using the PNmatrix that characterizes a given canonical calculus G, it is easy to
decide whether G admits strong sub-analyticity, strong cut-admissibility and axiom-
expansion. In particular, our results show that strong sub-analyticity is equivalent to
strong cut-admissibility in this family of calculi.

The structure of this chapter is as follows. First, we precisely define the family
of canonical calculi that we study (which is a subfamily of pure calculi studied in the
previous chapters). In Section we present the framework of PNmatrices (which is a
subfamily of many-valued systems introduced in the previous chapter) and show that it
is effective. The connection between canonical calculi and PNmatrices is established and
exemplified in Section[d.3] Finally, Section[d.4]provides simple decidable characterizations

of proof-theoretic properties of canonical calculi based on their characteristic PNmatrices.

Publications Related to this Chapter

Most of the material in this chapter was included in [28 29]. However, the notions
and proofs in these papers consider canonical calculi and PNmatrices in their own right.
Here we introduce them as particular cases of pure calculi and many-valued systems,
and derive our results using the more general theorems from the previous chapters. In
addition, specific cases of canonical two-sided calculi without cut and/or identity axiom
were included in [68, [70].

4.1 Canonical Calculi

Canonical calculi are pure calculi that, in addition to the primitive rules, include only
pure rules of a special well-behaved form, called canonical rules. Each canonical rule is
associated with some connective ¢, and o(pi, ..., Par(s)) is the only formula occurring in
its conclusion. In turn, its premises are composed only from pi, ..., pspo). Formally, this

is defined as follows:

Definition 4.1.1. A pure (£, £)-rule r is called canonical if its conclusion has the form
{X: 0 (p1,...,Dar(e))} for some non-empty X C £ and ¢ € ., and its premises are all
({1, -, Par(e) }, £)-sequents. Canonical pure (£, £)-rules will be also called canonical

(L, £)-rules, and in the case above we will say that r is a canonical (£, £)-rule for o.
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Note that by definition canonical (£, £)-rules for a connective ¢ € {, have the form:

(X)) U oo U D))y ooy (KL p1) U U (XD ) /(X: 0 (p1, ovn s Dar(o)))-
for some m > 0 and Xi, ... ,X?r(o),... ) G ,X%(O),X C £ (where X is not empty). An

) m?

application of a rule of this form is any inference step of the following form:

(X:p1) U ... U (X?T(O):gaar(o)) Uer .. (XU U( %(O):gpw(o)) Ucm
(X0 (1,0, Pare))) U1 U ... U e
where @1, ..., Par(o) are L-formulas, and ¢; is an (£, £)-sequent for every 1 <i < m.

Example 4.1.2. The pure (£, £5)-rules from Example [2.2.6) {t:p1 }, {£:p2}/{£:p1 D p2},
{f:p1, t:pa}/{t:p1 D p2}, and {t:pe}/{t:p1 D p2}, are all canonical. On the other hand,
the rules {f:—p1 }, {£:=pa}/{f:2(p1 Ap2)} and {t:p1}, {t:—p1}/{f:=(p1 A =p1)} from Ex-
ample are not canonical.

Example 4.1.3. Note that we allow the formula in the conclusion to appear with more
than one label. For example, §/{f: % p;,t: xp1} is a canonical ({x'}, {f,t,i})-rule. In
fact, this rule is also a canonical ({¥'}, £3)-rule, that may be useful when (id) is not

available in general.
In turn, canonical calculi are defined as follows.

Definition 4.1.4. A canonical (L, £)-calculus G is a pure (L, £)-calculus, such that Rg

(the set of non-primitive rules of G) consists only of canonical (£, £)-rules.

Note that we do impose any limitations on the primitive rules, in particular allowing
any set of cuts and identity axioms in canonical calculi. Hence the canonical calculi

studied here are substantially more general than previously studied canonical systems:

e The canonical systems of [17] correspond to canonical (£, £2)-calculi whose primi-
tive rules consist of (cut) and (id) (except for the weakening rules), and the conclu-
sion of each non-primitive rule takes the form {x: o (p1, ..., Dar(s))} for some x € £,
and ¢ € $,. In particular, LK (see Example is such a canonical (£, £5)-

calculus.

e The signed canonical calculi of [19, 21] are similar to our canonical calculi, but they
all employ {x:p1}, {y:p1}/0 for every x # y as cut rules and /(£ : p1) as the only

identity axiom.

In addition, the family of canonical calculi studied here includes all labelled calculi from
[26] for many-valued logics.

Due to the special form of the rules of canonical calculi (which, except for cuts,
enjoy the subformula property), in this family of calculi cut-admissibility guarantees

sub-analyticity:
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Proposition 4.1.5. If a canonical calculus enjoys (strong) cut-admissibility, then it is

(strongly) sub-analytic.

Using the semantics, we show below that these two properties are actually equivalent

(Corollary [4.4.4).

4.2 Partial Non-deterministic Matrices

In this section we introduce the semantic framework of partial non-deterministic matrices
(PNmatrices), and show that the consequence relations induced by (finite) PNmatrices
are always decidable. In the next section we show that this framework is indeed suitable
for all canonical calculi.

PNmatrices are many-valued systems (see Definition in which all semantic

conditions have the following well-behaved form:

Definition 4.2.1. An L-semantic condition Z = I over U is called canonical if there is
some ¢ € {r, such that the formulas occurring in Z are all in {p1, ..., Par(e) }, and I has
the form {o(p1,...,Par(e)) = wi | u; € U'} for some non-empty (finite) & C Y. In this

case we also say that Z = [ is a canonical L-semantic condition for ©.

The semantic conditions in Example |3.2.12| are canonical L-semantic conditions for
D. On the other hand, the L£-semantic condition in Example [3.2.13]is not canonical.

Example 4.2.2. Suppose that D€ {2, and let U = {f,t}. The following are canonical

L-semantic conditions for D (over U):
{m=th A= ={nop =/}
U=t = {mop =t

Definition 4.2.3. A (pre-) partial non-deterministic matriz ((pre-) PNmatriz, for short)
for £ is a many-valued (pre-) system M for £, in which all £-semantic conditions in Ay

are canonical.

Now, the semantic conditions in (pre-) PNmatrices can be easily presented using
many-valued truth tables. However, usual deterministic truth tables would not suffice.
Thus, as done in [I7], we use non-deterministic truth tables, where there might be more
than one option to determine the value of a compound formula according to the values
of its immediate subformulas. In fact, we slightly extend this notion, by introducing
partial non-deterministic truth tables, in which we also allow empty sets of options to
appear. This extension will enable us to have “truth tables presentation” for all (pre-)

PNmatrices.
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Definition 4.2.4. Let ¢ € {, and let U be a set of truth vales.

1. A partial non-deterministic truth table (PNtable, for short) for ¢ over U is a function

from U ) to 2U.

2. A partial L-valuation v with Im, C U respects a PNtable = for ¢ over U if
U(0<<>(pla apar(O)))) € E(U(U(pl))a ,U(O(par(o)))
for every L-substitution o such that o({p1, ..., Dar(), 0(P1, - s Par(e)) }) S Dom,.
Example 4.2.5. Let £ = {x'}. Consider the following PNtables for x over U = {uy, us}:
2 | % | % |
Uy {U2} Uy {UQ} Uy 0

U2 {Ul} U2 {ulu Uz} U2 {U2}
The L-valuation assigning us to all formulas respects =, and =3, but not =Z;. In addition,

this is the only £-valuation (whose image is contained in ) that respects Zs.

Now, any set of canonical £-semantic conditions for some connective naturally induces
a PNtable.

Example 4.2.6. Suppose that D€ $%. Let M be a pre-PNmatrix for £ such that
Vm = Um = {f,t}, and Ay consists of the canonical £-semantic conditions for D from
Example [4.2.2] Consider the PNtable Xi for D over {f,t}{]

| s |t
ARG
i T

It is easy to verify that a partial L£-valuation v with Dom, closed under subformulas
and I'm, C {f,t} is M-legal iff it respects =. Note that this PNtable corresponds to the

semantics of “primal implication” from [62].

(1]

The general construction is given by:

Definition 4.2.7. Let M be a (pre-) PNmatrix. For every ¢ € {, on is the PNtable for

o over Vv defined as follows. For every uy, ..., Ugr(0) € VM, oM (U1, ..., Uqr(c)) cOnsists of
all truth values u € Yy such that for every canonical L-semantic condition Z = I € Ay
for o, o(p1, ..., Par(e)) = v € I whenever for every I' € T we have p; = u; € I’ for some
1 <i<ar(e).

Example 4.2.8. Let £ = {x'}. Consider the three pre-PNmatrices M, My and M3 for
L defined by: Vs, = Unm, = {u1, ue} and:

"We represent PNtables for binary connectives by two-dimensional tables. The lines range over the
first argument, and the columns over the second one.
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1. Al\/[1 = {{{p1 = Ul}} = ]2a {{pl = UQ}} = Il}
2. A, = {{m =wi}} = L}
3. AMS = {{{pl = ul}} = Iy, {{pl = ul}} = I, {{pl = u2}} = 12}

where: I} = {xp; = u;} and Iy = {xp; = uz}. Then for every 1 < i < 3, \p, = E; given

in Example 4.2.5]

Proposition 4.2.9. Let M be a (pre-) PNmatrix. A partial £-valuation v whose domain

is closed under subformulas is M-legal iff I'm, C Uy and v respects oy for every o € .

Proof. The proof is completely straightforward using the definitions above. Let v be a

partial £-valuation whose domain is closed under subformulas.

1. Suppose that v is M-legal. By definition, Im, C Upn. Let ¢ € <, and let
© = o(p1, - s Par(o))- We show that v respects opp. Let o be an L-substitution with
o({p1, -, Par(e)s ©}) € Dom,,. We show that v(a(¢)) € om(v(a(p1)), ..., V(0 (Par(s)))-
By definition, it suffices to show that for every canonical L-semantic condition
I=1¢€ Ay for o, o(p1,...,Par(e)) = v(o(g)) € I whenever for every I' € T we
have p; = v(o(p;)) € I’ for some 1 < i < ar(¢). Suppose that for every I' € T
we have p; =v(o(p;)) € I' for some 1 < ¢ < ar(e¢). Then for every I' € Z, v
satisfies o(1"). Since v is M-legal it satisfies Z = I. Hence, v satisfies o(I) (note
that o(¢) € Dom, for each formula ¢ that occurs in Z = I). Since Z=1is a

canonical L-semantic condition for ¢, it follows that o(¢) = v(o(¢)) € o(I). Thus
¢ =v(o(p)) € 1.

2. Suppose that Im, C Uy and v respects oy for every ¢ € { . We show that v is
Me-legal. Thus we have to show that v satisfies every L-semantic condition Z = [
in App. Let Z=1 € Ay Since M is a (pre-) PNmatrix, Z = I is a canonical
L-semantic condition for some connective ¢. Let ¢ be an L-substitution such that
o(p) € Dom, for every ¢ that occurs in Z = 1. Let ¢ = o(p1,...,Dar(s)).- In
particular, ¢ occurs in I, and thus o(p) € Dom,. Since Dom, is closed under
subformulas we also have o({p1,...,Par(e)}) C Dom,. Suppose that v satisfies
o(I') for every I' € Z. Then for every I’ € Z, there is some 1 < i < ar(o)
such that p; =wv(o(p;)) € I. The definition of op ensures that ¢ =wu € [ for
every u € om(v(a(p1)), .-, (0 (Par(s)))). Now, since v respects on, we have that
v(o(p)) € om(v(o(p1)), ..., v(0(Pars)))). Therefore, v =v(o(p)) € I. It follows
that v satisfies o(I). O
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4.2.1 Effectiveness

The major attractive property of PNmatrices is their effectiveness: the logics induced by
finite PNmatrices are all decidable. This can be easily shown for the subclass of proper
PNmatrices, that corresponds to the Nmatrices of [I7] (where no empty sets of truth

values are allowed to appear in the truth tables of the logical connectives):

Definition 4.2.10. A (pre-) PNmatrix M for L, is called proper if Uy is non-empty,

and for every connective o € {$p and uy, ..., Uar(o) € Unt, Om(Ur, .., Uar(o)) N UM # 0.

Example 4.2.11. Let £ = {x'}. Consider the three pre-PNmatrices My, My and Mj
for £ given in Example [4.2.8 Then M; and M, are proper, but Mj is not proper since

*M3<U1) N {ul, Ug} = @

Proper PNmatrices are exactly these in which every partial valuation (whose domain
is closed under subformulas) can be extended to a full one, and thus they are sub-analytic
many-valued systems (see Definition [3.1.16). Hence the effectiveness of proper PNma-
trices directly follows from Theorem In addition, the characterization of strong
sub-analyticity in canonical sequent calculi (Corollary below) will immediately fol-

low from this observation as well.
Proposition 4.2.12. A (pre-) PNmatrix M (for £) is proper iff it is sub-analytic.

Proof (Outline). Suppose that M is proper. The extension of an M-legal partial £-
valuation whose domain is closed under subformulas is recursively defined by induction
on the complexity of formulas. For atomic formulas that are not in the original domain,
we arbitrarily choose a value in Uy;. For non-atomic formulas that are not in the original
domain, we arbitrarily choose a value from Uy that occurs in the (non-empty) set of
options allowed by the corresponding PNtable.

For the converse, note first that if Uy is empty, then the empty valuation (whose
domain is the empty set) cannot be extended. Otherwise, there is some ¢ € <, and
Uy, .. s Ugr(o) € Unt, such that ong(ug, ..., Uar(e)) UM = 0. Define v : {p1, ..., Dar(e)} = Unm
by v(p;) = u;. Obviously, v is an M-legal partial £-valuation, whose domain is finite and
closed under subformulas. However, v cannot be extended to an M-legal L-valuation,

since there is no truth value to assign to o(pi, ..., Par(s))- ]

Corollary 4.2.13. Let M be a finite proper PNmatrix for £. Given a finite set ' of

L-formulas and an L-formula ¢, it is decidable whether I' IFy; ¢ or not.
Proof. Directly follows from Theorem |3.1.18 and Proposition [4.2.12] O

Now, we show that also non-proper finite PNmatrices are effective. This is an imme-
diate corollary of Theorem [3.1.19| using the following theorem:
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Theorem 4.2.14. Let M be a finite PNmatrix for £. Given an M-legal partial £L-
valuation v, whose domain is finite and closed under subformulas, it is decidable whether

v can be extended to an M-legal (full) £-valuation or not.

In other words, the framework of finite PNmatrices allows to effectively check whether
a certain partial valuation (whose domain is closed under subformulas) is a restriction of

a full one. To prove this theorem we use the following notation and proposition:

Notation 4.2.15. For a (pre-) PNmatrix M and U C Uy, we denote by M NU the
(pre-) PNmatrix which is identical to M except for Ungry = U.

Obviously, if an L-valuation is M N U-legal for some U C Upg, then it is M-legal. It
follows that for every PNmatrix M and U C Uy, FvClEvinu-

Proposition 4.2.16. Let M be a (pre-) PNmatrix for £, and let 7 C £ be closed
under subformulas. An M-legal partial L-valuation v, whose domain is closed under
subformulas, can be extended to a (full) M-legal L£-valuation iff v is M NU-legal for some
U C Uy such that M NU is proper.

Proof. Suppose that there is some U C Upg such that M N is proper and v is M N U-
legal. By Proposition there exists an M N U-legal L-valuation v’ that extends v.
Clearly, ¢’ is also M-legal.

For the converse, let v" be an M-legal L-valuation that extends v. Choose U = I'm,,.
Obviously, U C Upn and v is M NU-legal. We show that M N U is proper. Obviously,
U is non-empty. Let ¢ € $p and wuy, ..., ug) € U. Since U = Im,y, there are some
1, -, Par(e) € L, such that v'(¢;) = u; for every 1 <4 < ar(o). Since v' is M-legal,
V' (0(@1, - s Pare))) € OM(Ut, .o s Ugr(o)). By definition v'(o(¢1, ..., Yar())) € U. Hence
oM (Ut - s Uar(e)) VU = onm(Ur, ..., Uar(o)) NU # D O

Proof of Theorem[{.2.1]]. To verify that v can be extended to an M-legal £L-valuation, go
over all finite sets U C Uy such that M NU is proper, and check whether v is M NU-legal

for each of them. Return a positive answer iff such & have been found. The correctness
is guaranteed by Proposition |4.2.16| O]

As a corollary we have the following:

Corollary 4.2.17. Let M be a finite PNmatrix for £. Given a finite set I' of L-formulas

and an L-formula ¢, it is decidable whether I' -y ¢ or not.

Proof. Directly follows from Theorem [3.1.19) and Theorem [4.2.14] O]
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Remark 4.2.18. As done for ordinary matrices (see, e.g., [93]) it is also possible to define
-y, the consequence relation induced by a family o of PNmatrices to be [y o IFn.
A PNmatrix can then be thought of as a succinct presentation of a family of proper
PNmatrices: following the proof of Proposition [4.2.16] the consequence relation induced
by a PNmatrix M can be shown to be equivalent to the relation induced by the family
of all the proper PNmatrices M NU for U C Up;. Conversely, for every family of proper

PNmatrices it is possible to construct an equivalent PNmatrix.

4.3 PNmatrices for Canonical Calculi

To show that the semantics of canonical calculi can be characterized by PNmatrices, it
suffices to note that the semantic conditions induced by canonical rules are all canonical

semantic conditions.

Proposition 4.3.1. Let r be a canonical (£, £)-rule for a connective ¢. Then Sem(r)

is a canonical L£-semantic condition for ¢.
Proof. Directly follows from the definitions. O]

It follows that for every canonical (L, £)-calculus G, the many-valued pre-system

Mg is actually a pre-PNmatrix:

Corollary 4.3.2. Let G be a canonical (£, £)-calculus. Then, the many-valued pre-
system Mg is a pre-PNmatrix for which Fg=Fw. Furthermore, for every set X C £,
the logic induced by G and X is identical to the logic induced by the PNmatrix M§.

Proof. Directly follow from Proposition Theorem |3.2.15 and Corollary |3.2.18] [

Example 4.3.3. Let £ = {D% A?,T?}, and G be a canonical (L, £2)-calculus that
consists of the following rules:

(f:weak) {0}/{f:p1}

(cut) {f:p1}, {t:p1}/0

(f: D) {t:p1 }, {£:02}/{f:p1 D p2}

(tweak) {0}/{t:p:1}
(
(
(f:A) {f:p1, £:pa}/{f:p1 A\ o} (
(
)

id) 0/{f:p1,t:p1}
t: D) {t:p2}/{t:p1 D o}

N) {t:p1}, {tp2}/{t:p1 A p2}
(£:17)  {f:p}/{f:21 T2} ) A{ep}/{ep T}
in primal logic [62] (see Example 2.2.6)). T is standing for the “Tonk” connective, and
the two rules above are equivalent to its original introduction rule from [83]. We sketch

the modular construction of the pre-PNmatrix Mg.
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1. Begin with Gg, a canonical (£, £5)-calculus, that does not have any rules besides

the two weakening rules above. Then, Vi, = 272 = {0, {f}, {t},{f, t}}. Now
since Pg, is empty, Unmg, = VMg, Since Rg, is empty as well, there are no semantic
L-conditions in AMGO, and thus it is represented by “completely non-deterministic”
PNtables, that is omg, (X1,Xs) = VMg, for every o € {D,A\, T} and X1,Xs € VMg, -

. Add (f: D) to Gp to obtain G;. This introduces the following canonical £-semantic

condition for D in AMG13

Sem((f: D)) = {{p1 = {th,pn = {f, t}} {p2 = {f}, 2 = {f, t}}} =
{p1 D p2={f},p1 Dpo = {f,t}}.
Consequently the PNtable of D in Mg, is:

ome, | 0] £} [ {8}] (£t}
D | 2% 242 242 2+
{£} | 2% 242 242 24

{t} | 2% | {{£},{£.¢}} | 2% | {{£}, {£, ¢}
{£.e} | 2% | {{£}.{£, e}} | 2% | {{£}. {£.t}}

. Add all other canonical rules of G to G; to obtain G,. This introduces one more

canonical £-semantic condition for D, two canonical L-semantic conditions for A,
and two for T'. The PNtables in Mg, are given by:

M, 0 o e | {5y
0 213 2L {{e}. {£.0}} | {{t}, {£.2}}
(£} 212 2L2 {{t}, {£.8}} | {{t}, {£.t}}

{t} 242 {Heh{ o3y | {{eh {23} | {{f,t}}
(£ [{{eh{fe3} ] {fe3 [ {{th{feh) | {{f.¢})

Mg, | 0 o | e | {5y}
0 242 {{£}, {£,t}} 2%z {{£}, {£,t}}
{£} | {{£} {5, 03} | {{£) {5, 3} | {{£} {5, 63} | {{£}, {£. t}}
{t} 2% (£} {61 | {{eh {5, e} | {{£.¢})
{£, e} || {{£ £ 3} | {{Eh (£ t}) | {{£.t}} {{f,t}}

Thig, 0 o | e | {5y}

0 242 {{£}, {£,t}} 2%z {{£}, {£,t}}
{£} 242 {{£},{£,t}} 2%z {{£}, {£,t}}
{t} | {{eh {5,237 | {{£.e)) | {eh et} | {{£t}}
{£. e} || {{eh £ 83 | {{& e} | {{eh {Et3) | {{f:t}}
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4. Add (id) to Gz to obtain Gz. This does not effect Ay, but it does change the
legal truth values, and we now have Ung, = {{f}, {t}, {f,t}} (see Example3.2.9).

5. Finally add (cut) to Gs to obtain G. This overrules another truth value, and we
finally have Un, = {{f}, {t}}. Note that the PNtables of M are the same as in
Meg,. Nevertheless, since Un, = {{f}, {t}}, we can reduce them to the following
tables:

ome [ {8} | {8 Ame| {8} | {8} Te| {8} | {8}
(£ | {Heh{edy (e {fF gk ey {g) || (g0 | {8, {¢}}
{ed | (£ [{{er {e3 e el {e} | 0 {{e}}

Note that Mg is not proper since Ty ({t}, {£}) NUnmg = 0.

Example 4.3.4. Suppose that £ contains a unary connective denoted by —, and let G
be a canonical (£, £2)-calculus. Let (£:7) and (t:—) be the two usual rules for —, that is
the rules {t:p1}/{f:—p1} and {£:p; }/{t:—p1} (respectively). The following tables present
- for four different options: (i) there are no canonical rules for — in G; (i) (£:7) is
the only canonical rules for = in G; (i) (t:—) is the only canonical rules for — in G; and
(1v) (£f:7) and (t:—) are the only canonical rules for = in G.
(0 | (i1) |
0 242 0 242
{£} | 2% {f} 242
{t} | 2* {t} || {f},{f,t}}
{£,t} | 2% {f. e} | {{£}.{f,¢}}
(iii) | (iv) ||
0 9£2 0 9£2
{f} | {{e}{f,t}} {£} | {{e). {£,t}}
{t} 242 {e} | {{£){f,t}}
{£, e} || {{t} {f,t}} {f.e3 | {{f.t}}

Remark 4.3.5. The semantics of PNmatrices obtained for canonical calculi according

to the definitions above coincide with the Nmatrices semantics suggested in [17, [19] (see
also [21]) for the (narrower) families of canonical systems studied there. The transition
from Nmatrices to PNmatrices makes it possible to provide semantics for every canonical
calculi, while [I7, T9] handle only a subset of them, called coherent canonical calculi.
Indeed, the calculus G from Example is not coherent (because of the rules for 7T'),

and it is captured by the (non-proper) PNmatrix given above.

It can be easily verified that for LK (see Example [2.2.20)) we obtain the usual two-

valued truth tables semantics of classical logic. In addition, the PNmatrix obtained for
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LK’s (cut)-free fragment is practically equivalent to the semantics of three-valued Schiitte
valuations for this calculus (see [58]). Obviously, since LK has cut-elimination, this
semantics coincides with the usual classical semantics when it comes to the provability of
sequents from the empty set of assumptions. Similarly, the PNmatrix for LK’s (id)-free
fragment coincides with the three-valued semantics introduced in [64] for this fragment
Next, we demonstrate how this semantics can be used to prove that certain applications

of cuts or identity axioms are unavoidable.

Example 4.3.6. Using the PNmatrix semantics of canonical calculi, one can easily verify
that using (cut) is unavoidable in a given derivation. For example, we obviously have
{t:p1 D po} Frk {t:p1 D (ps D p2)} (see Example for a precise definition of LK).
We show that the L, -sequent {t:p; D (p3 D p2)} has no cut-free derivation in LK from
{t:p1 D p2}. Consider a partial L, -valuation v with:

L. Dom, = {p1,p2, p3, 1 D P2,P3 O P2, p1 O (p3 D pa)}-
2. v(p1) = v(ps) = {t}, v(p2) = v(ps D p2) = {f}, v(p1 D (p3 D p2)) = {f},
’U(pl D p2) = {f,t}.

Then v is Myk,,-legal. To see this note that Untpy,, = {{£},{t}, {£,t}}, and the
PNtable OMik,, 18 the following one (omitting the occurrences of the non-legal truth-
value 0):
v, | {2} t) {£.t)
(£ | Heh i ey | {{e) {£, e4) | {{e} {£, ¢})
(e e ey | Hep {6 eh) | {{Et})
{f.e} | (gt [ {Heh{fehr ] {ft])

Since My, , is proper, the partial £g-valuation v can be extended to an Mgk, -legal

L-valuation v'. ¢’ is a model of {t:p; D po} but not of {t:p1 D (p3 D po)}, and

so we have {t:p; D po} Mk, {t:pr D (p3 D p2)}. Corollary entails that
{t:p1 D po} Frk,, {t:p1 D (p3 D p2)}-

Example 4.3.7. Using the PNmatrix semantics, one can easily verify that using (id)
is unavoidable in a given derivation. For example, clearly {t:=p;} Frx {t:=(p1 A p2)}.
Consider a partial Ly-valuation v with Dom, = {p1, p2, —p1, p1 A P2, 7(p1 A p2)}, defined
by v(p1) = 0, v(=p1) = v(p2) = v(p1 Apa) = {t}, and v(—(p1 A pa)) = {£}. Tt is easy to
verify that v is Mrk, -legal: Untyy,, = {0,{£},{t}}, the PNtable AMyg,, 1S the same as
Amg, from Example and the PNtable "Mk, is the one given in case (iv) in Exam-
ple . Since Mk, ; Is proper, v can be extended to an Mk, f—legal L -valuation v'.

ZNote that [58] and [64] concern also the usual quantifiers of LK, while here we only investigate its
propositional fragment.
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v’ is a model of {t:—=p;} but not of {t:=(p1 Aps)}. Hence, {t:—p;} P, {t:=(p1 Ap2)}.

Corollary entails that {t:=p:} ¥k, {t:=(p1 Ap2)}. In other words, {t:=(p1 A p2)}
has no identity-axiom-free derivation in LK from {t:—p;}.

Now, the decidability of canonical calculi and logics induced by canonical calculi are

immediate corollaries.

Corollary 4.3.8. Given a canonical (£, £)-calculus G, a finite set S of (L, £)-sequents
and an (L, £)-sequent s, it is decidable whether § Fg s or not. In addition, given a
canonical (£, £)-calculus G, a set of labels X C £, a finite set I' of L-formulas and an

L-formula ¢, it is decidable whether T" -} ¢ or not.

Proof. Construct Mg according to the definitions above and use Corollary [3.2.16, The-
orem [4.2.14], and Corollary [4.3.2] O

We note that the use of non-deterministic truth tables is essential for charactering
the logics induced by arbitrary canonical calculi. Indeed, the use of non-deterministic
semantics is unavoidable in cases of “syntactic under-specification” in the canonical rules
for the connectives (see [21]). But, even when the calculus employs the usual connectives
with their ordinary introduction rules, non-deterministic truth tables are required to
characterize the cut-free and the identity-axiom-free fragments of the calculus. The next

proposition demonstrates this claim.

Definition 4.3.9. Let M be a (pre-) PNmatrix for £. A connective ¢ € {$/ is called

deterministic in M if on(us, ..., Uar(e)) N U is a singleton for every uq, ..., Ugr(o) € Unm.

Proposition 4.3.10. Suppose that £ contains a unary connective denoted by —, and let
G be a canonical (£, £3)-calculus, whose rules for — are the usual rules: {t:p;}/{f:—p:}
and {f:p1}/{t:—p1}. Let M be any finite PNmatrix for £. If — is deterministic in M
then: Iby£g) and IbyARE

Proof. Assume that — is deterministic in M.

1. Suppose that II—M:H—gC}f. Note that for every n > 0, {='p; | i > n} J«I‘gc}f ="py (it
is easy to verify this using Corollary . Consequently, {='p; | i > n} ¥y —"py
for every n > 0. For every n > 0, let v, be an M-legal L-valuation, which is
a model (with respect to M) of {='p; | i > n}, and not of —="p;. We show that
Um(p1) # vn(p1) for every n > m > 0 (and so, M is infinite). Let n > m > 0. Since
Uy, i a model of ="py, and v, is not a model of ="p;, we have v,,(="p1) # v, (="p1).

This implies (using the fact that -y is deterministic) that v, (p1) # vn(p1)-
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2. Suppose that Il—lel—gi}f. Note that (i) ="p; II—{GtZ}f ="p; for every n,m € Ngyen
provided that n < m; and (iz) —=""p, H‘gi}f —"p; for every n € N (it is easy to
verify this using Corollary . For every n > 0, let v,, be an M-legal L£-valuation,
which is a model (with respect to M) of ="*2p;, but not of ="p;. We show that
Un(p1) # Um(p1) for every n,m € Ngye, such that n < m (and so, M is infinite).
Let n,m € Neye, such that n < m. Then, since v, is a model of ="*2p;, (i) implies
that v, is a model of =p;. On the other hand, v,, is not a model of ="p;. This

implies (using the fact that — is deterministic) that v, (p1) # vm(p1)- O

4.4 Characterization of Proof-Theoretic Properties

In addition to decision procedures, the semantics of PNmatrices is useful for checking
proof-theoretic properties of canonical calculi. In this section we use the semantic charac-
terizations of strong sub-analyticity, strong cut-admissibility, and axiom-expansion from
the previous chapter to obtain simple decidable criteria for these properties in canonical

calculi.

Using Theorem [3.3.3| and Proposition 4.2.12] the criterion for strong sub-analyticity

is immediate:
Corollary 4.4.1. A canonical (£, £)-calculus G is strongly sub-analytic iff Mg is proper.

Proof. By Theorem [3.3.3, G is strongly sub-analytic iff Mg is sub-analytic. By Propo-
sition [4.2.12] this holds iff Mg is proper. O

To characterize strong cut-admissibility, we use the following lemma:

Lemma 4.4.2. Let G be a canonical (£, £)-calculus. For every ¢ € {$,, and every
X1, Xaro), X1, -, X C £ such that X; C X, for every 1 < i < ar(o), we have

ar(o)

OMg (Xlla 7X/ar(<>)) C OMg (X1, 7Xa7”(<>))'
Proof. Directly follows from the definitions. m

Theorem 4.4.3. A canonical (£, £)-calculus G enjoys strong cut-admissibility iff Mg

is proper.

Proof. First, if Mg is not proper, then (by Corollary G is not sub-analytic. By
Proposition [£.1.5], G does not enjoy strong cut-admissibility. Now suppose that Mg is
proper. If G has no cut rules then we are obviously done. Assume otherwise. We use
Theorem to show that G enjoys strong cut-admissibility. Thus, we have to show
that for every My(q),,-legal L-valuation v, there exists an Myaq),,-legal L-valuation v
such that for every ¢ € L: v'(p) = v(yp) iff v(¢) # £. Note that we have:
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o Unm, ., = Unmg since the additional primitive £-rules in s(G) do not have any effect

on the legal truth values.
o U, , = Un,g U {£} by Lemma [3.3.11]
o £ & Ui since G has at least one cut rule.

o oM = opmg for every o € {r since s(G).r and G differ only in their primitive

s(G)ey
rules.

Now, let v be an Mq),,-legal L-valuation. The construction of v’ is done by recursion
on the complexity of formulas. First, for atomic formulas, if v(p) € Ung, we choose
v'(p) = v(p). Otherwise, we (arbitrarily) choose v'(p) to be an element of Unp, (which
is non-empty since Mg is proper). Now, let ¢ € $r, 0 = 0(91, ..., Par(o)), and suppose
v'(¢;) was defined for every 1 < i < ar(e). We choose v'(¢) to be equal to v(yp) if
the latter is in Um,. Otherwise, v(p) = £, and we choose v'(¢) to be some element
of ome (V' (1), -,V (Qar(e))) N Ume (such an element exists since Mg is proper). We
show that for every ¢ € L: v'(p) = v(p) iff v(p) # £. First, if v(p) # £ then
v(p) € Unmg. In this case we chose v'(¢) = v(p). Now, if v(¢) = £ then v(y) & Umg,

and v'(¢) # v(p) since we chose v'(p) € Unig. It remains to show that v' is Myag),,-
legal. By definition, v'(¢) € Unme € Unm, g, ; for every ¢ € L. Suppose (for contradiction)

that v'() € om, g f(v’(cpl), .oy V' (Qar(e))) for some formula ¢ = o(¢1, ..., Par(e)). Thus
V'(p) & omg (V' (1), -,V (Pare)))- If v(p) = £, then our construction ensures that

V() € ome (V' (@1)s sV (Qar(e))) N Unmg- Hence, v(p) # £, and so v'(p) = v(p).
Now, for every 1 < i < ar(o), v'(¢;) = v(p;) iff v(g;) # £, and thus v/'(p;) C v(p;).
Lemma entails that v(¢) € ome (V(91), .-, V(Par(e))). This contradicts the fact that
v is MS(G)Cf—legal. O

As a corollary we obtain the following correspondence in canonical (£, £)-calculi:
Corollary 4.4.4. The following are equivalent for every canonical (£, £)-calculus G:

e Mg is proper.
e G is strongly sub-analytic.

e G enjoys strong cut-admissibility.
Proof. The equivalence follows by Corollary and Theorem [4.4.3] O

Corollary 4.4.5. The question whether a given canonical (£, £)-calculus enjoys strong

sub-analyticity and strong cut-admissibility is decidable.

Proof. Construct Mg and check whether it is proper or not. O
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Remark 4.4.6. A similar equivalence was proved in [I7] for the (narrower) family of
canonical calculi studied there. Note that [17] included also a necessary and sufficient
condition for strong cut-admissibility using a simple syntactic condition of coherence.
It can be shown that the coherence of a calculus G from the family studied in [I7] is

equivalent to the fact that Mg is proper.

Since canonical calculi are decidable, the property of axiom-expansion in them is
decidable as well (see Definition [2.3.21]). Indeed, one has to verify that

{(sz) | @/(Xpl) € PG7 1 S ? S CL?"(Q)} I_Gif (Y < (pla 7par‘(<>)))
for every Y C £ such that 0/(Y:p1) € Pg and connective ¢ € o (recall that G, denotes
the calculus obtained from G by discarding all identity axioms). Alternatively, the

following semantic criterion can be used:

Corollary 4.4.7. Let G be a pure (£, £)-calculus. A connective ¢ € {, of arity n admits
axiom-expansion in G if opg (X1, ..., X)) N L[MG” C Unmg for every Xy, ..., X, € Unmg. If

Mg,, is proper, then the converse holds as well.

Proof. Suppose that ¢ does not admit axiom-expansion in G. By Corollary [3.3.12]
there exists an Mg, -legal L-valuation v, such that XN wv(p;) #( for every X C £
such that 0/(X:p1) € Pg and 1 < i <n, but Xo Nv(e(py,...,pn)) =0 for some Xy C £
such that ()/(Xo:p1) € Pg. Since v is Mg, ,-legal, we have v(o(p1, ..., pn)) € Unic,, and
v(o(p1,....pn)) € OMe,, (v(p1), ..., v(pn)). Since Xo Nov(o(py,...,pn)) =0, we have that
v(o(p1y vy on)) & L(0/(Xo:p1)), and so v(o(p1, ..., pn)) € Unmg. By definition, we have
OMe,, = “Ma> and hence, ong(v(p1), ..., v(pn)) OZ/IMG” Z Um. Finally, note that
v(p1), .-, v(Pn) € Unig, since v is Mg,,-legal and XNwv(p;) # O for every X C £ such that
0/(X:p1) € Pgand 1 <i < n.

For the converse, suppose that Mg, is proper. Assume that there are Xy, ..., X, € Unig
and X € opme (X1, .0, X)) N L{MG” such that X & Un. Consider the partial L£-valuation
v, defined by: Dom,(v) = {p1, ..., Pn,o(P1,-sPn)}, v(p;) = X; for 1 < ¢ < n, and
v(o(p1, -, pn)) = X. v is Mg,,-legal, and since Mg, is proper, there is an Mg, ,-legal
(full) L-valuation v’ that extends v (Proposition 4.2.12). Now, Y N v/(p;) # 0 for ev-
ery Y C £ such that 0/(Y:p1) € Pg and 1 < i < n (since Xq,...,%X, € Un), but
YN (o(p1y ..., pn)) # O for some Y C £ such that 0/(Y:p;) € Pg (since X & Un,,). By
Corollary ¢ does not admit axiom-expansion in G. O

In the case of ordinary canonical (£, £3)-calculi (as those studied in [I7]) it is possible
to obtain a simpler characterization of axiom-expansion, showing that the connectives

that admit axiom-expansion are exactly the deterministic ones. This correspondence was



4.4. CHARACTERIZATION OF PROOF-THEORETIC PROPERTIES 63

originally proved in [I1]. Here we provide a new semantic proof of it, using the more

general characterization given in Corollary [4.4.7]

Corollary 4.4.8. Let G be a pure (£, £2)-calculus with Pg = {(cut), (id)}, in which the
conclusion of each non-primitive rule takes the form {x:¢ (p1, ..., par(e))} for some x € £,

and o € {$. Suppose that Mg is proper. A connective ¢ € {7 admits axiom-expansion
in G iff op is deterministic (see Definition [4.3.9)).

Proof. Following Example , Unig,, = {0,{£},{t}}, and Un, = {{£},{t}}. In

addition, for the given G, the following properties of Mg are easily obtained from the

definitions:

o {{f},{t}} Comc (X1, ..., Xpn) iff O € opm (X1, ..., Xp) for every Xy, ..., X, € Unmg-

e Mg, is proper. Otherwise, OMe,, (X1, e s Xaro)) N Z/IMg_f = () for some ¢ € {, and
X1, .., Xar(o) € UMGU. Let X; = X; U {f} for every 1 <i < ar(¢). By Lemma ,
OMa,, (X1, X)) C OMa,, (X1, s Xar(e)), and 50 omg (XY, -, X, o)) NUMG = 0.
This contradicts the fact that Mg is proper.

Suppose that omg (X1, ... Xar(e)) N Ung is not a singleton for some Xi, ..., X, € Unmg-
Thus {{f},{t}} € omc(X1,...,Xs). Hence, 0 € opmg(X1,...,X,). Therefore, we have
0 € omg (X1, , X)) N Unig,, but 0 & Un. By Corollary , since Mg, is proper, o
does not admit axiom-expansion in G.

For the converse, suppose that ¢ does not admit axiom-expansion in G. By Corol-
lary , there are Xy, ..., X, € Ung and X € onmg (X1, o0, %) OL{MGZ_f such that X & Uni, -
We must have X = (), and hence {{f},{t}} C omg(X1,...,%X,). Hence op. is non-

deterministic. O



Chapter 5
Quasi-canonical Calculi

In the previous chapter we studied the family of canonical calculi, and showed how to
semantically characterize each logic induced by a canonical calculus using a PNmatrix,
and use this PNmatrix to give a decision procedure for the logic. However, a variety of
important logics have pure sequent calculi that are mot canonical, but still have some-
what similar nature. In particular, this is true for the family of quasi-canonical systems,
introduced in [I3]. These are propositional fully-structural two-sided systems, which in
addition to the usual weakening rules, cut and identity axiom, include also logical rules

with the following properties (the language is assumed to have a unary connective —):

1. Exactly one formula is introduced in the conclusion of the rule, on exactly one of
its two sides.

2. The formula being introduced is either of the form o(p1, ..., Par()) or of the form
=0 (P1s - Par(o))-

3. All formulas in the premises of a rule introducing a connective ¢ belong to the set
{p1, - Par(e)s P1, -, Par(o) }-

4. There are no restrictions on the side formulas in the rule application (i.e. the rules

are pure).

Of course, rules of this kind are not canonical in the sense of Definition due to the
following two “violations”: (i) the introduced formula can be not only o(p1, ..., Dar(s)),
but also = ¢ (p1, ..., Par(s)), and (ii) the premises may contain not only atomic formulas
p;, but also —p;. Hence the results obtained in Chapter [4] for canonical calculi do not
directly apply.

In this chapter we show that the theory of canonical calculi can still be exploited for
quasi-canonical systems by translating them into equivalent (in the sense defined below)
canonical calculi. In fact, this is possible for a substantially larger family of many-sided

calculi of which the quasi-canonical systems of [13] are particular examples. In particular,

64
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in the calculi studied in this chapter — does not have any special status, and all unary
connectives of a given language may occur in the premises or precede the main connective
in the conclusions of the logical rules. Note that various calculi for important many-valued
logics (e.g. for the propositional part of the relevance logic of first degree entailment [1J),
as well as the (cut-free) calculi proposed in [I3] and [§] for many paraconsistent logics
(particularly, for C-systems [40]), fall in the family of quasi-canonical calculi studied in

this chapter.

Publications Related to this Chapter

The material in this chapter was included in [29]. However, [29] concerned only two-sided
quasi-canonical calculi with the usual cut and identity axiom, while here we naturally

consider quasi-canonical calculi employing any finite set of labels and primitive rules.

5.1 Quasi-canonical Calculi

As noted above, the language of quasi-canonical systems is assumed in [I3] to include
a unary connective —. This restriction can be lifted by allowing any unary connective
(possibly in addition to —). Similarly, we shall not restrict ourselves to two-sided sequents,
and continue working in the full framework of pure (£, £)-calculi. The notion of a quasi-

canonical rule can then be formalized in our terms as follows:

Definition 5.1.1. A pure (£, £)-rule r is called quasi-canonical if its conclusion has the
form {X: o (p1, ..., Dar(o))} OF {X: % o(p1, ..., Dare))} for some non-empty X C £, o € $,
and * € ¢, and its premises are all ({p1, ..., Do)} U {3xpi | ¥ € OF, 1 <@ < ar(o)}, £)-
sequents. Quasi-canonical pure (£, £)-rules will be also called quasi-canonical (L, £)-

rules.

Note that this definition is more liberal then Definition and every canonical

(L, £)-rule is also a quasi-canonical (£, £)-rule.

Example 5.1.2. Various sequent calculi for paraconsistent logics and relevance logics
employ (some of) the following quasi-canonical (L, £2)-rules (see [§]):
(£:mm) £}/ {£:mi} (t:=) {epd/{t—wi}
(£:2A) £ {fw b {E (1 Ap2)} (3:0A) {fopr, £ope} {E (01 Ap2) )
(£:2V)  A{fopy, fopot/{fm(pr Vip2)} (82V) {teopd, {Eipet /{0 (p1 V p2) }

(£:= D) {fp1, o} /{E:=(p1 D p2)} (t:m D) {epa}, {tipa}/{t:im(p1 D p2)}
Note that non of these rules is a canonical (L., £5)-rule.
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Example 5.1.3. All (non-primitive) rules of G¢, (see Example [2.2.22)) except for the
rule {t:p1 }, {t:=p1 }/{f:=(p1 A —p1)} are quasi-canonical.

In turn, quasi-canonical calculi are defined as follows:

Definition 5.1.4. A quasi-canonical (L, £)-calculus G is a pure (L, £)-calculus, such

that R (the set of non-primitive rules of G) consists only of quasi-canonical (£, £)-rules.

Various well-known logics are induced by quasi-canonical calculi. This includes many
important three and four-valued logics (e.g. for the relevance logic of first degree entail-
ment [I]), a large family of paraconsistent logics known as C-systems ([40]), for which
cut-free quasi-canonical systems were proposed in [13], and various other paraconsistent
extensions of positive classical logic studied in [§]. Note that the quasi-canonical systems
of [13] correspond to quasi-canonical (£, £3)-calculi with = € $L, Pg = {(cut), (id)}, — is
the only connective that may appear in the premises of non-primitive rules, and the con-
clusions of non-primitive rules have the form {x: ¢ (p1, ..., Dar(o)) } O {x:70 (D1, .o, Daro)) }
for x € £4 and ¢ € .

5.2 From Quasi-canonical to Canonical Calculi

We provide a translation of a given quasi-canonical (£, £)-calculus G into a canoni-
cal one T'(G), which is equivalent to G in a sense defined below. The idea is to “en-
code” the information related to the connectives from % in the labels employed in G,

so that connectives from {} “violating” canonicity are removed. To this end, we use

£U{x* | x € £,x € OLY as the set of labels for T(G). We denote this set by £92. Note
that this may be seen as a generalization of the original idea behind two-sided sequents
in classical logic. Indeed, often one-sided sequents are translated to two-sided ones by
differentiating the negated formulas from the non-negated ones using two different labels
(sides).

Definition 5.2.1. For an £-labelled L-formula «, T'(«) is the £9z-labelled L-formula,
defined as follows: T'(a) = x*:¢0 if @ = x: % ¢ for some x € £, x € $k and p € L, and
otherwise T'(a) = a. T is extended to (L, £)-sequents and sets of (£, £)-sequents in the
obvious way (e.g. T'(s) = {T(a) | a € s}).
Example 5.2.2. Suppose that = € L and £ = £5. Then:

T({f:==p1, t:mp1, tipa)) = {£7p1, £ 701, tipa )

The translation of a quasi-canonical calculus into a canonical one is given by:

Notation 5.2.3. Given X C £ and % € {L, X* denotes the subset {x* | x € X} of £9z.
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Definition 5.2.4. Let G be a quasi-canonical (£, £)-calculus. T(G) is the canonical

(L, £2)-calculus that consists of the following rules (except for the weakening rules):

e 7(QG) includes all primitive £-rule in Pg, and, in addition, for every primitive £-
rule in Pg, r = (X;:p1), ..., (Xu:p1)/(Xip1), and x € $L) T(G) has the primitive
£9c-rule (X:p1), ..., (X3:p1)/(X*:p1), denoted below by r*.

e For every quasi-canonical (£, £)-rule r = S/s of G, T(G) includes the (£, £9£)-
rule T'(S)/T'(s), denoted by T'(r).

e For every x € $L, T(G) includes the canonical (£, £92)-rule {x*:p;}/{x: * p1},
denoted below by (x* — x).

Example 5.2.5. Let £ = {—=!, A?}. The system PLK[{(=A =)}] from [§] is practically
a quasi-canonical (L, £g)-calculus. Besides the weakening rules, (cut), and (id) this
calculus includes the following quasi-canonical rules:

(£:A) {fp1, E:po}/{f:p1 A D2} (t:A)  {ti ), {tpa}/{tip1 A pa}

(=) {£:p1}/{tmpi} (£:2A) {f:mpu} {£:po} /{E:2(p1 A pa) )
We denote this system by Go. Now, £3%2 = {f,t,£7,t7}. T(Gyg) is the canonical
(L, £ »¥%)-calculus, with the following rules:

(frweak)  {0}/{f:p1} (trweak)  {0}/{t:p1}

(£ :weak) {0}/{f7:p:} (¢ weak) {0} /{t7:p1}
(cut) {f:p1}, {t:p1}/0 (id) 0/{f:p1, t:p1}
(cut)” {£7:p1}, {t7:p1}/0 (id)™ 0/{f :p1,t o1}

T((£:N)  Afp, Ep}/{Epr Ap2y TW8:A)  {tp}, {tp2}/{tip1 A pa}
T((t:=)  Afp}/{t7:p1} ((£:2A) AE7 i} {£7 2} /{E 701 A pa}
(7 —=1) {fp}/{fpi} (t7—=t) {tTipp/{tiopi}

~

It is easy to see that all rules in T(G) are primitive £%z-rules or canonical (£, £9¢)-
rules, and thus T(G) is a canonical (£, £9%)-calculus. In particular, note that for a
quasi-canonical (£, £)-rule r, T(r) as defined above, can either be a canonical (£, £9£)-
rule (as T((£:=A)) above) or a primitive £%z-rule (as T'((t:—)) above) .

To prove the equivalence between G and T(G) we use the following lemmas:

Lemma 5.2.6. Let x:¢ be an £-labelled £-formula, and ¢ an L-substitution, such that
© & atg or o(yp) is not of the form x) for x € $f and ¢ € L. Then, T'(o(x:¢)) = o (T (x:¢)).

Proof. If ¢ = %1 for some x € $F and ¢ € L, then:
T(o(xp)) =T(x:x o)) =x"0(¢Y) = o(x"¢) = o(T'(x:9)).
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Otherwise, ¢ is either atomic or ¢ = o(p1, ..., Par(e)) for ar(e) # 1, and in both cases
o (i) is not of the form %1 for x € $L and ¢ € L. Then:

T(o(xp)) = T(x:0(p)) = x:0(p) = o(x:p) = o(T(x:)). O

Lemma 5.2.7. Let G be a quasi-canonical (L, £)-calculus, and ¢ an L-substitution.
For every £-labelled L-formula o: {T'(0(0))} Fre) {o(T(a))}.

Proof. Let a = x:¢ (for x € £ and ¢ € L). If ¢ & atr or o(p) is not of the form
xtp for x € &L and ¢ € L, then by Lemma [5.2.6, T(c(a)) = o(T(at)), and obviously,
{T(o(a)} Fr@) {o(T(a))}. Otherwise, ¢ € at; and o(p) = * for some x € . and
¥ € L. In this case, T'(c(a)) = T(x: x¢) = x*0p, and o(T(«a)) = o(a) = x: *x1p. By
applying the rule (x* — x), we obtain that {T'(c(a))} Fr) {o(T())}. O

Proposition 5.2.8. For every quasi-canonical (£, £)-calculus G, set S of (£, £)-sequents
and (£, £)-sequent s: if S kg s then T'(S) by T'(s).

Proof. Tt suffices to show that for every application of a rule of G deriving the (L, £)-
sequent s from the (£, £)-sequents sy, ..., s,, we can derive T'(s) from T'(s1), ..., T (sp) in
T(G). Consider the possible cases:

e s = {x:p} Ucis derived from ¢ by applying a weakening rule. In this case, we can

derive T'(s) = T'({x:¢}) UT(c) from T'(c) by applying weakening as well.

e s = (Xip)Uc U...Ug, is derived from s; = (X1:¢) Ucy, ..., s, = (Xnip) Uc, by
applying of a primitive £-rule r = (X;:p1), ..., (Xu:p1)/(X:p1) of G. If ¢ does not
have the form %t (for x € $L and ¢ € L), then T'(s;) = {X;:0} U T(c;) for every
1<i<mn,and T(s) = {X:p} UT(c1)U...UT(c,). By applying the same primitive
£L-rule r, we can derive T'(s) from T'(s1),...,T(s,) in T(G). Otherwise, ¢ = %
(for x € Ok and ¢ € L£). Here, T(s;) = (X590) UT(¢;) for every 1 < i < n,
and T'(s) = (X*:¢) UT(¢;) U ... UT(c,). By applying r*, we can derive T'(s) from
T(s1),...,T(s,) in T(G).

e s = o(s)UcU...Uc, is derived from s; = o(s)) Uciy..., s, = o(s),) Ue, by
applying a quasi-canonical rule r = s},...,s /s’ of G. For every 1 < i < n,
T(si) = T(o(s})) UT(c;), and thus by Lemma [5.2.7) (using also Proposition [2.2.17),
T(s;) Fray o(T(s;)) UT(c;). By applying the rule T'(r) of T(G) we can derive
o(T(s"))UT(c1)U...UT(c,). Since r is quasi-canonical, s’ consists solely of non-
atomic formulas, and by Lemma[5.2.6| o(T(s")) = T'(c(s')). Thus, we derived T'(s)
in T'(G). O

For the other direction, we define a translation 7!, mapping (L, £<>1£)—sequents to
(L, £)-sequents:
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Definition 5.2.9. For an £%z-labelled £-formula o, T~ () is the £-labelled £-formula,
defined as follows: T '(a) = x: % ¢ if @ = x*: for some x € £, x € {L and ¢ € L,
and otherwise T~ (a) = a. T~ is extended to (£, £9)-sequents and sets of (£, £9¢)-
sequents in the obvious way (e.g. T7!(s) = {T"}(«) | a € s}).

Lemma 5.2.10. T '(a(T(s))) = o(s) for every (L, £)-sequent s, and L-substitution o.

Proposition 5.2.11. For every quasi-canonical (£, £)-calculus G, set S of (L, £<>1£>—
sequents and (£, £9¢)-sequent s: if S Fr) s then T7H(S) Fg T (s).

Proof. Tt suffices to show that for every application of a rule of T(G) deriving the

(L, £98)-sequent s from the (£, £9¢)-sequents si,...,5,, we can derive T'(s) from
T7(s1),...,T7Y(s,) in G. Consider the possible cases:

s = {x:p} Uc is derived from ¢ by applying a weakening rule. In this case, we can
derive T71(s) = T ({x:¢}) UT!(c) from T~'(c) by applying weakening as well.

s = (Xip) U U...Ug, is derived from s; = (X1:¢) Ucy, ..., s, = (Xpip) Uc, by
applying the primitive £-rule (X1:p1), ..., (Xu:p1)/(X:p1) of T(G), that occurs also
in G itself. For every 1 <i <mn, T7(s;) = (Xi:p) UT"!(¢;). By applying the same
rule we can derive T7'(s) = (X:p) UT (c;)U...UT (¢,) in G.

s = (X:p)UcpU...Ug, is derived from sy = (X5:p) Ucy, ..., s, = (X5:p) U, by
applying the primitive £9z-rule r* = (X5:p1)y o, (X5ip1)/(X:p1) of T(G). In this
case r = (X1:p1), ..., (Xn:p1)/(X:p1) is a primitive rule of G. For every 1 < i < n,
T7(s;)) = Xizxp) UT (¢;). By applying the rule r we can derive the (L, .£)-
sequent T 1(s) = (X:xp) UT (1) U...UT Y(c,) in G.

s=0(T(s"))Ucr U...Ug,isderived from sy = o(T(s})) Ucy, ..., s, = o(T(s])) Uey,
by applying a rule T'(r) of T(G), where r = s,...,s,,/s" is a rule of G. By
Lemma [5.2.10] for every 1 < i < n, T7Y(s;) = o(s}) UT Y(¢;). By applying r
we can derive T7(s) = o(s) UT 1) U...UT(c,) in G.

s = {x:xp}Ucis derived from s; = {x*:¢) U ¢ using the rule (x* — x). In this

case we have T~ !(s) = T~!(s;), and obviously we are done. O

It follows that T'(G) is equivalent to the original quasi-canonical calculus G in the

following sense:

Theorem 5.2.12. For every quasi-canonical (£, £)-calculus G, set S of (£, £)-sequents
and (£, £)-sequent s: S g s iff T(S) Fra) T'(s).
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Proof. By Lemma [5.2.10| T-Y(T'(s)) = s for every (L, £)-sequent s (take the “identity
substitution”). Thus the claim directly follows from Propositions [5.2.8/ and |5.2.11, [

A general decidability result for all quasi-canonical calculi immediately follows:

Corollary 5.2.13. 1. Given a quasi-canonical (£, £)-calculus G, a finite set S of
(L, £)-sequents, and an (£, £)-sequent s, it is decidable whether S Fg s or not.
2. Given a quasi-canonical (£, £)-calculus G, a set X C £, a finite set I' of L-formulas,

and an L-formula ¢, it is decidable whether I' I ¢ or not.

Proof. Directly follows from Corollary and Theorem [5.2.12] Note that the construc-
tion of T'(G) from G is obviously computable. O

In addition to decidability, the results of the previous chapters provide a method to
obtain a (pre-) PNmatrix semantics for 7(G) and the logics it induces. Next we show
that in the most common and interesting case, dealing with a quasi-canonical (L, £2)-
calculus G with Pg = {(cut), (id)}, we are also able to use the semantic framework of

PNmatrices to characterize G itself and the logics it induces.

Proposition 5.2.14. Let G be a quasi-canonical (£, £3)-calculus, and v an Mp(g)-legal
L-valuation. Suppose that Pg = {(cut), (id)}. Then, for every (L, £3)-sequent s: v |= s
iff v |=T(s).

Proof. Suppose that v = T'(s). By definition, there exists some £ %z Jabelled £-formula
x:p € T(s) such that x € v(p). If x € £, then x:p € s as well, and clearly v = s.
Otherwise, x = y* for some y € L2 and x € $L, and we have y: x » € s. Now, since
v is My (q)-legal and T'(G) includes the rule (y* — y), we should have y € v(xp), and
consequently, v = s. To see this, note that since T(G) includes the rule (y* — y), we
have that Sem((y* — y)) € Amy g, Since v is My(g)-legal, it satisfies Sem((y* — y).
Now, Sem((y* = y) = {{p1 =X | {y*} CXC £}} = {sp1 =X | {y} C X C £}. Conse-
quently, since y* € v(p), we have y € v(*¢p).

For the converse, suppose that v |= s. By definition, there exists some £s-labelled
L-formula x:p € s such that x € v(p). If ¢ does not have a form ) for x € L, then
x:p € T(s), and clearly v = T'(s). Otherwise, p = 1 for some x € kL and ¢ € £, and
x*1p € T(s). We show that we have x* € v(¢) in this case (and so, v |= T'(s)). First,
since v is My (g)-legal and (cut) € Pr(g), we have X € v(yp) (where £ = t and T = f,
see Example [3.2.9). Since T(G) includes the rule (x* — X), this entails that ¥* & v(¢)
(this is proved as in the first direction above). Finally, since (id)* € Py (q), it follows that
x* € v(v). O
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Corollary 5.2.15. Let G be a quasi-canonical (£, £2)-calculus with Pg = {(cut), (id)}.
Then, Fg=Fm,, and |I—’é:|I—MxT<G) for every X C £,.

Proof. Easily follows from Proposition [5.2.14] Theorem [5.2.12] and Theorem [3.2.15, [

Example 5.2.16. Consider the logic induced by the quasi-canonical calculus Gg from
t

Example |5.2.5 and the set of labels {t}. The corresponding PNmatrix M = M;(}GO),

which is obtained from the canonical calculus T'(Gg) constructed in that example, consists

of{l

1. Um = {{ta tﬁ}a {t7 fﬁ}v {fv t_‘}}'
2. Dy = {{t,t7},{t, £ }}.
3. A and — have the following PNtables:

M| {t,£7} | {t,t7} | {£,t7)
{t. 17} {{e. 171} {{e.e7h {e 71 | {{f, 7))
{e,e7) | e e {6270 | e e b {e, 273 | {{£,t7})
{£,t7} {f:t7}} {f:t7}) {£,t7}}
|
{t. 17} {{f,t7}}
{e,e7) | {t,t7 ) {¢,£7})
{£, 27 | {{t, e ) {,£7}}
Corollary |5.2.15(entails that M characterizes the tcr II—{Gtg (that is: T Iy @ iff T Il—gg’ ©).
Note that M is isomorphic to the three-valued Nmatrix for this logic given in [§]. Fur-

thermore, it is easy to check that this is the case for all the PNmatrices obtained by this

general procedure for the quasi-canonical calculi considered in [8] [13].

'For simplicity, we use a reduced presentation of M as explained in Remark [3.1.12



Chapter 6
Non-pure Sequent Calculi

For various important non-classical logics, such as modal logics and intuitionistic logic,
there is no known (cut-free) pure calculus. Indeed, a major restriction in pure calculi is
that unlimited context sequents may be freely used in all inference steps. Well-known
sequent calculi for modal logics and intuitionistic logic do not meet this requirement, and
thus they do not belong to the family of pure calculi studied in the previous chapters.
For example, consider the following schemes of applications written in the usual notation
of two-sided sequents:
I'or = o U'= ¢ I'= e
1) I'= o1 Dy . Ul = e ) Ul = e
These schemes demonstrate different possibilities regarding context sequents, and non of

them can be presented as a pure rule:

1. Scheme (1) allows only left context formulas, that is: all context sequents should
be subsets of {f:p | ¢ € L}. This scheme is employed in the multiple-conclusion

sequent calculus for intuitionistic logic [90].

2. Scheme (2) again allows only left context formulas, but all of them should begin
with O (O is an abbreviation for {{p | ¢ € I'}). In other words, all context
sequents should be subsets of {£f:0¢ | ¢ € L£}. This scheme is employed in the

usual sequent calculus for the modal logic S4 [96].

3. Scheme (3) exhibits more complicated treatment of the context formulas: each
labelled formula f:¢ in the premise “becomes” f:lJy in the conclusion of the ap-
plication. In other words, any sequent ¢ C {f:p | ¢ € L} can serve as a context
sequent in the premise of the application, provided that {f:0¢ | f:p € ¢} is the

context sequent of the conclusion. This scheme is employed in the usual sequent

72
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calculus for the modal logic K[

In this chapter we introduce a general framework of sequent calculi, called basic
calculi, that allow context restrictions of certain kinds (including those demonstrated
above). Unlike in the previous chapters, we restrict our attention only to two-sided
sequent calculi. Various sequent calculi that seem to have completely different natures
can be directly presented as basic calculi. This includes standard sequent calculi for
modal logics, as well as the usual multiple-conclusion systems for intuitionistic logic, its
dual, and bi-intuitionistic logic. Our goal is to carry out a general and uniform semantic
study of these systems, that will provide useful semantics for them, as well as semantic

criteria for their proof-theoretic properties.

Publications Related to this Chapter

The material in this chapter was included in [15, [73].

6.1 Basic Calculi

In this section we precisely define the general structure of derivation rules that are allowed
to appear in basic calculi. Rules of this structure will be called basic rules. As in
Section [2.2] we explicitly differentiate between a rule and its applications. Derivations in
a certain basic calculus consist of applications of rules, and the rules themselves are just
succinct formulations of their sets of applications. In addition, for the formulation of the
rules, we differentiate between two parts of their applications, namely the contexrt part
and the non-context part (see [92]). The non-context part is obtained by instantiating
a rigid structure that is given in the rule. In turn, the structure of the context part is
determined using context-relations. This structure is less restrictive, as the number of

context formulas is completely free. Next we turn to the formal definitions.

Notation 6.1.1. Throughout this chapter, dealing only with two-sided sequents, we will
not mention the set of labels in the aforementioned notions. For example, we refer to £4-
labelled L-formulas and (L, £2)-sequents simply as labelled L-formulas and L-sequents.
We may use the usual sequent notation I' = A, where I and A are (possibly empty) finite
sets of formulas, interpreted as {f:¢p | ¢ € '} U{t:p | ¢ € A}, and employ the standard
abbreviations, e.g., I, ¢ = v instead of T'U {p} = {¢}, and T" = instead of T = ().

LOur intuitive distinction between context formulas and non-context formulas in rule schemes is based
on the following principle: the exact number of non-context formulas is explicitly specified in the scheme,
while any (finite) number of context formulas may be employed. Taking this into account, note that
context formulas may “change” (as in (3)).
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Name Context-Relation Instances (all pair of the form:)
o {{f:p1, £:p1), (t:p1,tip1)} I'=A,T=A)
Tint {{£:p1,£:p1)} I'= ,I'=)
Ty {{t:p1,t:p1)} (=A, =A)
0 0 (=, =)
K {{£:p1, £:0p1) } '= , 0Or=)
T4 {{£:p1, £:0p1), (£:0py, £:0p1) } (I',dry, =, Or,0dr, =)
T4 {(£:0p1,£:0p1)} (=, 0Or=)
B {{(£:p1, £:0p1), (t:0py, t:p1) } (I'=0A, O = A)
mss | {(£:0py, £:0p1), (t:0py, t:0Opy) } (Or = 0A , Or = 04)

Table 6.1: Important Context-Relations

Definition 6.1.2. An L-context-relation is a finite binary relation on the set of labelled
L-formulas. Given an L-context-relation 7, 7 is the binary relation between labelled
L-formulas consisting of all substitution instances of 7, that is:

7 ={(o(a),o(p)) | o is an L-substitution and (o, ) € T}.
A m-instance is an ordered pair of L-sequents (s, s9) for which there exist (not neces-

sarily distinct) labelled £-formulas aq, ..., a,, and S, ..., 3, such that s; = {aq, ..., a,},
sy ={pB1, ..., Bn}, and a;7F; for every 1 <i < mn.

Several context-relations, that are used in the definitions and examples below, are
given in Table (in some of them the language is assumed to have a unary connective
denoted by OJ).

Definition 6.1.3. A basic L-premise is an ordered pair of the form (s, 7), where s is
an L-sequent and 7 is an L-context-relation. A basic L-rule is a pair of the form P/s,
where P is a finite set of basic L-premise, and s is an L-sequent. The elements of P are
called the premises of the rule, and s is called the conclusion of the rule. To improve
readability, we usually drop the set braces of the set P of premises. An application of a
basic L-rule (s1,m1), ..., (Sn, T,)/s is any inference step of the following form:
o(si)Uecr ... o(sp)Ucy
o(s)UcU...uUd,
where o is an L-substitution, and for every 1 < i < n, ¢; and ¢, are L-sequents such that

/
7

(¢i, ¢}) is a m-instance. The sequents o(sy) Ucy, ..., 0(s,) Uc, are called the premises of

the application, while o(s) U} U...Ud, is called the conclusion of the application.
Table [6.2] provides some examples of basic rules and the forms of their applications.

Note that pure (£, £5)-rules as defined in Chapter are basic L-rules in which all premises

have the form (s, ).
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Name Basic Rule Application
() ({1} 70)/ {1001} S
(59 (e} msa) /() e
(K1) (e} )/ (5:0p1 ) i e
(Do) ({£:p1}, 0)/{£:0p1} Df;
(D) 0. 70/0 —

= e, A1 Do, = Ay
[, To,01 D po = Ay, Ay
I'=e,A Ty e =
[, To01 Do = A
({£:p1, tp2}, m)/{t:p1 O po} V1 D YL, U Dy, o1 = o
where m = {(f:p1 D p2, f:p1 D po)} U1 DU, e Uy D UL = 01 D e

(£:2) | {t:pu}smo), ({£:p2}, m0)/{£:01 D pa}

(£: ) | ({t:pa}, mo), ({£:p2}, Mine) /{£:01 D pa}

Table 6.2: Basic Rules Examples

Convention 6.1.4. Henceforth, we identify pure (£, £2)-rules (see Definition [2.2.5)) with
basic L-rules that employ m, as the context-relation in all of their premises. Thus we

refer to all pure (£, £3)-rules as basic rules.

Definition 6.1.5. A basic L-calculus consists of a finite set of basic £-rules, that includes
the primitive £o-rules: (f:weak), (t:weak), (cut) and (id) (see Page [14). A proof in a
basic L-calculus is defined exactly as in pure (£, £)-calculus (see Definition [2.2.14]), and
we write S Fg s to denote the existence of a proof of an L-sequent s from a set S of

L-sequents in a basic L-calculus G.

Notation 6.1.6. We denote by Rg all basic L-rules of a basic L-calculus G, except for
(f:weak), (t:weak), (cut) and (id). Ilg denotes the set of L-context-relations appearing
in the basic rules of G (in particular, since (cut) is always included, 7y € Ilg for every

basic calculus G).

Note that pure (L, £2)-calculi whose primitive rules include (cut) and (id) are ob-
tained as a particular instance in which IIg = {mp}. In addition, the above notion of a
basic rule is sufficiently general, so that many known sequent systems for various propo-

sitional logics can be easily presented in this framework. Next, we list some of these
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sequent systems, and present their formulation as basic calculi. In the sequel, we will
return to some of these calculi, provide a semantics for them, and use it to study their

proof-theoretic properties.

Remark 6.1.7. When we say that a basic L-calculus G is a calculus for a logic L = (L, 1),
we mean that {t:) | ¥ € T} Fg {t:¢} iff T IF . In cases where there is difference be-
tween the local version of the logic and the global one, as happens in modal logics, we
refer to the global version (see [35]). In addition, this chapter deals only with propo-
sitional logics. Throughout, when we mention a known Gentzen-type system, we refer

only to its propositional fragment.

Example 6.1.8 (LJ). The most famous sequent system for intuitionistic logic is of-
course Gentzen’s LJ [50]. This system manipulates single-conclusion sequents, and thus
it does not fall in our framework ] However, there is an equivalent multiple-conclusion
system, called LJ" in [90], that can be naturally presented as a basic calculus, that
we call LJ. Its propositional language Lry is { L% A% V2 D2} (= can be defined by
¢ DL). The rules of LJ are the same rules of LK (see Example [2.2.20)), except for
(t: D), in which T is used instead of m (see Table [6.1)). Thus this rule has now the
form ({f:p1, t:po}, mint)/{t:p1 D p2}, and its applications allow to infer sequents of the
form I' = 1 D ¢y from T', o1 = ¢y (note that right context-formulas are forbidden). In
addition, since we do not include = in Lyy, we discard its rules, and add the following
basic Ly j-rule for L: 0/{f: L}.

Example 6.1.9 (BLJ). Bi-intuitionistic logic (see, e.g., [59]) is the extension of intu-
itionistic logic with a binary connective dual to implication (denoted here by <). Thus
its language is { 19 A% V2, D2 <2}, and we denote it by Lpry. A sequent system for this
logic (see [80]) can be presented as a basic Lppj-calculus, which we call BLJ, obtained

by augmenting LJ with the following rules:
(f: <) ({f:p1, tipa}, ma) /{£:p1 < P2} (t: <) ({t:p1}, 7o), ({£:p2}, mo) /{t:p1 < P2}

Applications of these rules have the forms:
o1 = P2, A (t: <) Iy = o1, A Ty = Ay
p1 < = A [, To = 1 <2, Ay, Ay

(f: <)

Example 6.1.10 (PLJ). Sequent systems for many paraconsistent logics that extend the
positive fragment of intuitionistic logic are defined and studied in [§]. All of them belong
to the family of basic calculi. For example, we present the system PLJ({(= — D)})
from [8] as a basic calculus, that we call PLJ. Let Lpry = {—', A% V2, D?}. The basic

2Note that canonical single-conclusion (two-sided) sequent calculi, of which LJ is the prototype ex-
ample, were introduced and studied in the author’s M.Sc. thesis (see also [I4]).
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Lprj-calculus PLJ is obtained from LJ by adding the following rules (and discarding
the rule for L1):
(t:m)  ({f:pa}, mo) /{t:mpa} (t:= ) {Epr},mo), ({£:mp2}, mo) /{E:=(p1 D p2) )
Applications of these rules have the forms:
F,()O:A Iy ﬁg@l,Al FQ:_‘()OQ,AQ
(tim) —— (t:— D)
['=—p, A [, Ty = =(01 D w2), A1, Ay

Example 6.1.11 (Systems for Modal Logics). Ordinary sequent systems for modal logics
are surveyed in [96] and [81]. All of them belong to the family of basic calculi. As
examples we present as basic calculi six of them (used later to demonstrate certain
semantic phenomena). Let Lo = {0 =' A% V2 D%}, We use the basic rules (K), (B)
and (S5) (in addition to some of the rules presented in Table[6.2)). (K), (B) and (S5) all
have the form ({t:p;},7)/{t:Op1 }, where 7 is 7, 7g, and mss respectively (see Table[6.1)).

Applications of these rules have the form:

= I'= ¢, 0A O = ¢, 0A
(&) Ol = égp (B) ar :(pljcp, A (55) Or = I:S]D% OA
Based on LK, six basic Lg-calculi are defined as follows:
K =LK + (K) K4 =LK + (K4) KD =K + (D)
KB =LK + (B) S4 =LK + (S4) + (1) S5 = LK + (S5) + (T

Note that [J is the only primitive modality in the language L, and Q¢ can be defined as
—Ll=p. For an extended language with two dual primitive modal operators, one should
modify some of the context-relations in the rules for [J, and add dual rules for ¢. For
example, for the logic 54 the following four schemes are used:

' = ¢, 0A o= A ar, ¢ = OA I'=p A

O = Op, OA [Op=A Or, 0 = 0A I'= 0p, A

Example 6.1.12 (GL). The logic GL (the modal logic of provability, see [94]) is obtained
by adding the axiom O(p D ¢) D Oy to the usual Hilbert system for the modal logic

K. In addition, GL has a well-known sequent system (see, e.g., [75 84, [3]), that can be
presented as a basic Ln-calculus, that we call GL. GL is obtained from LK by adding
(GL) — the basic Lo-rule ({£:0pq,t:p1}, mka)/{t:0p1}. Applications of (GL) allow to
infer sequents of the form 'y, Iy = Uy from 'y, Uy, Oy = .

Example 6.1.13 (IS5). Sequent systems for intuitionistic modal logics provide an in-
teresting source of examples to be studied in the framework of basic calculi, as they
naturally employ more than one (non-trivial) context-relation. For example, the system
(3 from [78] can be presented as the basic L{;-calculus obtained from LJ by adding the
rules (55) and (T') (LY denotes the language obtained by augmenting L£ry with a unary

connective ). In the sequel, we refer to this basic calculus as IS5.
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Example 6.1.14. In [74] several sequent calculi for weak modal logics are introduced.
All of them belong to the family of basic calculi. For example, the first system from [74]
(called M seq there), is the basic Lp-calculus obtained from LK by adding (M) — the
basic rule ({£:p1, t:p2}, 0)/{£:0p1, t:0ps}. Tts applications allow to infer sequents of the
form Uy = Uy from 1 = @s.

Example 6.1.15. Several sequent systems for logics of strict implication are provided in
[65], and can be presented as basic calculi. For example, GS4’ (from [65]) is equivalent
to the basic L.-calculus, obtained from LK by replacing the rule (t: D) with the rule
(t: D*) (see Table . Note that GS4' includes also a less standard rule (denoted by
(— K') in [65]) that cannot be presented as one basic rule. However, one can show that
it is redundant in GS4”.

Example 6.1.16 (GP). Primal logic was defined and studied in [31]. As explained
there, this logic is used in the context of the access control language DKAL. We consider
here the sequent system G'P from [31] for primal logic with disjunction and quotations.
Given a finite set () of constants denoting “principals”, let
L8, = {1° T A% v2 5%} U {q said', ¢ implied' | ¢ € Q}.
The sequent system G P (over ()) can be presented as a basic Egp—calculus, that we call
GPY. The rules of GP¥ are the rules of LK for A,V, and the following rules for the
other connectives (for every ¢ € Q):
(£: L) O/{f: L} (t:T) 0/{t:T}
(£:2) ({tpih mo), {£:p2}, mo) /{£:p1 D p2b (£:D) ({tip}, mo)/{tip1 D pa}
(Said,) ({t:p1}, 79 /{t:q said p;}
(Implied,) ({t:p1},7)/{t:q implied p;}
where 79 = {(f:p1, £:q said p1)}, and 7] = 77U {(f:p1, f:¢ implied p;)} for every ¢ € Q.

Applications of these rules have the form:

f: 1 t: T
( ) 1= ( ) =T
I'i= @, A1 Ty, = A I'= oy, A
(£: ) 1= $1, 81 2, 2 2 =) ¥2
[, T2,010 D e = Ay, Ay I'= @1 D g, A
I'= e A=

(Saidy)

(Implied

0

q said I' = ¢ said ¢ q said I',q implied A = ¢ implied ¢

6.1.1 Proof-Theoretic Properties

Generally speaking, the definition of the proof-theoretic properties from Chapter 2| are
adapted in the obvious way to basic calculi (see Section[2.3). Formally, since we explicitly
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required that each basic calculus includes (cut) and (id), we can not consider the calculi
obtained from a basic calculus by discarding (cut) or (id) as basic calculi. Thus we find

it convenient to restrict the proofs in basic calculi via proof specifications:

Definition 6.1.17. An L-proof-specification is a triple of sets of L-formulas (F,C, A).
Given an L-proof-specification p = (F,C,.A), a proof P in a basic L-calculus G is called
a p-proof if the following conditions hold:

1. P contains only F-sequents (that is £L-sequents consisting only of formulas from F,
see Definition [2.3.3)).
2. The cut-formula of every application of (cut) in P is in C.

3. The id-formula of every application of (id) in P is in \A.

We write S gy p S if there exists a p-proof in a basic L-calculus G of an L-sequent s

from a set S of L-sequents.

Note that Fg is a special case of Fq;,, obtained by choosing p = (£,£,£). In

'p
addition, the following are equivalent:
1. 8 Faiy, s for p = (F,C, A).
2. {s eS| frm[d] C F} l_G[pl sfor o =(F,CNF,ANF).
3. SU{{f:p, t:p} | ¢ € A} |_Grp’ s for p/ = (F,C,0).

Now, we can uniformly define (strong) <-analyticity, (strong) cut-admissibility, and

axiom-expansion using proof-specifications.
Definition 6.1.18. Let G be a basic L-calculus.

1. Let < be a safe partial order on L. G is <-analytic if for every L-sequent s, Fg s
implies '_GIp s for p=({=[s], L, L). G is strongly <-analytic if for every set S of
L-sequents and L-sequent s, S kg s implies S I—G{p sfor p=(=[SU{s}], L, L).

2. G enjoys cut-admissibility if for every L-sequent s, g ps for p = (L, 0, L) whenever
Fa s. G enjoys strong cut-admissibility if for every set S of L-sequents and L-
sequent s, S '_Grp s for p = (L, frm[S], L) whenever S kg s.

3. A connective ¢ € {, admits axiom-expansion in G if I—G{p {f:p,t:p} for the for-
mula Y = <>(p17 7par(<>)) and pP = <‘C7£7 {pla 7par(<>)}>'

Note also that the consequences of (strong) <-analyticity discussed in Section [2.3.1]
(consistency, conservativity, and decidability) hold for (strong) <-analytic basic calculi

as well, with minor modification in their proofs.
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6.2 Kripke-style Semantics for Basic Calculi

In this section we introduce a method for providing semantics for any given basic cal-
culus and proof-specification. Thus, given a basic calculus G and a proof-specification
D that natu-

rally induce a semantic consequence relation "lCc;[p between sequents, for which we have

p, we show how to uniformly recognize a class of semantic structures g

soundness and completeness, i.e. Fqg; p:}_KGFp' The semantic framework employed for
this purpose is a generalization of Kripke-style semantics for modal and intuitionistic
logic, where instead of usual Kripke frames and models, we will have (partial) Kripke

valuations. These are defined as follows:

Definition 6.2.1. A partial Kripke L-valuation (partial L-Kvaluation, for short) is a
function v from the Cartesian product of some set W, (whose elements are called worlds)
and some set Dom, C £ to 216t A partial £-Kvaluation v with Dom, = £ is also

called an £-Kvaluation.

Note that as in Chapter [3| the truth values are subsets of labels. Next, we introduce

the semantic consequence relation associated with a given set of such valuations.
Definition 6.2.2. Let v be a partial £-Kvaluation.

1. A labelled L-formula x:¢ is true in some w € W, with respect to v (denoted by:
v,w = x:p) if p € Dom,, and x € v(w, p).

2. An L-sequent s is true with respect to v:

(a) in some w € W, (denoted by: v, w |= s) if v,w = a for some « € s.
(b) in some set W C W, (denoted by: v, W |= s) if v,w | s for every w € W.

3. v is a model of:

(a) an L-sequent s (denoted by: v = s) if s is a Dom,-sequent and v, W, = s.
(b) a set S of L-sequents (denoted by: v = S) if v |= s for every Dom,-sequent
seS.

Now, the given proof-specification p = (F,C,.A) enforces some simple conditions on
Kvaluations: (1) Asin Chapter[3, Dom, should consist exactly of the formulas in F, those
that are allowed to appear in p-proofs; (2) If some formula ¢ may serve as a cut-formula
(i.e., if ¢ € CNF), the value {£,t} should be never assigned to ¢; and (3) Similarly, 0
should not be assigned to ¢, if ¢ may serve as an id-formula (i.e., if ¢ € AN F). These

restrictions are formulated in the next definition.
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Definition 6.2.3. Let p = (F,C, A) be an L-proof-specification. A partial £-Kvaluation
v is called p-legal if the following hold:

1. Dom, = F.
2. v(w,p) # {£,t} for every w € W, and ¢ € CN F.
3. v(w,p) # 0 for every w € W, and ¢ € AN F.

A special kind of Kvaluations will be particularly needed below:

Definition 6.2.4. A partial £-Kvaluation is called normal if it is (F, L, L£)-legal for some
FCL.

Note that a normal partial £-Kvaluation v assigns either {f} or {t} to any pair
(w, p) € W, x Dom,.

Next we turn to restrictions on Kvaluations imposed by the basic system itself. As
in Chapter |3 the intuitive idea is that each syntactic ingredient of G imposes a certain
constraint on Kvaluations. Taking all of these constraints together, we get a set of
Kvaluations for which G is sound and complete. The exact constraints are formulated

below.

First, we associate with each context-relation 7 of G a binary (“accessibility”) relation

on W,, and enforce certain conditions on the associated accessibility relations.

Definition 6.2.5. Given a set W, a (G, W)-coupling is a function assigning a binary

relation on W to every m € Ilg.

Definition 6.2.6. Let G be a basic L-calculus, v a partial £-Kvaluation, and R a
(G, W,)-coupling.

1. Given an L-context-relation m, R? denotes the binary relation on W, defined as
follows: w;RYw. iff for every two labelled Dom,-formulas aq, as, if as7ma; and

v, wy | ag then v, wy = .
2. (v, R) is called:

(a) m-legal for some 7 € Ilg if R(7) C RY.
(b) TI-legal for some II C Tlg if it is 7-legal for every 7 € II.

Example 6.2.7. Let G be a basic L-calculus, v a partial £-Kvaluation, and & a (G, W,,)-

coupling.

1. Consider the L-context-relation my. By definition, asmoa; iff @y = «;. Thus

w1 Ry wy iff for every labelled Dom,-formula a such that v,w; = «, we have
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v,wy | a. Equivalently, wi R} ws iff v(ws, @) C v(wy,p) for every ¢ € Dom,,.
Therefore, (v,R) is mp-legal iff for every wy,wy € W, such that w;R(mp)wsy, we
have that v(ws, ) C v(wy, ) for every ¢ € Dom,,. In particular, if R(m) is iden-
tity (on W,) then (v,R) is mp-legal. Note that if v is normal, then w, R} w, iff
v(wy, ) = v(ws, p) for every ¢ € Dom,. In this case, (v, R) is mp-legal iff for ev-
ery wi, wy € W, such that wiR(m)ws, we have that v(wse, ) = v(wy, ) for every
@ € Dom,,.

. Suppose that m,, appears in [Ig. Here, asmincar iff as = ap = £ for some p € L.

Thus wy R} wy iff for every labelled Dom,-formula a of the form f:p, if v, wy E a,
then v, w; = a. Equivalently, wi R} w, iff £ € v(wy, ) implies that £ € v(wy, ¢) for
every ¢ € Dom,,. Therefore, (v, R) is mn-legal iff for every wy, wy € W, such that
w1 R(Tine)wa, we have that £ € v(wq, @) implies £ € v(wy, ) for every ¢ € Dom,,.
Note that if v is normal, then (v,R) is mn-legal iff for every wy,ws € W, such
that wyR(mint)we, we have that v(wy,¢) = {t} implies v(ws,¢) = {t} for every
¢ € Dom,. This restriction corresponds to the persistence (or “monotonicity”)
condition that is employed in intuitionistic Kripke semantics, where $(m,) serves

as the accessibility relation.

. Suppose that mk appears in Ilg. Here, w1 R} ws iff v, wy = f:¢ implies v, w; = £:0p

whenever ¢ € Dom, and Uy € Dom,. Equivalently, w; R} w, iff £ € v(wsy, p) im-
plies £ € v(wy,O¢) whenever ¢ € Dom, and Op € Dom,. Therefore, (v,R) is
mk-legal iff for every wq,wy € W, such that w;R(mk)ws, we have that £ € v(ws, )
implies £ € v(wy,Oy) whenever ¢ € Dom, and Op € Dom,. Roughly speaking,

this provides “one half” of the usual semantics of [.

. Suppose that () appears in IIg (this context-relation is used in the rule (M), see

Example [6.1.14). Since there do not exist labelled L£-formulas aq,as such that
QQ@al, wy Rjw, trivially holds for every wy,ws € W,. Thus Ry = W, x W, and
every pair (v, R) is trivially (-legal.

Next we formulate the effect of the basic rules appearing in a basic calculus.

Notation 6.2.8. Given a set W, a binary relation R C W x W, and an element w € W,

we denote the set {w' € W | wRw'} by R[w].

Definition 6.2.9. Let G be a basic L-calculus, v a partial £-Kvaluation, and R a
(G, W,)-coupling. (v, R) is called:

1. r-legal for some r = (s1,m1), ..., (Sn, Ty} /s in Rg if the following condition holds for

every w € W, and L-substitution o such that frmlo({sy,...,sn,s})] € Dom,: if
v, R(m)[w] = o(s;) for every 1 < i < n, then v,w |= o(s).
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2. R-legal for some R C Rg if it is r-legal for every r € R.

Example 6.2.10. Let G be a basic L-calculus, v a partial £-Kvaluation, and R a
(G, W,)-coupling.

1. Suppose that Rg includes a rule r of the form ({t:p;},7)/{t:0p;} (such a rule
appears in various basic calculi for modal logics presented above). (v, R) is r-legal
iff for every w € W, and L-substitution o: if frm[o({t:p1,t:0Op:})] € Dom,, and
v, R(m)[w] E o({t:p1}), then v,w = o({t:0p1}). Equivalently, (v, R) is r-legal iff
for every w € W, and formula ¢: if {¢,0p} C Dom,, and t € v(w', @) for every
w' € R(m)[w], then t € v(w,p). Roughly speaking, this provides the “other half”
of the usual semantics of O (see Example [6.2.7], Item [3)).

2. Suppose that Rg includes a rule r of the form ({t:p;}, ), ({£f:p2}, 7)/{f:p1 D P2}
(a rule of this form appears in LK and LJ with 7 = m). (v,R) is r-legal iff
for every w € W, and L-substitution o: if frm[o({t:p1, £:ps, £:p1 D pa})] C Dom,,
v, R(m)[w] E o({t:p1}) and v, R(7)[w] = o({f:p2}), then v,w = o({f:p1 D pa}).
Equivalently, (v, R) is r-legal iff for every w € W, and two formulas ¢, pq: if
{1, 02,01 D pa} C Dom,, and for every w' € R(n)[w] it holds that t € v(w', ¢1)
and f € v(w', pq), then £ € v(w, p; D P2).

3. Suppose that Rg includes a rule r of the form ({f:py, t:p2}, 7)/{t:p1 D p2} (arule of
this form appears in LK with 7 = g, and in LJ with 7 = 7). (v, R) is r-legal iff
for every w € W, and L-substitution o: if frm[o({f:p1, t:ps, t:p1 D pa})] C Dom,,
and v, R(m)[w] = o({f:p1, t:p2}), then v,w = o({t:p1 D p2}). Equivalently, (v, R)
is r-legal iff for every w € W,, and two formulas @1, pa: if {¢1, v2, 1 D w2} T Dom,,
and £ € v(w', 1) or t € v(w, ps) for every w' € R(m)[w], then t € v(w, Y1 D ¥2).

4. Suppose that Rg includes a rule r of the form (@, 7)/0 (for example, this is the
form of the rule (D), see Table [6.2). Applications of this rule allow to infer an
L-sequent s’ from an L-sequent s whenever (s, s’) is a m-instance. (v, R) is r-legal
iff for every w € W, if v, R(7)[w] = 0, then v, w = () (note that o (@) = 0 for every
L-substitution o). Since the empty sequent is not true in any world, this condition
would hold iff for every world w there exists some w’ € R(7)[w]. In other words,

(v, R) is r-legal iff R(7) is a serial relation.

Now, by collecting the semantic restrictions introduced by the context-relations and
the basic rules, as well as those of the proof-specification, we obtain the set Kg; P of
partial £-Kvaluations for which a given basic calculus G and a proof-specification p are

sound and complete.
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Definition 6.2.11. Let G be a basic L-calculus, and v a partial £-Kvaluation.

1. Given a (G, W,)-coupling R, the pair (v, R) is called G-legal if it is both Ilg-legal,
and Rg-legal.

2. v is called G-legal if (v, R) is G-legal for some (G, W,)-coupling R.

3. Given an L-proof-specification p, v is called GJp-legal if it is both p-legal and
G-legal. Kg; 0 denotes the set of all G[-legal partial £-Kvaluations.

Theorem 6.2.12. g, pzl—;cc[p for every basic L-calculus G and L-proof-specification
p-

The proof is given in Section In order to obtain a very general soundness result,
we chose above the set Kg; 0 to be as large as possible. On the other hand, a stronger

completeness result can be obtained by considering a smaller set of Kvaluations:

Notation 6.2.13. Given a partial £-Kvaluation v, we denote by Id, the identity relation
on W,.

Definition 6.2.14. Let G be a basic L-calculus, and v a partial £-Kvaluation.

1. R denotes the (G, W, )-coupling defined by Rg (mo) = Id,, and Rg(7) = RY for
every other m € Ilg (see Definition |6.2.6)).

2. v is called strongly G-legal if (v, RY) is Rg-legal.
3. v is called differentiated it R} = Id,.

4. Given an L-proof-specification p, v is called strongly G[p-legal if it is both p-
legal and strongly G-legal. ICarp denotes the set of all strongly G p-legal and

differentiated partial £-Kvaluations.

By definition (and following Example [6.2.7 Item [1]), for every partial £-Kvaluation
v, the pair (v, Rg) is m-legal for every m € Ilg. Thus, a strongly G-legal partial L-
Kvaluation is G-legal.

Remark 6.2.15. Following Example [6.2.7] (Item [1]), a normal partial £-Kvaluation v is
differentiated iff w; = wy whenever v(wy, ) = v(wy, ) for every ¢ € Dom,. The name
of this property is taken from [41].

Theorem 6.2.16. g, p:'_’CErp for every basic L-calculus G and L-proof-specification
p-
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The proof is given in Section [6.4 The two last theorems are combined in the following

theorem, that provides an “interval” of possible semantics for a given basic calculus.

Theorem 6.2.17. Let G be a basic L-calculus, and p an L-proof-specification. Then,
"G(p=|_ic for every set KC of partial £-Kvaluations satisfying Ka[p CKC ICG(p.

The proof is given in Section [6.4, The following is a useful instance that does not

consider proof-specifications at all:

Corollary 6.2.18. Let G be a basic L-calculus. Then, Fg=Fx for every set K of
normal G-legal £-Kvaluations that contains all normal strongly G-legal differentiated

L-Kvaluations.

Proof. Since (L, L, L£)-legal partial £L-Kvaluations are exactly normal £-Kvaluations, the
claim directly follows from Theorem [6.2.17]. O]

Theorem provides a general soundness and completeness result applicable to
every basic L-calculus G and L-proof-specification p. Its exact content depends on the
choice of set IC of partial £-Kvaluations. K should meet two conditions: first, it should
contain only G| j-legal partial L-Kvaluations; and second, it should contain all strongly
G p-legal differentiated partial £-Kvaluations. In many cases, using the structure of the
context-relations in Ilg, it is possible to recognize some properties common to all strongly
G[p—legal differentiated partial £-Kvaluations, and derive specific soundness and com-
pleteness results with respect to the set of all G| prlegal partial L-Kvaluations satisfying

these properties. The following proposition is particularly useful for this purpose.

Notation 6.2.19. Given a labelled formula of the form f:p, we denote by f:¢ the labelled
formula t:p. Similarly, t:p denotes the labelled formula £:¢.

Proposition 6.2.20. Let v be a partial £-Kvaluation, and 7, w9, w3 context-relations.

1. Suppose that 73 = m Uy, Then R} = R? N R} . In particular, if 7, C 7 then
Ry, C R} .

2. Suppose that for every labelled Dom,-formulas aq, as, if asmsa; then there exists
o' € Dom, such that apyma’ and o/ma;. Then R o R C R};gﬂ In particular,
if for every labelled Dom,-formulas oy and as, asmiaq implies that there exists a
labelled Dom,-formula o’ such that ayma’ and o/may, then R} is a transitive

relation.

3Given two relations Ri, Ry C A2, aR; o Ryb if there exists some ¢ € A such that aRic and cRyb.
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3. Assume that v is normal. If aymas whenever asmaq, then RY C (Rfm)*l. In

particular, (i) if a;may implies ayma; and vice-versa, then R = (Ry) 1 and

(17) if aymag implies agmag and vice-versa, then R is a symmetric relation.

Proof. 1. Suppose first that w; R} wy. By definition, this means that for every labelled
Dom,,-formulas oy, e, if agmzay and v, wy | ag then v, wy = ay. Since m C 73,
this implies that for every labelled Dom,,-formulas oy, s, if aemay and v, wy = o
then v,w; = a;. Hence, wiRY wy. Similarly, wi RY w,. For the converse, suppose
that wyR? wy and wi R} w,. By definition, this means that for every labelled
Dom,,-formulas oy, ag, if aema; or asmay, and v, ws = as then v, w; = ay. Since
73 C m U Ty, this implies that for every labelled Dom,-formulas o, s, if asmszay

and v, wy = ap then v, w; = a;. Hence, wi R} ws.

2. Let wy,wy € W, such that wyR?, o R} wy. Then there exists w’ € W,, such that
w R w' and w'RY ws. We show that wy R} wy. Let oy, ap be labelled Dom,,-
formulas, such that asmsaq, and v,ws = «y. Therefore, there exists a labelled
Dom,,-formula o' such that a7 o’ and o/ma;. Since w' R} wa, we have v, w' = /.

Since wy Ry w', we have v, w; = ;.

3. Let warlw’ . We show that w’ R} w. Let ai,ay be labelled Dom,-formulas, such
that apma; and v, w = ay. This implies that agmas. Now, since v is normal and
v,w |= ag, we have that v, w £ @3. Since wR; w', we have v, w' [~ @7. Since v is

normal, this entails that v, w’ |= a;. O

The following soundness and completeness results are easily obtained using Proposi-
tion 6.2.20k

Corollary 6.2.21. Let G be a basic L-calculus, and p an L-proof-specification. Suppose
that 7 = 7 o 7 for some 7w € [lg. Let IC be the set of all p-legal partial £-Kvaluations v
for which there exists a (G, W, )-coupling R, such that R(7) is a transitive relation, and
(v, R) is G-legal. Then, Fg=F.

Proof. Clearly, K is a set of G[j-legal partial £-Kvaluations. By Theorem it
suffices to show that K contains all strongly G| p-legal partial L-Kvaluations. Let v be a
strongly G| 5-legal partial £-Kvaluation. Then (v, Rg;) is G-legal. By Proposition
(Item [2), R& (7) = RY is transitive. It follows that v € K. O

Corollary 6.2.22. Let G be a basic L-calculus, and p an L-proof-specification. Suppose
that for some 7 € Ilg, 7 includes only pairs of the form (o, ). Let K be the set of all
p-legal partial £-Kvaluations v for which there exists a (G, W, )-coupling R, such that
R(m) is a reflexive relation, and (v, R) is G-legal. Then, Fg=F.
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Proof. As in the proof of Corollary [6.2.21], it suffices to show that K contains all strongly
G p-legal partial £-Kvaluations. Let v be a strongly G -legal partial £-Kvaluation.
Then (v,Rg) is G-legal. Proposition (Item 1)) entails that R? C Ry. Since
Id, C Ry, R (m) = Ry is reflexive. It follows that v € K. O

Semantic characterizations of <-analyticity, cut-admissibility, and axiom-expansion
in basic calculi follow from Theorem [6.2.17] This is the topic of Section [6.3] To end this

section, we prove a useful property of differentiated p-legal partial £-Kvaluations:
Proposition 6.2.23. Let v be a differentiated (F,C, A)-legal partial £-Kvaluation.

1. If v(w, ) = v(w', ) for every p € F then w = w'.
2. |W,| < 2FNCnAl . 3IFNCnA+FNenA| . 4lFnenAl

Proof. 2 directly follows from 1 by counting the number of possible functions from F to
2{£t} that can be used in an (F,C, A)-legal partial £-Kvaluation. For 1, suppose that
v(w,p) = v(w', ) for every p € F. It follows that wR) w'. Since v is differentiated,

Ry = Id,, and so w = w'. O

Together with Theorem [6.2.17], the last proposition makes it possible to have a se-
mantic decision procedure for deciding whether S kg pS given a basic L-calculus G, an
L-proof-specification p = (F,C, A) with finite F,C and A, finite set S of L-sequents,
and a single L-sequent s. Indeed, it is possible to check all functions of the form
v: W x F — 218t where |W| is bounded according to the last proposition. Theo-
rem and the last proposition entail that § /g, 0 S iff one of these functions is a
strongly G/ -legal partial £-Kvaluation, which is a model of S but not of s. In this
case the semantics is effective, leading to a counter-model search procedure. (Note that
a syntactic decision procedure for this problem is trivial, as one can simply construct
and check one-by-one all possible proof candidates.) It follows that we have a semantic
decision procedure to decide whether S Fg; p S for strongly <-analytic basic calculus
G (where < is safe, see Definition . Indeed, in this case S kg s iff S "Grp s for

p={=SU{s} 1= [SU{s}].I=[SU{s}]).

6.2.1 Examples

In this section we provide various examples of applications of Corollary [6.2.18, by ap-
plying it to some of the basic calculi presented above. In particular, many fundamental
soundness and completeness theorems for known logics and calculi are easily obtained as

special cases.
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Example 6.2.24 (LJ). Using Corollary , we are able to obtain a sound and com-
plete semantics for LJ, which is practically identical to the usual Kripke semantics for
intuitionistic logic. For this purpose, let Ky be the set of normal Lyj-Kvaluations v
that respect the usual truth tables of A,V, L in each world (where obviously, {f} and
{t} are identified with false and true), and in addition there exists a partial order < on

W, satisfying the following conditions:
(persistence) If v(w, p) = {t} then v(w’, p) = {t} for every w' > w.

(implication) v(w,p1 D o) = {t} iff v(w',;p1) = {f} or v(w',ps) = {t} for every
w > w.

We show that (1) Krj is a set of normal LJ-legal L1 j-Kvaluations, and (2) Ky contains
all normal strongly LJ-legal differentiated Lpj-Kvaluations. Corollary |6.2.18 implies
then that FLJ:}_KLJ.

1. Let v € Krj, and let < be a partial order on W, satisfying (persistence) and (im-
plication). Recall that Ipy = {7, mne}. Choose R to be the (LJ, W,)-coupling
assigning Id, to my, and < to my. Clearly, (v,R) is mp-legal. By Example
(Item [2), condition (persistence) ensures that (v, R) is mn-legal. It is straight-
forward to show that (v, R) is Rpj-legal. For example, following Example
(Item [3), (implication) above immediately implies that (v, ®) is (t: D)-legal.

2. Let v be a normal strongly LJ-legal differentiated Lyj-Kvaluation. It is easy
to show that v respects the usual truth tables of A,V, L in each world. We
show that R} is a partial order satisfying (persistence) and (implication). Since
Tint C Tint © Mint, Proposition (Item [2)) entails that R} is transitive. Next,

note that m,, C mp, hence, by Proposition |6.2.20| (Item , Ry C R} ; since

Id, € R}, R 1is reflexive. To see that R} is anti-symmetric, suppotse that
wRy w' and w'R)_w. This implies that v(w, ) = v(w', ¢) for every ¢ € Lyj.
Since v is differentiated, w = w’. It remains to show that (persistence) and (impli-
cation) hold for R . Following Example m (Item , since (v, Ry 5) is mine-legal,
condition (persistence) holds. By Example[6.2.10] (Item[2), since (v, R} ;) is (£: D)-
legal, we have that for every w € W, if v(w, 1) = {t} and v(w, py) = {£} then
v(w, 1 D p9) = {f}. By Example (Item [3), since (v, Ryy) is (t: D)-legal,
we have that for every w € W, if v(w',p;) = {f} or v(w', ps) = {t} for every
w' € R [w], then v(w, 1 D o) = {t}. These two facts together with (persis-
tence) establish (implication).

Now, what happens if we simply apply Theorem [6.2.12|for LJ (perhaps without knowing

about the usual Kripke semantics for intuitionistic logic)? In this case, we obtain that
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LJ is sound and complete for the set of normal LJ-legal Ly j-Kvaluations. This set can
be defined exactly like Kry without restricting < to be a partial order. Thus, we obtain
a semantics which is less restrictive than the usual one. On the other hand, we can
apply Theorem [6.2.16], and obtain that LJ is sound and complete for the set of normal
strongly LJ-legal differentiated Ly j-Kvaluations. This set is a subset of Kp 3 obtained by
imposing also the converse of (persistence) (if v(w, p) = {t} implies v(w’, p) = {t} for

every ¢, then w < w’). Here we obtain a more restrictive semantics than the usual one.

Example 6.2.25 (BLJ). Using Corollary [6.2.18 we obtain a sound and complete se-
mantics for BLJ, which is practically the same as the usual Kripke semantics for bi-
intuitionistic logic (see, e.g., [59]). For this purpose, let Kgry be the set of all normal
Lpry-Kvaluations v satisfying the conditions from Example [6.2.24] and the following

additional condition:
(exclusion) v(w, 1 < pa) = {£} iff v(w', 1) = {£} or v(w', ps) = {t} for every v’ < w.

Now, Kgry is a set of BLJ-legal Lgrj-Kvaluations, that contains all normal strongly
BLJ-legal differentiated Lgy,5-Kvaluations, and so Fgry=Fxg,, by Corollary . This
is shown similarly as for LJ. In particular, the rules of < correspond to (exclusion),
and Proposition (Item [3)) entails that in strongly BLJ-legal Lgyj-Kvaluations

R;)rd = (RU >_1 (since T4y iff 05_27Ti_nt05_1)'

Tint

Example 6.2.26 (PLJ). Using Corollary [6.2.18] PLJ is sound and complete with re-
spect to the set I of normal Lppj-Kvaluations v satisfying the conditions from Exam-
ple |6.2.24] (ignoring the condition involving 1), and the following two conditions:

o If v(w,p) = {£f} then v(w,~p) = {t}.

o If v(w, 1) ={t} and v(w, ~py) = {t} then v(w, =(v1 D p2)) = {t}.

To see this it suffices to show that IC is a set of PLJ-legal Lpyj-Kvaluations containing
all normal strongly PLJ-legal differentiated Lppj-Kvaluations. This is done straightfor-
wardly. Clearly, this semantics is non-deterministic, as the truth values of ¢ in every
world may not determine the truth values of —¢. For example, in an Lpyj-Kvaluation
with a single world w, if v(w, p1) = {t}, then v(w, —p;) can be either {t} or {f}. Note
that this semantics is different from the (three-valued) semantics given in [8] for this

system.

Example 6.2.27 (K). The usual Kripke semantics of the modal logic K can be described
using the set Kk of normal Lo-Kvaluations defined as follows: v € Kk iff v respects the
usual truth tables of the classical connectives in each world, and there exists a binary

relation R on W, such that the following condition holds:
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(necessity) v(w,Op) = {t} iff v(w', @) = {t} for every v’ € R[w].

Now Corollary [6.2.18|implies that Fx=Fx, . To see this, we prove that Kk is a set of nor-
mal K-legal £5-Kvaluations that contains all normal strongly K-legal £g-Kvaluations:

1. Let v € Kk, and let R be a relation on W, satisfying (necessity). Choose R to be
the (K, W,)-coupling assigning Id, to m, and R to mx. Following Example [6.2.7]
(Items [l and [3)), (v, R) is IIk-legal. It remains to show that (v, R) is Rk-legal. We
show it here only for the rule (K). Following Example (Item [1), it suffices
to see that for every w € W, and formula ¢: if v(w’, ) = {t} for every v’ € R[w],
then v(w,dp) = {t}. This follows from the definition of Kk.

2. Let v be a normal strongly K-legal Kvaluation. It is easy to show that v respects
the usual truth tables of the classical connectives in each world. We claim that R} |
is a relation satisfying (necessity). To see this, note that since (v, R) is (K)-legal,
we have that if v(w', ) = {t} for every w’ € R _[w], then v(w,O¢) = {t}. The

converse is obtained from the fact that (by definition) wi Ry ws iff v(ws, p) = {£f}
implies v(wy,dp) = {£} for every p € L.

Example 6.2.28 (Systems for modal logics). The usual Kripke semantics of the modal
logics K4, KD, KB, S4 and S5 can be described as variations on the set Kk (from
Example [6.2.27)), obtained by imposing an additional requirement on R:

o k4 — R is transitive. o g4 — R is reflexive and transitive.
o Cxp — R is serial. e ss — R is an equivalence relation.

e kg — R is symmetric.

For every G € {K4,KD,KB,S4,S5}, Corollary implies that Fg=Fi.. In-
deed, we prove that in each of these cases Kqg is a set of G-legal Lo-Kvaluations that
contains all strongly G-legal Lo-Kvaluations. Let G € {K4, KD, KB} (the proofs for
S4 and S5 are similar and left for the reader).

1. Let v € Kg, and R be a relation on W, satisfying (necessity) and the additional
condition of g (transitivity, seriality, or symmetry). Choose R to be the (G, W,,)-
coupling assigning Id, to mg, and R to the other context relation in Ilg (mg4,7mk, Or
7). We show that v is G-legal:

K4 As in Example [6.2.27, (v, R) is mp-legal and Rky-legal. It remains to show
that R C RY  (and so (v,R) is mks-legal). Suppose that wyRw,. Let ay
and s be labelled Lp-formulas such that asmksaq and v,wy | «y. Then,

ay = fip and oy = £:0¢, or as = a3 = £:0p (for some formula ¢). In
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the first case, (necessity) directly implies that v, w; = ;. Suppose now that
ay = ag = £:0p for some formula ¢. Since v, wy = ay (i.e., v(wy, Op) = {£}),
(necessity) entails that v, w = f:p (i.e., v(w,p) = {£}) for some w € Rlws)].
The transitivity of R then ensures that w; Rw. Again (necessity) implies that

v, w1 = ay. It follows that w; R,  ws.

KD Asin Example(6.2.27, (v, R) is [Ixp-legal, and Rkxp \ {(D)}-legal. In addition,
following Example[6.2.10] (Item [4]), the seriality of R ensures that (v, R) is (D)-
legal. Therefore v is KD-legal.

KB As in Example [6.2.27, (v,R) is mo-legal and Rgg-legal. It remains to show
that R C RY  (and so (v,R) is also mg-legal). Suppose that w;Rw,. Let
a; and as be labelled Lo-formulas such that as7a; and v, ws | as. Then,
ag = f:p and oy = £:0¢p, or ay = t:0p and a; = t:p (for some formula
¢). In the first case, (necessity) directly implies that v,w; | «;. Suppose
now that ap = t:0p and a; = t:p. Since v, wq = s (i.e., v(wy, Op) = {t}),
(necessity) entails v, w = oy for every w € R[ws]. The symmetry of R ensures

that wyRwy, and so v,w; = «;. It follows that wi Ry ws.

2. Let v be a normal strongly G-legal Lg-Kvaluation. Similarly to Example [6.2.27]

one shows that v € Kk. In addition:

K4 Since mgy C mra07ka, Proposition [6.2.20 (Item entails that Rzm is transitive.

KD Since (v, Ricp) is (D)-legal, Ry is serial (see Example [6.2.10} Ttem [4)).
KB Since a;mgay iff apmgar, Proposition 6.2.20 (Item |3|) entails that R} is sym-

metric.

Example 6.2.29 (GL). Semantically, the modal logic GL is characterized by the set of
Kripke frames whose accessibility relation is transitive and conversely well-founded. How-
ever, GL is not strongly complete with respect to models built on this set of frames (i.e.
we have gy @ iff every such frame is a model of ¢, but we do not have T IFqp, ¢ iff every
such frame which is a model of T is a model of ¢, see [94]). Using our method, starting
from the basic calculus GL, we obtain a (different) strongly sound and complete semantics
for GL. Indeed, by Corollary , GL is (strongly) sound and complete with respect
to the set gt of normal Lo-Kvaluations, defined similarly to Kk (see Example ,
with two additional requirements: (1) R is transitive; and (2) If v(w’, ¢) = {£} for some
w' € R[w], then there is some w” € R[w] such that v(w”, ¢) = {f} and v(w”, Ogp) = {t}.
To see this we prove that Kqgr, is a set of GL-legal Lo-Kvaluations that contains all

normal strongly GL-legal Lo-Kvaluations:
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1. Let v € KgL, and let R be a transitive relation on W, satisfying (necessity) and
condition (2) above. Choose R to be the (GL, W,)-coupling assigning Id, to mo,
and R to mk4. Similarly to Example , one proves that R C Ry  (using the
transitivity of R), and so (v, R) is mks-legal. It remains to show that (v, R) is Rgr-
legal. We show it here for (GL). Let w € W,, and let o be an Lg-substitution.
Suppose that v, R(mxqs)[w] = o({£:0py, t:p1}). We show that v,w = o({t:0Op; }).
Assume otherwise. Then v(w,0o(py)) = {£}. Thus (necessity) implies that there
exists some w' € R[w|, such that v(w',o(p;)) = {£f}. By condition (2), there is
some w” € R[w] such that v(w”,o(p1)) = {£} and v(w”,0c(p1)) = {t}. Clearly,
v,w” B o({£:0p1,t:p1}). But, since R(myky) = R, this contradicts the fact that

v, R(ma)[w] = o({£:0p1, t:p1}).

2. Let v be a normal strongly GL-legal L5-Kvaluation. It is straightforward to show
that v respects the usual truth tables of the classical connectives in each world.
We show that there exists a transitive relation R on W, satisfying (necessity) and

condition (2) above. We show that R} has this property (its transitivity is proved

exactly as in Example [6.2.28]):

(a) Since (v,R&y) is (GL)-legal, if v(w', @) = {t} for every w’ € RY [w], then

TK4
v(w,O¢) = {t}. The converse holds since (v, Rgy,) is Tka-legal.
(b) We prove that R  satisfies condition (2) above. Suppose (for contradiction)
that there exist some ¢ € L5 and w € W, such that v(w’, ¢) = {f} for some
w' € Ry [w], and there does not exist w” € Ry [w], such that v(w”, ¢) = {£f}
and v(w”,Op) = {t}. It follows that v, R(m4)[w] = {£:0¢p, t:p}. Since (v, R)
is (GL)-legal, v(w,dp) = {t}. But, this contradicts (necessity).

We note it is not clear whether this semantics for GL is useful (in particular, whether it

leads to a decision procedure). This question is left open for a future work.

Example 6.2.30 (GP®). Using Corollary , we obtain a sound and complete se-
mantics for GP®, which is practically identical to the semantics presented in [31]. For
this purpose, let I be the set of /ng—Kvaluations v that respect the usual truth tables
of A,V, L, T in each world, and satisfy the following conditions:

1. Ifv(w, 1) = {t} and v(w, ps) = {£} then v(w, 1 D a) = {£}.

2. If v(w, po) = {t} then v(w, p; D ¢y) = {t}.

3. For every g € @), there exist binary relations, S? and /9, on W,,, satisfying:
(a) 17 C S1.
(b) v(w,q said ¢) = {t} iff v(w', p) = {t} for every w’ € SIw].
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(¢) v(w,q implied ¢) = {t} iff v(w', p) = {t} for every w' € I[w].

Clearly, this semantics is non-deterministic, as the truth values of ¢; and ¢, in every
world may not determine the value of ¢ D ¢s. As in previous examples, it is straight-
forward to show that K is a set of normal GP%-legal £gP—Kvaluations, that contains
all normal strongly GP%-legal EgP—Kvaluations (the fact that in all strongly GP%-legal
L& ,-Kvaluations R(7?) € R(74) for every ¢ € Q follows from Proposition , Item.

Example 6.2.31 (IS5). Using Corollary we obtain a sound and complete Kripke
semantics for IS5. For this purpose, let K be the set of normal LF;-Kvaluations v sat-
isfying the conditions from Example [6.2.24] and in addition, there exists an equivalence
relation ~, such that v(w,Op) = {t} iff v(w’, ) = {t} for every w’ €~[w]. (Note that
if v € IC, then for every w,w’ € W,, we have that if w < v’ and v(w”, p) = {t} for every
w” e~[w], then v(w”, ) = {t} for every w” €~[w'].) As in previous examples, it is
straightforward to show that K is a set of normal IS5-legal LF;-Kvaluations, that con-
tains all normal strongly IS5-legal £F;-Kvaluations. Interestingly, the Kripke semantics
presented in 78] is not identical to this one. In particular, in our semantics ~ should be

an equivalence relation, and no direct conditions bind < and ~.

6.3 Characterization of Proof-Theoretic Properties

In this section we use Theorem to derive characterizations of strong <-analyticity,
strong cut-admissibility, and axiom-expansion in basic calculi. First, note that the sound-
ness part of Theorem can be utilized for providing relatively simple semantic ar-
guments for the failure of certain proof-theoretic properties. For example, by exhibiting
an (L, 0, L)-legal G-legal £L-Kvaluation which is not a model of some sequent s, we show
that every proof of s requires to use (cut). If we also have g s, then it follows that
G does not enjoy cut-admissibility. Similarly, by using the other two components of the
proof-specification, we can show that a certain calculus G is not <-analytic (for some
<) or that some connective does not admit axiom-expansion in G. Note that proving
facts of this kind using proof-theoretic methods is sometimes very challenging! Next we

provide some concrete examples of such applications.

Example 6.3.1. Let s be the Lgry-sequent {f:py, t:ps, t:p1 D (p1 < p2)}. We show that
|7‘BLer s for p = (LpLy, 0, Lsry) (i-e., there does not exist a proof of s in BLJ without
cuts). By Theorem , it suffices to find a BLJ[ 5-legal Lprs-Kvaluation which is not
amodel of s. Let v be an Lgyy-Kvaluation defined by W, = {wy, ws}, v(w, ¢) = {£,t} for

every w € W, and Lppg-formula ¢ except for: v(wi,p1) = v(ws, p1) = v(ws, p2) = {t},
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and v(wq, p2) = v(wy,p1 D (p1 < pa2)) = v(we,p1 < p2) = {£}. Let R be the (BLJ, W, )-
coupling defined by R(m) = {{wa, wa)}, R(mine) = {(w1, ws2)}, and R(mq) = 0. One can
straightforwardly verify that (v, R) is BLJ-legal, and clearly, v [~ s. However, it is easy
to find a proof for s in BLJ, and thus Fgry s. This provides a semantic demonstration of
the fact that BLJ does not enjoy cut-admissibility (the sequent s is a simplified version
of the one used in [80] to syntactically prove this fact).

Example 6.3.2. It is well-known that S5 does not enjoy cut-admissibility. We provide a
semantic demonstration of this fact. Let s be the Lo-sequent {t:p;, t:00-Cp; }. Tt is easy
to see that s is provable in S5 (using a cut on Opy). Now, let p = (Lo, {p1, O-0p1 }, L0).
We show that /g5 05 (and so, in particular, there does exist a cut-free proof of s). Let v
be an Lo-Kvaluation defined by W, = {wy, ws}, v(w, ¢) = {£, t} for every w € W, and

L-formula ¢ except for:

v(ws, p1) = v(we,Opy) = {t},
v(wy, p1) = v(wi, O-0py1) = v(ws, =0p1) = v(we, O-0p1) = {£}.

Clearly, v is p-legal and v [~ s. Let R be the (S5, W,)-coupling with R(m) = {(wa, w)}
and R(mss) = {(w1, wa), (wa, we)}. One can straightforwardly verify that (v,R) is S5-
legal, and thus v is S5-legal. For example:

e (v,R) is mes-legal since the following conditions are met: (1) if wiR(7ss)w’ and
t € v(w',0p) then t € v(w,0p); (2) if wR(rss)w’ and £ € v(w',0¢) then
f € v(w,Oyp).

e (v, R) is (SH)-legal since the following condition is met: if t € v(w’, ) for every
w' € R(mss)[w], then t € v(w, D).

e (v,R) is (T')-legal since the following condition is met: if £ € v(w’, ¢) for every
u € R(mo)[w], then £ € v(w,Dy).

Example 6.3.3. PLJ is not sub-analytic. This is shown in [§], by proving that the Lpy,3-
sequent s = {t:p1,t:pa D —(p2 D p1)} is provable, but every proof of it must include a
formula that does not occur in sub[s]. Using Theorem [6.2.17, we can provide a semantic
demonstration of this fact. Let p = (sub[s], Lpry, Lpry). Consider the p-legal partial
Lpyy-Kvaluation v, defined by W, = {wy, wy}, and:

v(wi, pr) = v(wi, p2) = v(wi, =(p2 D p1)) = v(wi,p2 D =(p2 D p1)) = {£},
v(wy, p2 D p1) = {t},

(w2, ~(p2 D p1)) = v(wz,p2 O =(p2 D p1)) = {f},
v(wa, p1) = v(wa, p2) = v(wz,p2 D p1) = {t}.

<
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Let R be the (PLJ, W,)-coupling defined by R(mint) = { (w1, w1), (wa, we), (wy,we)} and
R(mo) = Id,. 1t is straightforward to show that (v, R) is PLJ-legal, and so v is PLJ [0
legal. Clearly, v = s. By Theorem [6.2.17] Fpry; p S In other words, there does not exist

a proof of s in PLJ consisting solely of sub[s]-sequents.

Next, we present characterizations of strong <-analyticity, strong cut-admissibility,
and axiom-expansion in basic calculi, that may be used to prove these properties. For
simplicity of the presentation, we shall not discuss the weak versions of <-analyticity
and cut-admissibility, but note that they are always implied by the strong property (by
takings S = ()). We use the following additional notion:

Definition 6.3.4. An instance of a partial £-Kvaluation v is a normal (full) £-Kvaluation

v" such that W, = W, and v'(w, ¢) C v(w, ¢) for every w € W, and ¢ € Dom,,.
The following proposition immediately follows from the definitions.

Proposition 6.3.5. Let v be a partial £-Kvaluation, and let v' be an instance of v.
Then, for every Dom,-sequent s: if v/ = s then v | s. If v is (F,C, A)-legal and

frm[s] C C, the converse holds as well.

The following characterization of strong <-analyticity follows from the previous re-

sults.

Corollary 6.3.6. A basic L-calculus G is strongly <-analytic iff for every set S of £-
sequents and L-sequent s, S by, s implies S i, s, where Ky is the set of all normal G-
legal £-Kvaluations, and K5 is the set of all normal strongly G-legal partial £-Kvaluations
whose domain is |=[S U {s}].

Proof. Suppose that G is strongly <-analytic. Assume that S ki, s for some set &
of L-sequents and L-sequent s. By Corollary [6.2.18, § Fg s, and so S I—G(p s for
p={=[SU{s}],L,L). Note that p= (|=[SU{s}], L, L)-legal partial L-Kvaluations
are exactly normal partial £-Kvaluations whose domain is |=[S U {s}]. Therefore, by
Theorem [6.2.17, S F, s.

For the converse, suppose that S Fg s. By Corollary [6.2.18, S Fx, s, and so
our ass<umption entails that S Fx, s. Theorem again entails that S g p S for
p:<\L_[8U{S}]7£7£> [

The above characterization might be quite complicated to be used in practice. There-
fore, we now present a simpler semantic criterion, that turns out to be useful for many

basic calculi.
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Corollary 6.3.7. Let G be a basic L-calculus. Suppose that every normal strongly
G-legal partial £-Kvaluation whose domain is closed under < has a G-legal instance.

Then G is strongly <-analytic.

Proof. We use Corollary [6.3.6] Let S be a set of L-sequents, and s a single L-sequent.
Let Ky and K5 be defined as in Corollary Assume that S kg, s. We prove that
S b, s. Let v € Ky, and suppose that v = S. Since Dom,, = [=[S U {s}] is closed under
<, our assumption entails that there exists a G-legal instance v’ of v. Thus v' € K. By
Proposition we have v/ |= S. Since S Fx, s, we have v/ = s. Proposition [6.3.5]
entails that v |= s. O

Before turning to some examples of applying the criterion above, we present a charac-
terization of strong cut-admissibility. Its proof is similar to the proof of Corollary

Definition 6.3.8. Given a set C C £, an L-Kvaluation is called C-cut-restricted if it is
(L,C, L)-legal. An L-Kvaluation is called cut-restricted if it is (-cut-restricted.

Corollary 6.3.9. A basic L-calculus G enjoys strong cut-admissibility iff for every set S
of L-sequents and L-sequent s, S ki, s implies S i, s, where Iy is the set of all normal
G-legal £-Kvaluations, and Ky is the set of all frm|[S]-cut-restricted strongly G-legal

L-Kvaluations.
Again, the following provides a simpler sufficient criterion:

Corollary 6.3.10. Let G be a basic L-calculus. Suppose that every cut-restricted
strongly G-legal L-Kvaluation has a G-legal instance. Then G enjoys strong cut-
admissibility.

Proof. We use Corollary[6.3.9] Let S be a set of L-sequents, and s a single £-sequent. Let
ICi and K, be defined as in Corollary[6.3.9f Assume that S i, s. We prove that S b, s.
Let v € Ko, and suppose that v = S. Since v is cut-restricted, our assumption entails
that there exists a G-legal instance v’ of v. Thus v' € K. By Proposition [6.3.5], we have
v = S (since v/ is (L, frm[S], £)-legal). Since S b, s, we have v’ |= s. Proposition[6.3.5]
entails that v |= s. O

Next we apply the previous criteria to prove strong <-analyticity and/or strong cut-

admissibility for some of the basic calculi presented in the examples above.

Example 6.3.11. We use Corollary[6.3.10|to show that LJ enjoys strong cut-admissibility.
Let v be a cut-restricted strongly LJ-legal Ly j-Kvaluation. We recursively construct an
instance v’ of v. For every w € W, and for every atomic formula p, v'(w,p) = {x}
if v(w,p) = {x}, and otherwise v'(w,p) = {t} (say). Now suppose that v'(w,¢;) and

v'(w, p2) were defined for every w € W,:
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o v'(w,p1 D ¢g) is defined by: if v(w,¢1 D ¢2) = {x} then v'(w,p1 D ) = {x}.
Otherwise v'(w, o1 D p2) = {t} iff for every w’ € R} _[w], either v'(w’, 1) = {f}
or v'(w', ¢y) = {t}.

o v'(w, 1 A pa) is defined by: if v(w, 1 A p2) = {x} then v'(w,p; A ¢2) = {x}.
Otherwise v'(w, 1 A pa) = {t} iff v/(w, 1) = {t} and v'(w,py) = {t}. Similar

definitions are used for the other connectives of LJ.

Clearly, v is an instance of v. Based on the fact that v is a cut-restricted strongly LJ-legal

Lr3-Kvaluation, it is easy to prove that (v, Ry ;) is LJ-legal (and so v" is LJ-legal).

Example 6.3.12. While BLJ does not enjoy cut-admissibility (Example [6.3.1]), we use
Corollary to show that it is still strongly sub-analytic. This answers a question
raised in [80]f] Let v be a normal strongly BLJ-legal partial Lpry-Kvaluation, whose

domain is closed under subformulas. A construction of an instance v of v, is done as in

Example [6.3.11| with the following addition:

o If v(w, 1 < o) = {x} then v'(w, p1 < p2) = {x}. Otherwise v'(w, p; < ¢2) = {£}
iff o'(w', 1) = {£} or v'(w', o) = {t} for every w' € R} [w].

Clearly, v" is an instance of v. Based on the facts that v is a normal strongly BLJ-legal
partial Lgyrj-Kvaluation, and that Dom, is closed under subformulas, it is straightfor-

ward to prove that (v, Rjr;) is BLJ-legal.

Example 6.3.13. Following Example [6.3.3], PLJ is not sub-analytic. As a substitute,
a weaker property is proved for this system in [§] (called the n-subformula property).
Roughly speaking, this property means that whenever a sequent s is provable, there also
exists a proof of s that includes only formulas from sub|s] and some of their negations. To
be more precise, it is equivalent to strong nsub-analyticity, where nsub is the transitive

closure of the union of the relation sub and

=i, (10 92)) | 1,02 € Loy, o € {A,V,D},i=1,2}.
Note that nsub is safe, and so strong nsub-analyticity suffices to establish decidability.
Next, we prove strong nsub-analyticity for PLJ using Corollary [6.3.7 Let v be a normal
strongly PLJ-legal partial Lprj-Kvaluation, whose domain is closed under subformulas.
A construction of an instance v" of v is done as in Example with the following
addition: v'(w, —p) = {x} if v(w,~p) = {x}, and v'(w, ~¢) = {t} otherwise. Clearly,

v’ is an instance of v. Based on the fact that v is a normal strongly PLJ-legal partial

4 Note that other systems for this logic, that enjoy cut-admissibility, were devised in [59] and [80].
However, these systems do not employ the standard notion of a sequent used in Gentzen-type systems,
but more complicated data-structures.
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Lprs-Kvaluation, we show that v’ is PLJ-legal, since (v/, Ry 5) is PLJ-legal. To see that
(v, Rpy) 1s mme-legal, it suffices to note that for every ¢ € Lppy, if v'(w, p) = {t} then
v'(w', o) = {t} for every w' € R(min)[w]. We claim that (v',R%p5) is Rppy-legal. We
demonstrate it here only for the rule (t:— D). Thus we show that if v'(w, ¢;) = {t} and
V' (w, —pe) = {t} then v'(w, =(¢1 D ¢2)) = {t}. Assume that v'(w, —(p1 D ¢2)) = {£}.
Our construction then ensures that =(¢1 D ¢2) € Dom,, and v(w,=(¢1 D ¢2)) = {£}
as well. Since {1, 2} C [™[=(p; D ¢2)] and Dom,, is closed under nsub, we have
that {¢1, @2} € Dom,. Since (v, Rpry) is (t:— D)-legal, either v(w, 1) = {£} or
v(w, =) = {£}. By our construction, v'(w, p1) = {£} or v'(w, =ps) = {£}.

Example 6.3.14. Each of the four basic calculi K, K4, KD, and S4 admits the semantic
criterion given in Corollary (and so they all enjoy strong cut-admissibility). To
see this, let G be any one of these calculi, and v a cut-restricted strongly G-legal L-
Kvaluation. We recursively construct an instance v’ of v. For every w € W, and for
every atomic formula p, v'(w,p) = {x} if v(w,p) = {x}, and otherwise v'(w,p) = {t}
(say). Now suppose that v'(w, p1) and v'(w, ¢y) were defined, define v'(w, 1 D ps) as
follows (similar definitions for the other classical connectives): if v(w,p; D o) = {x}
then v'(w, ¢1 D ¢2) = {x}, and otherwise v'(w, p1 D o) = {t} iff either v'(w, p;) = {£}
or v'(w, p9) = {t}. In addition, v'(w,Op) = {x} if v(w,Op) = {x}, and otherwise we set
V'(w,Op) = {t} iff v/(w', ) = {t} for every w’ € RY[w] (where 7 is the context-relation
in Ilg, that is not mp). Clearly, ¢’ is an instance of v. Using the fact that v is a cut-

restricted strongly G-legal L£o-Kvaluation, it is easy to show that (v/, Rg) is G-legal.

Example 6.3.15. While KB and S5 do not enjoy cut-admissibility (for S5, see Exam-
ple , Corollary can be used to show that they are still strongly sub-analytic.
We demonstrate it here for KB. Let v be a normal strongly KB-legal partial L£x-
Kvaluation, whose domain is closed under subformulas. A construction of an instance
v of v is done exactly as in Example [6.3.14 We show that ¢’ is indeed a KB-legal
Kvaluation, as (v/, Ryg) is KB-legal. To see that (v',Ryg) is mg-legal, we show that
Ry C R;’r’B Suppose that w; ) ws. Note that by Proposition (Item , we have
that wy R w; (because of the structure of 7g). We prove that wlRfr/ng. Let oy and ay
be labelled Lp-formulas such that asmga; and v, ws = as. The structure of mg ensures
that there exists some ¢ € L such that either ay = f: and oy = £:0p, or ay = t:Lp
and oy = t:p. If Op € Dom, then «a; and ay are labelled Dom,-formulas (since Dom,,
is closed under subformulas). In this case, since wi R} wq, we have that v, w; E a1, and
we are done. Otherwise, for every w € W, v'(w,O¢p) = {t} iff v'(v', p) = {t} for every
w € RY_[w]. Now, if ay = f:p and oy = £:0¢p, then v,w; |= ay directly entails that
v,wy = aq. Otherwise, as = t:0p and ay = t:¢. It follows that v/(w’, @) = {t} for every

w' € Ry [wy]. Since wpRY wy, v,w; = a; in this case as well. Finally, we claim that
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(v, Rikg) is Rks-legal. We show it here only for the rule (B). Following Example
(Item [1)), we should prove that for every w € W, and Lo-formula ¢: if o'(v’, ) = {t}
for every w' € R} _[w], then v'(w,O¢) = {t}. Let w € W,, and ¢ € Lp. Suppose that
v'(w', @) = {t} for every w’ € R} _[w]. If Oy & Dom,, then the construction of v directly
entails that ¢'(w,O¢) = {t}. Otherwise, ¢ € Dom, as well, and the construction of v’
entails that v(w', ) = {t} for every w’ € R} [w]. Since v is strongly KB-legal, (v, Rkg)
is (B)-legal. Thus we have that t € v(w,Op) (see Definition Item [1). It then
follows that v'(w,O¢) = {t}.

Example 6.3.16. Using the semantic criterion of Corollary [6.3.10] it is easy to see that
GP? enjoys strong cut-admissibility. The construction of a GP?-legal instance for every
cut-restricted strongly GP%-legal ,C?;P—Kvaluation is done as for K (see Example,
with straightforward modifications for ¢ said and ¢ implied. In addition we replace the
{f, t} values assigned to formulas of the form ¢; D ¢y by the value assigned to s in

each world.

Example 6.3.17. IS5 does not enjoy cut-admissibility, since the £F;-sequent

s ={£:00p1 V p2), t:0py, t:(0pe DL) DL}
is provable, but not cut-free provable (see [78]). Using Theorem [6.2.12] one can semanti-
cally verify that there is no cut-free proof of s, by constructing an IS5-legal (L5, 0, LF;)-
legal £Y;-Kvaluation which is not a model of it. In addition, the condition for strong
sub-analyticity given in Corollary does not hold for IS5. Since this condition is
only proven to be sufficient, it does not mean that IS5 is not strongly sub-analytic, and

this question remains open.

Finally, Theorem [6.2.17|also naturally leads to the following semantic characterization

of axiom-expansion.

Corollary 6.3.18. Let o € $, and let ¢ = o(p1, ... , Par(s)). © admits axiom-expansion in
a basic L-calculus G iff every (£, L, {p1, ..., Par(s) })-legal strongly G-legal £-Kvaluation
is also (£, L, {¢})-legal.

Proof. We prove one direction. The converse is similar. Assume that ¢ admits axiom-
expansion in G. By definition, I—G[p {f:0,t:p} for p= (L, L, {p1, ., Par(e)}). Theo-
rem entails that every strongly G j-legal £-Kvaluation is a model of {f:p, t:p}.
It follows that in every strongly G| j-legal £L-Kvaluation v, v(w, ) # 0 for every w € W,.
Thus, every strongly G j-legal L-Kvaluation is (£, £, {})-legal. O

Example 6.3.19 (LJ). Using the criterion given in Corollary|[6.3.18] it is straightforward

to prove that every connective of Ly,5 admits axiom-expansion in LJ. We do it here for
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D. Let v be an (L, L, {p1, p2})-legal strongly LJ-legal Ly j-Kvaluation. We show that
v(w,p1 D pa) # 0 for every w € W, and so v is (L, L, {p1 D p2})-legal. Suppose that
t & v(w,p; D po) for some w € W,. Since (v, R} ;) is (f: D)-legal, £ € v(w',p;) and
t & v(w',pg) for some w' € RN} (mine)[w]. Since v is (L, L, {p1,p2})-legal, v(w',p1) # 0
and v(w',pe) # 0. This entails that v(w',p1) = {t} and v(w’,p2) = {£}. Since (v, R} ;)
is (f: D)-legal and R} ;(m) = Id,, we have that £ € v(w',p; D p2). Since (v, R} ;) is
Tine-legal, £ € v(w, p; D pa) as well.

6.4 Soundness and Completeness Proofs

This section is devoted to prove Theorem [6.2.17, Theorems [6.2.12 and [6.2.16| are im-
mediately obtained as special cases. Let G be a basic L-calculus, and p = (F,C, A)

an L-proof-specification. Clearly, to show that Fg; pzl_;g for every set IC of partial L-
Kvaluations satisfying K¢ o CKCKg p it suffices to prove the following:

Soundness g Q—Kmp. Completeness I—,Ca[pg—gr

p P

Soundness

For the soundness proof we use the following simple lemmas.

Lemma 6.4.1. Let v be a partial £-Kvaluation, let w € W, and let s; and s, be two

L-sequents. Then, v, w |= s1 U sy iff either v, w |= 51 or v, w [ ss.

Lemma 6.4.2. Let (s, s') be a m-instance for some £-context-relation 7. Let v be partial
L-Kvaluation, and let w € W,. Suppose that v,w’ |= s for some w’ € RY[w]. Then either
frm[s'] £ Dom,, or v,w = .

Proof. Suppose that frm[s'| C Dom,, we show that v,w = §'. Since v, w" |= s, we have
v,w' = ay for some ay € s. Since (s,s') is a m-instance, there exists a; € s’ such that
asmay. Note that frm[as] € Dom, (because v,w' |= ag) and frm[a;] € Dom, (because
frm[s'] € Dom,). Then since wRw’, v,w |= ay . It follows that v,w = s O

Now, assume that S Fg; p So- Thus there exists a p-proof P in G of sy from S.
Let K = ICG[p. We prove that S Fx so. Let v € K. Then, (v, R) is G-legal for some
(G, W,)-coupling R. Suppose that v = S. Using induction on the length of P, we show
that v |= s for every sequent s appearing in P. It then follows that v |= sg. Note first
that since v is p-legal, Dom, = F, and so every sequent in P is a Dom,-sequent. Thus

it suffices to prove that for every sequent s’ appearing in P, we have v, W, = §'. This
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trivially holds for the sequents of S that appear in P. We show that the property of being
true in W, is preserved by applications of the rules of G. Consider such an application
in P, and assume that v, W, |= s for every premise s of this application. We show that

its conclusion is also true in W,. Let w € W,,.

1. Suppose that ¢ U {x:p} is derived using from ¢, using (x:weak) (x € £2). Since
v, w | ¢, Lemma entails that v, w = c U {x:p}.

2. Suppose that {f:p, t:p} is derived using (id). In this case, ¢ € A. Since v is p-legal,
v(w, ) # 0. This easily implies that v, w = {f:¢, t:p}.

3. Suppose that ¢; U cg is derived from ¢; U {f:¢} and co U {t:p} using (cut). In this
case, ¢ € C. Since v is p-legal, v(w,p) # {£,t}. This easily implies that either
v,w E {f:p} or v,w = {t:p}. Since v,w = ¢ U{f:¢}, Lemma entails that
either v,w |= ¢ or v,w |= {f:p}. Similarly, either v,w = ¢ or v,w | {tip}.
This entails that either v,w |= ¢; or v,w |= ¢z. Therefore Lemmal6.4.1] entails that

v, w = ;U es.

4. Suppose that o(s) U U...Ud, is derived from o(s1)Uecq,...,0(s,) Uc, using a

basic L-rule r = (s1,71), ..., (Sp,Tn)/s" in Rg. Thus (¢;,c;) is a m-instance for
every 1 < i < n. Now, if v,w | ¢ for some 1 < i < n, then by Lemma m,
v,wl=o(s)UdU...Uc,, and we are done. Assume otherwise. We show that
v, R(m)[w] E o(s;) for every 1 < ¢ < n. Let 1 < i < n and w' € R(m)[w].
Since (v, R) is m-legal, we have that wR? w'. Now, since (c;, ¢;) is a m;-instance,
Lemma entails that v,w" & ¢;. By Lemma m (since we assumed that
v,w' Eo(s)Uq), v,w | o(s;). Finally, we have v, w |= o(s) since (v, R) is r-legal

and frm[o({s1, ..., Sn, s})] € Dom,. By Lemmal6.4.1} v,w = o(s) U, U...Uc,.

Completeness

Recall that by extended L-sequent we mean a (possibly infinite) set of labelled £-formulas
(see Definition . For this completeness proof, we call an extended L-sequent u
provable if S '_Grp s for some L-sequent s C . Otherwise, we say that u is unprovable. In
addition, we call an extended L-sequent p* mazimal if it satisfies the following conditions:
(1) frm[p*] € F; (2) p* is unprovable; and (3) for every labelled F-formula o & u*,
{a} U p* is provable. As in Section it is straightforward to show that:

(a) For every unprovable extended F-sequent pu, there is a maximal extended L-sequent

w* such that pu C p*.
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Now, suppose that S |7/G[p sg. We show that S }‘Ka{p sg. Let v be the partial L-
Kvaluation defined by: W, is the set of all maximal extended L-sequents; Dom, = F;
and v(p,p) = {x € {£f,t} | xip & u} for every up € W, and ¢ € F. We show that
v E ’CEW and that v is a model of S but not of sj.

Note first that v is p-legal. By definition Dom, = F. To see that v(u, ¢) # {f,t} for
every ¢ € C, it suffices to prove that if ¢ € C N F then f:p € por t:p € p. Assume by
way of contradiction that f:p & p and t:p &€ u for some ¢ € CN F. It follows that there
exist F-sequents sq,So C p such that S I—G[p sy U{f:p} and S '_Grp so U{t:p}. Since
¢ € C, a (legal) application of (cut) ensured that S I—G{p s1 U sg. But this contradicts
the properties of p. To see that v(u, ) # () for every ¢ € A, it suffices to prove that
v € AN F implies that £:¢ & p or t:p & pu. Note that if ¢ € AN F then {f:p,t:p} is a
(legal) application of (id), and so S '_Grp {f:p,t:p}. Since p is maximal, either f:p & u
or t:p & .

Now, for every 7 € Ilg, let RZ denote the binary relation on W, defined by: u; RZ o
iff for every labelled F-formulas aq, as, if asmay and as € ps then ay € py. We claim
that the following hold:

(b) For every labelled F-formula o and p € Wy,: v, u = aiff a & p.

Proof. Suppose that o = x:p where x € {f,t}. Then, x € v(u, ) iff a & pu.
Equivalently, v, u = «a iff a & p. O

(c) RZ = Ry for every 7 € Ilg, and R/ = Id,.

Proof. For every context-relation w, RZ = RY follows from (b). To see that
R} = Id,, note that aomooy iff ap = . Thus, R} pio iff for every labelled
F-formula «, v, pip }= o implies that v, 11 = . By (b), we obtain that p R} 1o iff
1 € po. Therefore, obviously, uRfo,u for every p € W,. For the converse, we show
that if pq, uo € W, and pq C po, then gy = pe. Assume (by way of contradiction)
that p; C pe and there exists o € pg \ p1. Since py is maximal, there exists an F-
sequent s C yuy such that S I—G{p sU{a}. But, sU{a} C uy, and this contradicts
the fact that sy is unprovable. O

(d) For every F-sequent s and p € Wy: s € piff v, p = s.
Proof. Easily follows from (b). O

(e) For every F-sequent s and u € W,: if there exists an F-sequent s’ C p such that
S l—G[p sUs', then v, pu = s.
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Proof. Assume that there exists a sequent s’ C p such that S Fg; pS U s'. Since p
is unprovable, s  p. Therefore, (d) entails that v, pu = s. O

(f) For every F-sequent s, u € W,, and 7 € Ilg: if v, RZ[u] = s, then there exists a
m-instance (c, ¢) such that ¢ C p and S I—G[p sUec.

Proof. Assume that there is no 7-instance (c, ¢’) such that ¢ C g and S |_Grp sUec.
We show that v, RZ[u] £ s. Let p* = {a | frm[a] € F and 3B € p.a®B}. Since
(f:weak) and (t:weak) are available, our assumption implies that s U p* is un-
provable. Since frm[sU u*] C F, (a) entails that there exists maximal extended
L-sequent p’, such that s U u* C /. (d) entails that v,y & s. By definition,
uRZ 1. Hence, v, RF [1] B~ s. O

(g) For every L-sequent s: v |= s iff S I—G[p s.

Proof. Note first that if frm[s] € F, then by definition, v [~ s and S |71GTp S.
Assume now that frm[s] C F. One direction easily follows from (e). For the
converse, assume that S /g, p 5 We show that v [~ s. Because of the presence of
(f:weak) and (t:weak), there does not exist s' C s such that S kg, s'. By (a),

p
there exists y € W,, such that s C p. (d) entails that v, & s. Hence, v f£s. O

Next, we show that v is strongly G-legal. Thus we prove that (v, Rg) is Rg-legal.
Let r = (s1,m1),...,(Sn,Tn)/s be a rule in Rg. Let u € W,, and let ¢ be an L-
substitution. Suppose that frm[o({s1,...,Sn,s})] € F, and that v, RG(m)[u] = o(s:)
for every 1 < i < n. We prove that v, |= o(s). By (c), Rg(m) = RI for every
1 < i < n. Thus (f) entails that for every 1 < ¢ < n, there exists a m-instance (¢;, ¢;)
such that ¢, C pand S I—G(p o(s;) Ue¢;. Now we can use these proofs, and the rule r to
obtain § '_Grp o(s)UdiU...Ud,, where ¢y U...Uc, C pu. (e) entails that v, u = o(s).

It follows that v € ICErp (note that by (c), v is differentiated). Finally, we show that
v |= S but v j£ sp. Since obviously S g 0 s’ for every F-sequent s’ € S, (g) implies
that v = ¢’ for every such s'. Since S VGFp So, (g) also implies that v £ sq.



Chapter 7

Canonical (Godel Hypersequent

Calculi

Godel logic, known also as Godel-Dummett logic, is perhaps the most prominent inter-
mediate logic, and one of the three fundamental fuzzy logics [63]. It was introduced in
[48] both semantically, by an infinite-valued matrix, and syntactically, with a simple ax-
iomatization, namely the extension of (an axiomatization of) intuitionistic logic with the
axiom scheme (1 D p2) V (2 D 1) of linearity. The quest for a (cut-free) Gentzen-type
formulation for (propositional) Godel logic began later, and several calculi were proposed
(see, e.g., [86] 46, 2, 50, 25, 51]). One of the most important cut-free calculi for Godel
logic is the calculus HG, introduced in [4] (see also [22] and [76]). HG is relatively
simple, especially due to the fact that its logical rules are practically the same rules as
in LJ, the well-known single-conclusion sequent calculus for intuitionistic logic. This is
obtained by working in the slightly richer framework of (single-conclusion) hypersequents,
that provides a natural generalization of Gentzen’s original sequents framework[]] The
structural part of HG consists of all the usual structural rules, both on the sequent level
(internal) and on the hypersequent level (external). In addition, it includes the commu-
nication rule that allows “exchange of information“ between two hypersequents [7], and,

needless to say, the identity axiom and the (admissible) cut rule.

In this chapter we introduce and study the family of canonical Godel hypersequent
calculi of which HG is the prototype example. The idea, just like in canonical sequent
calculi (following [I7], see Chapter [4)), is to allow any “ideal” logical rules for introducing
the logical connectives. Thus we define canonical single-conclusion hypersequent rules,
and in turn, canonical hypersequent Godel calculi are (two-sided, single-conclusion) hy-

persequent calculi that include all standard structural rules, the cut rule, the identity

!Note that hypersequents are currently the main proof-theoretic framework for fuzzy logics [76].

104
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axiom, the communication rule, and an arbitrary finite set of canonical single-conclusion
hypersequent rulesf| Then, as in the previous chapters, we study canonical Godel calculi
from a semantic point of view. Note that we could similarly study multiple-conclusion
hypersequent calculi in which some of the rules do not allow right context formulas (as
the right rules for implication in the multiple-conclusion calculus for intuitionistic logic).
We choose to work in the single-conclusion framework both in order to demonstrate
the applicability of our methods in this framework, and because the single-conclusion
framework is more common when it comes to Gddel logic.

First and foremost, our study includes a general method to obtain a sound and com-
plete semantics for every canonical Godel calculus. The semantics is based on totally
ordered algebraic structures with (possibly) non-deterministic interpretations of the dif-
ferent connectives. Here we also consider the semantic effect of the cut rule and the
identity axiom, and obtain semantics for canonical Godel calculi in which these rules
are restricted to apply only on some given set of formulas. This semantics is then used
to characterize proof-theoretic properties of canonical Godel calculi, and particularly to
identify the “good” ones, namely those that enjoy (strong) cut-admissibility. In fact, we
show that the simple coherence criterion of [17, [14] characterizes strong cut-admissibility

in canonical Godel calculi as well.

Publications Related to this Chapter

The material in this chapter was included in [71 69]. Note that canonical single-
conclusion (two-sided) sequent calculi were introduced and studied in the author’s M.Sc.
thesis (see also [14]).

7.1 Preliminaries

As in the previous chapter, in this chapter we only consider two-sided sequents, refer
to them as L-sequents, and employ the standard notation and abbreviations (see Nota-
tion |6.1.1). In turn, hypersequents are defined as follows:

Definition 7.1.1. An L-hypersequent is a finite set of L-sequents. Given a set F C L,

an F-hypersequent is a hypersequent consisting solely of F-sequents.

2In fully-structural single-conclusion sequent calculi weakening on the right side can only be applied
on a sequent whose right side is empty. Similarly, in fully-structural single-conclusion hypersequent
calculi right internal weakening can only be applied on a hypersequent including a component with an
empty right-hand side.
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Notation 7.1.2. We usually use H as a metavariable for £-hypersequents. We usually
denote an L-hypersequent {sy,...,s,} by $1 |...| s,, and employ the standard abbrevia-
tions, e.g. Hy | Hy instead of H; U Hy, and H | s instead of H U {s}.

Remark 7.1.3. As we did for sequents, we defined hypersequents using sets. This
immediately entails that the external exchange rule, the external contraction rule and
the external expansion rule (the converse of contraction) are built-in in all hypersequent

calculi that we study.
Unlike previous chapters, we study here single-conclusion calculi:

Definition 7.1.4. An L-sequent s satisfying [{¢ € L | t:p € s}| <1 is called a single-
conclusion L-sequent. An L-sequent s is called negative if {p € L | t:p e s} =0. A
single-conclusion L-hypersequent is an L-hypersequent that consists solely of single-

conclusion L-sequents.

We usually use the metavariable E and F for singleton or empty sets of formulas (to
represent the “right-side” of a single-conclusion sequent). Since in this chapter we discuss
only the single-conclusion framework, we shall omit the prefix “single-conclusion” and

refer to single-conclusion £-(hyper)sequents simply as £-(hyper)sequents.

7.2 Canonical Godel Calculi

As defined below, all canonical Godel calculi include the external and internal weakening
rules ((f:weak) and (t:weak)), and the rules (com), (cut) and (id)f]

External Weakening This rule allows to infer H | s from H for every L-hypersequent

H and L-sequent s.

(f:weak) This rule allows to infer H | sU{f:¢} from H | s for every L-hypersequent H,

L-sequent s, and L-formula .

(t:weak) This rule allows to infer H | sU{t:¢} from H | s for every L-hypersequent H,

negative L-sequent s, and L-formula .

(com) This rule allows to infer H | s; Ucy | s2 U ¢y from H | sy Uc; and H | s U ¢ for
every L-hypersequent H, L-sequents s; and so, and negative L-sequents ¢; and cs.
In the more usual notation, applications of (com) have the form:
H|T,,T,=FE H|T, = E,
H|T1,T) = E |9, T, = Es

3We use the names (f:weak), (t:weak), (cut) and (id) in this context as well, but strictly speaking
these are not the same rules that were defined in Chapter [2| but their hypersequential versions.
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(cut) This rule allows to infer H | s; U sg from H | s; U {f:p} and H | sy U {t:p} for

every L-hypersequent H, L-sequent s, and negative L-sequent s,.
(¢d) This rule provides all axioms of the form {{f:p,t:p}} for every L-formula .

Unlike the structural rules, the logical rules of canonical Gédel calculi are not prede-
fined, and they vary according to the concrete language of the calculus. Next we define
the general form of the allowed logical rules. We first define right-introduction rules and

their applications, and then deal with left-introduction rules.

Definition 7.2.1. A canonical right single-conclusion hypersequent L-rule is a pair of
the form S/{t: ¢ (p1,...,Par(0))}, Where o € $p and S is a finite set of {p1, ..., Par(o) }-
sequents. The elements of S are called the premises of the rule, and {t: ¢ (p1, ..., Par(e)) }
is called the conclusion of the rule. An application of {s1,...,8,}/{t: o (P1, ..., Dar(e)) } 18
any inference step of the following form:
Hl|o(s1)Ue ... Hlo(s,)Uc
H | {t:o(o(p1, - s Pare))) } U
where o is an L-substitution, ¢ is a negative L-sequent (called contezt sequent), and H

is an L-hypersequent (called context hypersequent). H | o(s1)Uc,...,H | o(s,)Uc are
called the premises of the application, while H | {t:0(o(p1, ..., Par(s)))} U ¢ is called the

conclusion of the application.

Example 7.2.2. Suppose that A € {%, and consider the following canonical right single-

conclusion hypersequent L-rule:

{{tpa} {p2}}/{tp A p2}
Applications of this rule have the form:
H|T=¢; H|T=p
H|T = 1A

Obviously, in applications of canonical right single-conclusion hypersequent rules, we
can not allow non-negative context sequents (otherwise there will not be “enough space”
for the conclusion). The following definition of left rules is slightly more complicated,
since a non-negative context sequent may be added to the negative premises. To have a
general notion here, we allow also cases in which some negative premises disallow non-
negative context (just like the negative premises of the right rules). Hence, the set of
premises of canonical left rules is divided into two different sets: premises that disallow
non-negative context (including all non-negative premises), and premises that allow non-

negative context (of-course all of them are negative).ﬁ

4A similar division of the premises was used in the definition of canonical left single-conclusion sequent
rules in [I4].
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Definition 7.2.3. A canonical left single-conclusion hypersequent L-rule is a triple of
the form Si,Sy/{f: ¢ (p1,..., Dar(e)) }, Where o € $p, Sy is a finite set of {p1, ..., Par(o) }-
sequents, and S, is a finite set of negative {p1, ..., Dar(o) }-sequents. The elements of S;US,
are called the premises of the rule, and {f: ¢ (p1, ..., Dar(o))} is called the conclusion of
the rule. An application of {s,...,s,}, {81, ..., 80, }/{f: 0 (p1, .-, Dar()) } is any inference
step of the following form:
Hlo(s1))Uc ... H|o(s,)Uec H|o(sh)ud ... Hl|o(s),)ud
H | {f:00(p1,...,Dar(s)))} UcUC

where o is an L-substitution, ¢ is a negative L-sequent, and ¢ is an L-sequent. The

premises, conclusion, context sequents, and context hypersequent are defined exactly as
in Definition [T.2.1]

Example 7.2.4. Suppose that x € {7, and consider the following canonical left single-

conclusion hypersequent L-rules:

0. {{f:p1}}/{f: 1} {{f:p1}},0/{f: x p1}
Applications of these rules have respectively the forms:
H|T, o= H|T,p=FE
H|T,*xp= H|T,xp=FE

In this chapter we shall refer to “canonical right (left) single-conclusion hypersequent
L-rules” simply as “canonical right (left) £-rules”. By “canonical £-rules” we mean either
canonical right L-rules or canonical left £-rules. In addition, we say that a canonical L-

rule r is a rule for ¢ if ¢ is the connective that occurs in the conclusion of 7.

Remark 7.2.5. Since both internal and external weakening rules are present in every
hypersequent calculus we study, it is always possible to incorporate weakenings in the
applications of the rules. Thus for example, we could have defined an application of a
canonical right £-rule as an inference step deriving H | o(s) U ¢ from the £-hypersequents
H; | o(s;) Ug; for every 1 < i < n, where H, Hy, ..., H, are L-hypersequents such that
H,U..UH, CH, cc,...,c, are negative L-sequents such that ¢; U... U ¢, C ¢, and o is
an L-substitution. A similar definition is possible for the canonical left rules. Henceforth,
we may use freely this kind of applications (which formally might involve additional

applications of the weakening rules).

In Table [7.1, we present all logical rules of the hypersequent system HG for the
standard propositional Godel logic (see [22]) as canonical rulesf| It is also possible to

introduce new connectives using canonical rules:

°By saying that HG is a system for propositional Godel logic, we mean that
{{t:¥}} | ¥ € T} Fac {{t:¢}} iff T IF ¢ in propositional Godel logic.
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Canonical Rule Application scheme

0,0/{f: L}

H|T, 1= F
H|T=¢1z H|T=p
H|T = 1A
H|T,p1,00=FE
H|T,p1 ANpy = FE

{{t:pi} {ep)}/{tp A pa}

0, {{f:p1, £:p2}}/{f:p1 A p2}

' : H|T = ¢
{{t:p1}}/{tp1 V p2} L=
{{t:p2}}/{tp1 V p2} HI|T = ¢

H|T= @1V
H|T,po=E H|T,po=F
H|T,p1Vpy=FE
H|T, 01 = ¢
H|T = 1 Dy
H|T1=¢1 H|Ty¢p=F
H|T1,Te, 01 Do = F

0, {{f:p1}, {£:p2}}/{£:p1 V P2}

HEwpr, tip2}}/{tip1 D pa}

{ep 3}, {E:p2 /{01 O P2}

Table 7.1: The Logical Rules of HG
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Example 7.2.6. A primal-implication connective (see [62]) can be introduced with the

following two rules:

{{epdt/H{tp ~ 2} {{opd) {Ep)}/{E:01 ~ po}
Applications of the left rule are like those of the left rule of implication in HG, while ap-
plications of the right rule allow us to infer a hypersequent of the form H | I' = ¢1 ~ @9
from a hypersequent of the form H | ' = s.

Example 7.2.7. It is possible to combine the usual right rule for conjunction with the
usual left rule for disjunction, and introduce a new binary connective ¥ with the following

rules:
{{t:oi b {tp} H/{tpipa} O, {{f:pi}, {£:p2} }/{£:p1 D2}

Applications of the right rule are like those of the right rule of conjunction in HG, while
applications of the left rule are like those of the left rule of disjunction in HG (see
Table [7.1]).

We can now define canonical Gédel calculi:

Definition 7.2.8. A canonical Godel L-calculus consists of all structural rules listed
above (see Page , and any finite set of canonical £-rules. The notion of a proofin a
canonical Godel L-calculus G of an L-hypersequent H from a set H of L-hypersequents
is defined as usual (see Definition [2.2.14). We write H g H to denote the existence of

such a proof.

To speak about restricted proofs, as needed in order to define and characterize proof-
theoretic, we will consider proof-specifications. These are defined exactly as in Chapter [
(Definition[6.1.17)), with the obvious modifications in the definition of a p-proof (reflecting
the transition from sequents to hypersequents). We shall also employ the same notation
and write H g p H if there exists a p-proof in G of H from H, for a given L-proof-

specification p. For canonical Gdédel calculi, we have the following:

Proposition 7.2.9. Let G be a canonical Godel L-calculus, and let p = (£,C, . A) be an
L-proof-specification. If ‘H I—G(p H, then H I_G(p’ H for p' = (sub|C] U sub[H],C, A).

Proof. The claim is proved by usual induction on the length of the proof in G. Note that
all rules in canonical Godel L-calculi except for cut have the “local subformula property”
(i.e., for each rule, the premises of its applications consist only of formulas occurring as

subformulas of the corresponding conclusions). ]

The proof-theoretic properties of (strong) sub-analyticity, (strong) cut-admissibility
and axiom-expansion in canonical Godel calculi are also defined as for basic calculi (Defi-
nition [6.1.18|) with obvious modifications. From the last proposition, it easily follows that
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if a canonical Godel L-calculus G enjoys strong cut-admissibility (i.e. H Fg H implies
that H I—G(p H for p = (L, frm[H], L)), then it is strongly sub-analytic (i.e. H Fq H
implies that H '_Grp H for p = (sub[HU{H}], L, L)). In the sequel, we show that these

two properties are actually equivalent for canonical Godel calculi.

We end this section with two propositions that will turn out to be useful in connection
with the proof of Theorem [7.3.17] below.

Proposition 7.2.10 (Generalized Communication). Let G be a canonical Godel L£-
calculus, and let p = (F,C, A) be an L-proof-specification. For all F-hypersequents

H,, Hy, integers n,m > 0, n + m F-sequents sy, ..., Sp, sy, ..., S, and two negative F-

Y m?

sequents ¢, ¢, the L-hypersequent Hy | Hy | s1UCc |...| s, U | sfUc]...| s, Uc has a
p-proof in G from the L-hypersequents H; | s;Uc |...| sp,Ucand Hy | s{UC |...| s, UCc.

Proof. We prove this by induction on n + m. First, when n = 0 or m = 0, the claim
follows by applying external weakening. Assume that n,m > 0, n +m = [ and that
the claim holds for every n,m such that n +m < [. By the induction hypothesis,
the following two hypersequents have a p-proof in HIF from H; | sy Uc]...| s, Uc and
Hy |siyUd .| s, Uc":
Hy|s,Uc|Hy|siUCc |...]s,.1Uc |sjUc]|...| s Uc
Hy|Hy|s,ud|siUcd |...]sp1Ud|siUc]...| s, Uc

An application of (com) on these two hypersequents provides the desired result. H

Proposition 7.2.11. Let G be a canonical Gédel L-calculus, p = (F,C,.A) an L-proof-
specification, and r = 8y, Sa/{f:¢} a canonical left L-rule of G, with |Sy| > 0. Let o be
an L-substitution such that frm[o(S; US2)|U{o(¢)} CF. Let So = {s1,...,5n,} and
so = {f:0(p)}. Let ¢ be a negative F-sequent and H an F-hypersequent. Denote by H;
the set {H | cUo(s)}ses,- Then, for every nq,...,n, > 0, F-hypersequent H’ such that
H C H', and ny + ... + n,, F-sequents si, ...,y ..., 8" ..., 0
H'|cUsiUsg|...]cUs) Usg|...]cUsT" Usg|...] cUs Usg
has a p-proof in G from

HIU{H | siUa(si)]...]| s;i Ua(si) h<i<m.

Proof. First, if n; = 0 for some 1 < i < m, the claim follows by applying external weaken-

ing on H’'. Next, we prove the claim for the case that ny = ny = ... = n,,, = 1, by induction
on the size S of the set {s},...,s7"}. If S = 1, then one application of r suffices. Now let
S > 2, and assume that the claim holds for sets of size S — 1. Let si, ..., s be F-sequents

sets such that |{s,...,sT"}| = S, and let H' be some F-hypersequent such that H C H'.
Let Go=H' | cUsiUsg |...| cUSUsg, and for every 1 <i <m, G; = H' | s} Ua(s;).

Let 41,45 be two indices such that si' # s, and let I; = {1 <i<m | s =s"'} and
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L={1<i<m|s. =52} Forevery j, € I, and j, € I, we have that (using one ap-
plication of (com)):
{G)i. G} ey, H' | 7 Ua(sy,) | s Ua(sy,).
For every j; € I, the induction hypothesis and the availability of external weakening
entail that Gy | s Uo(s;,) has a p-proof in G from
Hy U{G}jgr, U{H' | sy Ua(sy,) | 82 Ua(s))} e

The induction hypothesis and the availability of external weakening again imply that
Gy has a p-proof in G from H; U {G;}jer, U{Go | s Ua(sj,)}ien,- Together, we have
Hi U{Gi} i<i<m l—G{p Go.

Next we prove the claim for any ni,...,n,, > 1 by induction on n; + ... +n,,. As-
sume that n; + ... +n,, =1 and that the claim holds for every ni,...,n,, such that
ny+ ... +n, <l. Let H be an F-hypersequent that extends H, and let si,..., s | ...

»9ng

be F-sequents. Let GGy denote the hypersequent

H'|cUsiUsg|...|cUsy Usg|...]cUsTUsg|...| cUsI U s,

and " = {H' | s{U0c(s;) |...| s, Uo(si) }r<icm. For every 1 <i < m, the induction hy-
pothesis and the availability of external weakening entail that H; UH g 0 Go | siUa(s;).

m m
S1'5 ey Sy

By the proof for the case ny = ny = ... = n,, = 1, we have that

,Hl U {GO | Sil U U(3i>}1§i§m }_GTp GO- D

Example 7.2.12. Suppose that G includes the left rule 0, {{f:p1}, {£:p2}}/{£:p1X%p2}

(see Example [7.2.7)). By Proposition [7.2.11} the following rule (given by a scheme) is

cut-free derivable in G:
H|F%7§01 :>E1 "F}Ll,gpl :>En1 H’F%7§02:>F1 " ]‘—‘37,27(102:>Fn2
H T}, o0 = By || Th 01000 = By | T 0002 = Fy || T o1es = F,

7.3 Many-Valued Semantics

In this section we provide a method to obtain sound and complete many-valued semantics
for any given canonical Godel calculus and proof-specification. The semantic structures
introduced for this task are called Gadel valuations. The truth values in these structures

should form a propositional Godel set, defined as follows:

Definition 7.3.1. A (propositional) Gddel set is a bounded linearly ordered set
V = (V,<). We denote by 0y and 1, the maximal and minimal elements (respec-
tively) of V' with respect to <. The operations miny, maxy are defined as usual (where
miny ) = 1, and maxy ) = 0y). For every two elements wuy,us € V', u; —y us is defined

to be 1y if uy < ug, and uy otherwise. The relations >, <, and > are also defined in the
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obvious way. We omit the subscript V when it is clear from the context, and sometimes

identify V with the set V' (e.g., when referring to the elements of V' as elements of V).
Now, (partial) Godel £-valuations are defined as follows:

Definition 7.3.2. A partial Géidel L-valuation (partial L£-Gualuation, for short) is a
triple (V, Dom,v), where V is a Gédel set, Dom C L, and v is a function from Dom to
Vx V. A partial £L-Gvaluation (V, Dom,v) with Dom = L is also called an £-Gualuation.

Notation 7.3.3. Throughout, we identify a partial £-Gvaluation (V, Dom,v) with its
underlying function v, and denote the Godel set V by V,, and the set Dom by Dom,,.
In addition, given a partial £-Gvaluation v, we denote by v* and v* “the left and right

projections of v”, that is v*(¢) = uy and v*(p) = ug iff v(p) = (ug, us).

There are two main ideas behind the definition of a partial £-Gvaluation above. First,
as in the previous chapters, these semantic structures may not assign truth values to all
formulas. Their exact domain Dom should be determined according to the formulas that
are allowed to appear in p-proofs for a given proof-specification p. Second, note that
a partial £-Gvaluation v assigns a pair (v*(p),v*(p)) of truth values to each formula
¢ € Dom,. Intuitively, v*(p) is the value of ¢ when it is “f-labelled” (occurs on the
“left side” of a sequent), and v*(p) is its value when it is “t-labelled” (occurs on the
“right side”). Roughly speaking, to have a complete semantics for proof-specifications in
which (cut) and/or (id) may not be applied on some formula ¢, we have to “disconnect”
v(p) and v*(p). Obviously, certain restrictions on the relation between v* () and v*(y)
should be put when (cut) and/or (id) are allowed to apply on ¢ (see Definition
below). Before turning to these restrictions, we define the semantic consequence relation

between hypersequents induced by a set of partial £-Gvaluations.
Definition 7.3.4. Let v be a partial £-Gvaluation.

1. Given a Dom,-sequent s, v®(s), v*(s) and v(s) denote the element of V), defined

by
(a) vi(s) = min{vf(p) | f:p € s}.
(b) v*(s) = max{v*(p) | t:p € s}.

—~
(@)

~—
S

(s) = vi(s) = v*(s).
2. v is a model of:

(a) an L-sequent s if s is a Dom,-sequent and v(s) = 1.
(b) an L-hypersequent H if H is a Dom,-hypersequent and v is a model of some

component s € H.
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(c) aset H of L-hypersequents if it is a model of every Dom,,-hypersequent H € H.

We write v = X to denote that v is a model of X (here X is either a sequent, a

hypersequent, or a set of hypersequents).

Note that in order to check whether v |= s, one only needs v*(p) for every formula
¢ such that f:¢ € s, and v*(yp) for every formula ¢ such that t:p € s. In turn, hyper-
sequents are interpreted as “meta-disjunctions” of sequents. The consequence relation

between hypersequents induced by a set G of partial £-Gvaluations is defined as follows:

Definition 7.3.5. An L-hypersequent H follows from a set H of L-hypersequents with
respect to a set G of partial £-Gvaluations (denoted by: H g H) if for every v € G:
v |= H whenever v = H.

As noted above, when (cut) and/or (id) are allowed to apply on some formula ¢
(according to the proof-specification), we have to “connect” v*(p) and v*(p). Intuitively,
(cut) and (id) have opposite semantic roles — while (cut) forces the “f-value” to be greater
than or equal to the “t-value”, (id) forces the “f-value” to be lower than or equal to the

t-value. This is formulated in the next definition.

Definition 7.3.6. Let p = (F,C, A) be an L-proof-specification. A partial £-Gvaluation
v is called p-legal if the following hold:

1. Dom, = F.
2. v*(p) < v (p) for every p € CN F.
3. vi(p) < v(p) for every p € AN F.

Note that when (cut) and (id) can be used for all formulas (that is: C = A = L), we

require that v*(p) = v*(p) for every ¢ € Dom,,. Such Gvaluations will be called normal:

Definition 7.3.7. A partial £-Gvaluation v is called normal if v*(p) = v*(p) for ev-
ery ¢ € L. For normal partial £-Gvaluation v, we may write v(p) instead of vf(yp)

(equivalently, v*(¢)).

Next, we turn to the semantic effect of the canonical rules included in the given canon-
ical Godel calculus. Roughly speaking, the idea here is that each rule for a connective ¢

induces a function from (V x V) ) to V. By applying these functions on the truth values

of ¥1,..., Qar(s), one obtain bounds on the truth value of o(¢1, ..., Yar()). The functions
induced by the right canonical rules for ¢ provide lower bounds on v*(o(1, ..., Par(s))),
while those induced by the left rules for o are used as upper bounds on v*(o(¢1, ..., Par(s)))-

Below we precisely formulate this idea.
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Notation 7.3.8. Let v be a partial £L-Gvaluation. Given a finite set S of Dom,,-sequents,
v(S) = min{v(s) | s € S} and v*(S) = max{v'(s) | s € S}.

Definition 7.3.9. Let ¢ be an n-ary connective of £, V a Godel set, and r a canonical
L-rule for o. o}, is a function from (V x V)" to V defined by:

u(S) r=3S/{t:p}
U(Sl) — ’Uf(82> r = 81,82/{f2(p}
where v is the partial £-Gvaluation defined by V, = V, Dom, = {p1,...,pn}, and

op((ui, up), ..., (ug, up)) =

v(p;) = (uf, uf) for every 1 <i <n.

77 7

Example 7.3.10. Suppose that A € $%, and consider the usual rules:
(t:A) {{t:p1}, {t:p2}}/{t:p1 A D2} (£:A) 0, {{f:p1, £:p2}}/{f:p1 A D2}

Let V be a Godel set, and (uf, u}), (ud, ul) € VxV. We calculate /\](,t:/\)(w{, ul), (ud, ub)),
and AU ((uf ub), (uf, ug)). Let v be the partial £-Gvaluation defined by V, = V,
Dom, = {p1,p2}, and v(p;) = (uf,uf) for 1 <i < 2. We have
v({epi}) = v ({Epi}) = v ({tipi}) =1 = 0% (p1) = 0" (p1) = ui.
Similarly, v({t:p2}) = u§. Thus
Ay (G, ), (s, u5)) = o({{ep}, {Eipa}}) = min{uf, us}.
In addition, v()) = 1, and
v ({{f:p1, £:p2}}) = v ({£:p1, £:p2}) = min{v" (p1), v" (p2)} = min{ul, ul}.

Therefore,
£:A)

AV (), (u, ) = 0(8) = o ({{£:p1, £2}}) = minfud, ud}.
Now, if we replace (£:A) by 0, {{f:p1}, {f:p2}}/{f:p1 Ap2} (see Example[7.2.7) we obtain

AV (), (1, w5)) = 0(0) = o ({{E:p1}, {£:p2}}) = masc{ud, uf}.

Example 7.3.11. Suppose that D€ %, and consider the usual rules:
(¢:2) {{fp, tipe}}/{tp Do} (£:2) {{epu}}, {{£:p2}}/{f:01 D p2}

Let V be a Godel set, and (uf, ut), (uf, ul) € Vx V. We calculate D](;D)«u{, ub), (uf, uk)),
and DU ((uf, uf), (uf, u)). Let v be the partial £-Gvaluation defined by V, = V,
Dom,, = {p1,p2}, and v(p;) = (uf, uf) for 1 <4 < 2. Then:

O ((ut, u), (u, u5)) =v({{€:p1, t:p2}}) = v ({£:p1, tipa}) = o*({£1p1, tp}) =

=v(py) = v*(p2) = ul — u}

o5 (), (uf, u) =o({{E:a}}) = v ({£:23}) = v (p1) = v (p2) = uf = u]

Now, if we replace (t: D) by {{t:p2}}/{t:p1 D p2} (see Example [7.2.6) we obtain

SU ((uf, uty, (b, ut)) = o({{tpa}}) = 1 — v (p2) = ul
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Note that the calculation of ¢f, requires only applying “atomic Godel functions”,
namely min, max, 0, 1, and Godel implication. These functions enforce restrictions on
Gvaluations as follows:

Definition 7.3.12. A partial £-Gvaluation v is called r-legal:

e for a canonical right rule r = S/{t: o (p1,...,pn)} if for every L-substitution o such
that o({p1, ..., Pn, o(P1, -, Pn) }) C Domy:
op, (W(a(p1), .., v(a(pa))) < v (a(o(p1, -, pn)))-
e for a canonical left rule r = &1, So/{f: ¢ (p1,...,pn)} if for every L-substitution o
such that o({p1, ..., Pn,o(P1,---,0n)}) C Domy:

vi(o(o(pr, - pn))) < 03, (v(0(p1)), - (o (pn)).

Note that the right rules for ¢ impose restrictions on v*(o(<(p1, ..., pn))), while the
left rules for o restrict v®(a(o(p1, ..., pn))).

Example 7.3.13. Let v be a p-legal partial £-Gvaluation for p = (F,C,.A). Below we
present the condition for v to be r-legal for the canonical rules presented in the examples
above. Note that the condition on the right should hold for every L-substitution ¢ such
that {o(p1 ©p2),0(p1),0(p2)} € F where ¢ is the connective in the corresponding rule.

Canonical Rule Semantic Condition
(e:A) {{ep}, {Ep2} /{501 A po} min{v*(o(p1)), v*(0(p2))} < v*(o(p1 A p2))
(£:A) 0, {{f:p1, £:p2}}/{:p1 A p} vi(o(p1 A p2)) < min{v*(o(p1)), v* (o(p2))}
(t: D) {1, tipo}}/{t:p1 D pa} vi(a(p1)) = v*(o(p2)) < v*(o(p1 D p2))
(£:2) {{tpi}} {{f:p2}}/{£:p1 D p2} v (o(p1 D p2)) < v¥(o(p1)) = v (0 (p2))
(t:~) {2} }/{t:p1 ~ p2} vt (a(p2)) < v*(o(p1 ~ p2))
(£:~) {{epd b ({2} /{fp1 > p2} 0 (o(pr ~ p2)) < 0¥ (a(p1)) = v*(0(p2))
(e) {{t:pr}, {Epa}}/{tpipa} min{v*(o(p1)), v*(0(p2))} < v*(o(p1ip2))
(£:X) 0, {{£:p1}, {£:p2}}/{£:p14p2} vt (o (p1ip2)) < max{v*(o(p1)),v*(0(p2))}
Now, if we only consider normal (full) £-Gvaluations, these conditions can be simplified
as follows.

Canonical Rule Semantic Condition
(t:A) {{tpi}, {t:p2}}/{tip1 Apa} min{v (1), v(p2)} < v(pr A pa)
(£:A) 0, {{f:p1, £:p2}}/{£:p1 A po} v(1 A @2) < minfu(er), v(gs)}
(t: D) {{fpr, t:p2}}/{t:p1 O p2} v(pr) = v(p2) < vlpr D )
(£:2) {{t:pi}}, {{f:p2}}/{£:p1 O pa} v(p1 D ) < v(p1) = v(p2)
(t:~) {{t:p2}}/{tp1 ~ po} v(p2) < v(p1 ~ ¢2)
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(£:~) {{tip}}, {{£:p2}}/{E:p1 ~ pa} v(p1 ~ p2) < v(p1) = v(p2)
(t) {{tpr}, {t:p2}}/{t:p1 P2} min{v(e1), v(w2) } < v(P1 k)
(£:20) 0, {{f:p1}, {£:p2}}/{£:p1Xp2} v(P1Xp2) < max{v(pr), v(p2)}

In this case the condition in the right should hold for every ¢, s € L. Recall that for
normal Kvaluations we write v(p) instead of v*(¢) (or equivalently v*(¢)). Note that

the two rules for A together impose the usual Godel logic semantics of A:
v(p1 A p2) = min{v(p1), v(p2)}
Similarly, the two rules for D impose its usual semantics:

v(p1 D 2) = v(p1) = v(p2).
Now, the rules for ~» and X together impose the conditions:

v(p2) S (1~ @2) < v(p1) = v(p2),
min{v(¢1), v(p2)} < v(P1ps) < max{v(p1),v(e2)}-
In these two cases we obtain mon-deterministic semantics since the value assigned to
©1 ~ o (similarly, to @1 Xps) is not uniquely determined by the value assigned to ¢
and 3. A deterministic semantics is obtained only when the lower bound determined

by the right rules is equal to the upper bound determined by the left rules.

Remark 7.3.14. Note that in non-normal (partial) £-Gvaluations, when we may have
V(@1 oy Par(e))) F# VE(O(1, - s Par(e))), then the semantics of ¢ is non-deterministic
by definition, since both v*(o(p1, ..., Par(e))) and v*(o(¢1, ..., Yar(s))) are restricted only
from one side. Therefore, even when ¢ is a usual connective with ordinary introduction
rules, non-deterministic semantics is employed to handle proof-specifications in which

(cut) and/or (id) are not allowed on formulas of the form o(p1, ..., Qar(s))-
The following technical lemma will be useful below.

Lemma 7.3.15. Let v be a partial £-Gvaluation, r a canonical L-rule for an n-

ary connective ¢, and o an L-substitution such that o({pi,...,pn}) € Dom,. Then

oh (v(a(pr)), ..., v(a(pn)) is equal to:

e v(c(S)) when r = S/{t: ¢ (p1,...,pn)} is a right rule.
e v(0(S1)) = vi(0(S,)) when r = 81, S2/{f: ¢ (p1,...,pn)} is a left rule.

We are now ready to identify the set of Gvaluations for which a given canonical Godel

calculus and a proof-specification are sound and complete.

Definition 7.3.16. Let G be a canonical Godel L-calculus, and p an L-proof-specification.
A partial £-Gvaluation v is called G-legal if it is r-legal for every canonical L-rule r of
G. v is called GJplegal if it is both p-legal and G-legal. Gg; P denotes the set of all
G p-legal partial £-Gvaluations.
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Next, we state the general soundness and completeness theorem connecting g, 0 and

l_gG[p. Its proof is given in Section .

Theorem 7.3.17. For every canonical Godel L-calculus G, L-proof-specification
p=(F,C, A) where F is closed under subformulas, set H of L-hypersequents, and F-
hypersequent H: H '_Grp Hift H "gG[p H.

For the simpler case without a proof-specification we obtain the following:

Corollary 7.3.18. For every canonical Godel L-calculus G, Fg=tg, where G is the set

of all G-legal normal £-Gvaluations.

Proof. Since (L, L, L)-legal partial £L-Gvaluations are exactly normal £-Gvaluations, the
claim directly follows from Theorem |7.3.17]| [

The following is an immediate corollary of the completeness proof.

Corollary 7.3.19. Let G be a canonical Godel L-calculus, and p = (F,C,.A) an L-
proof-specification. If H /g, p H ., then there exists a G[p—legal partial £-Gvaluation v,
which is a model of H but not of H, satisfying |V,| < 2|F| + 2.

Proof. Directly follows from the fact that the Godel set V, constructed in the complete-
ness proof contains at most 2|F| + 2 elements (see Section [7.5)). O

It follows that the semantics of G[j-legal partial L-Gvaluations is effective, in the
sense that it naturally induces a procedure to decide whether H g P H or not for a given
canonical Godel L-calculus G, L-proof-specification p = (F,C, A) with finite F,C and
A, finite set H of L-hypersequents and single L£-hypersequent H. Note that a syntactic
decision procedure in this case is trivial, since the number of F-hypersequents is bounded
by M = 227, Obviously, one can enumerate all lists of F-hypersequents of size at most
M, and return “true” iff one of them is a p-proof in G of H from H. Of-course, the
problem is more interesting when p is not given, and one has to decide whether H Fq H

or not. We consider this problem in the next section.

Remark 7.3.20. The linearly ordered set of truth values employed in the completeness
proof is countable, and can be embedded into the unit interval [0,1]. Thus we can fix

V = [0, 1] in the definition of a Gvaluation, and obtain “standard” semantics.

7.4 Applications of the Semantics

In this section we use Theorem [7.3.17|to derive semantic characterizations of strong suba-

analyticity, strong cut-admissibility, and axiom-expansion in canonical Gddel calculi, and
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use them to obtain a general decidability result for these calculi. First, note that the
soundness part of Theorem [7.3.17] can be utilized to prove that certain applications of
identity axioms or cuts are unavoidable, or perhaps to show that in all derivations of

some hypersequent H, a certain formula ¢ appears.

Example 7.4.1. Let H = {{t:(p1 D p2) V (p2 D p1)}} and F = sub[H]. We show that
all proofs of H in HG that consist solely of formulas from F include the application

{{f:p1, t:p1}} of (id). Let p = (F, F,F \ {p1}). By Theorem|7.3.17] it suffices to provide
a HG[p—legal partial £-Gvaluation which is not a model of H. For that we can choose

V, =1[0,1], Dom, = F and:

o vi(p1) = 1,v%(p1) = 0,v%(p2) = v*(p2) = 0.5,

e vf(p1 D p2) v¥(p1 D pa) = 0.5,

e vi(py Dp1) =v*(p2 D 1) =0,

o v*((p1 D p2) V(p2 Dp1)) =v*((p1 D p2) V (P2 D p1)) = 0.5.

It is straightforward to verify that v is a HG/[ j-legal partial £-Gvaluation which is not
a model of H.

Next, we present a simple coherence criterion and prove that it is necessary and suf-

ficient for strong sub-analyticity and strong cut-admissibility in canonical Godel calculi.

Definition 7.4.2. A set R of canonical L-rules for a connective ¢ € <, is called coherent
if SUS; US, is classically inconsistent whenever R contains both S/{t: < (p1, ..., Par(e)) }
and &1, So/{f: 0 (p1; - s Paro)) }- A canonical Godel L-calculus G is called coherent if for

for each ¢ € {,, the set of rules in G for ¢ is coherent.

Example 7.4.3. Clearly, the set of sequents {{t:p2}, {t:p1}, {f:p2}} is classically incon-

sistent. Thus the two rules of ~~ from Example form a coherent set of rules.

Note that this is exactly the same criterion used for single-conclusion canonical se-
quent systems in [I4]. It is easy to verify that HG is coherent. Moreover, all sets of
rules considered in previous examples are coherent. Coherence is a natural requirement
for any canonical Godel calculus. Indeed, in non-coherent calculi the existence of one
provable hypersequent of the form {{t:p}} and another provable hypersequent of the
form {{f:p}} implies that all (non-empty) hypersequents are provable:

Proposition 7.4.4. Let G be a canonical Godel L-calculus. If G is not coherent then
{{t:p1}}, {{f:p2}} Fa H for every non-empty L-hypersequent H.

Proof. Similar to the proof of Theorem 4.10 in [14] for single conclusion canonical systems.

The fact that G manipulates hypersequents is immaterial here. O
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This easily entails that non-coherent calculi do not enjoy strong cut-admissibility.
To see this, take H = {(}}, i.e. the hypersequent consisting solely of the empty sequent.
Obviously, in any canonical Godel L-calculus there does not exist an (£, {p1, p2}, L£)-proof
of H from {{t:p1}} and {{f:p2}}. Similarly, it is also clear that there does not exist a
({p1,p2}, L, L)-proof of H from {{t:p1}} and {{f:p2}}, and so non-coherent calculi are
not strongly sub-analytic.

Next we show that coherence is sufficient for strong sub-analyticity and strong cut-

admissibility.

Lemma 7.4.5. Let G be a coherent canonical Godel L-calculus. For every Godel set V,

n-ary connective ¢ € {,, canonical right and left £-rules r,r¢ for ¢ of G (respectively),

and uf, ut, ..., ul uf €V such that uf > uf for every 1 <i <n:
O ((u, up), sy 15,)) < o (u, ug), sty )
Proof. Suppose that off ((uf, u}), ..., (uf, ul)) > olf ((uf, uf), ..., (ul, u})) for canonical £-

rules 7y = S/{t: o (p1,...,pn)} and r¢ = S1, So/{f: ¢ (p1,...,pn)}. Let v be the partial
L-Gvaluation with V, =V, Dom, = {p1, ..., pn}, and v(p;) = (uf, uf) for every 1 <i < n.
Then, by definition, v(S) > v(S;) — v1(S2). Hence v(S) > v¥(S2) and v(S;) > v (Sy).
Consider the classical valuation ¢ on py, ..., p, defined by c¢(p;) = ¢ iff v*(p;) > v¥(Sz). We
prove that c satisfies every L-sequent in S US; U S, and so G is not coherent.

Let s € SUS;. Since v(S) > v¥(Sy) and v(81) > v¥(S2), v(s) > v*(Ss), and so
vE(s) = vE(s) > vE(S2). If v*(s) > v¥(Ss), it follows that t:p; € s for some 1 <i<n
and v*(p;) > v(Ss), and so ¢(p;) =t. Thus ¢ classically satisfies s. Assume now that
v®(s) < vf(Sy). This implies that v®(s) < v®(s). It follows that v*(s) < v*(Ss), and so
there exists some f:p; € s such that v*(p;) < v*(Ss). Since uf > uf, v*(p;) < v¥(p;), and
so ¢(p;) = f. Thus ¢ classically satisfies s.

Now, let s € S;. Obviously, v®(s) < v*(S;). This implies that there exists some
f:p; € s such that v*(p;) < vf(Sy). Since uf > uf, v*(p;) < v'(p;), and so c(p;) = f.

Again c classically satisfies s. O]
Theorem 7.4.6. All coherent canonical Godel L-calculi enjoy strong cut-admissibility.

Proof. Let G be a coherent canonical Godel L-calculus, H a set of L-hypersequents
and H an L-hypersequent. Let p = (L, L, A) and p' = (L, frm[H], A). Suppose that
’HJ"GW H. We show that H |7‘G[p Hﬂ By Theorem [7.3.17, there is some G[p/—legal

6In fact, this proves a stronger claim: H I—G[p H for p= (L, L, A) implies that ’H%Grp/ H for
p' = (L, frm[H], A). Roughly speaking, this means that one never has to introduce new applications

of the identity axioms for eliminating cuts. The usual notion of strong cut-admissibility is obtained by
taking A = L.
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L-Gvaluation ¢, such that ¢ =H but ¢ £ H. We construct a GJplegal L-Gvaluation
v, such that v =H but v £ H. By Theorem [7.3.17], it then follows that H VGrp H.
First, we define V, =V,. Next, for every ¢ € L, v*(¢) and v*(p) are determined as
follows. If ¢*(¢) < ¢*(p) then vi(p) = ¢"(¢) and v*(p) = ¢*(¢). Otherwise, if ¢ is an

atomic formula, v*(¢) = v*(p) = ¢*(¢). Finally, if ¢ is a compound formula of the form

(1, - s Par(e)) and ¢* () < ¢*(¢), we define:

q*(¢) v (p) < ()
Vi) = 0"(p) = §v8(9)  ¢f(p) < v(p) < ¢*(9)
¢°() q*(p) <v&(e)
where v%(p) = min{o}, (v(¢1); -, V(Pare))) | 7 is a canonical left L-rule for o in G}.

Note that v(p) depends only on the values assigned to proper subformulas of ¢, and
hence this construction is well-defined. We first show that v is p-legal. Obviously,
v®(p) < vf(p) for every formula ¢. It remains to prove that v®(¢) < v*(p) for every
¢ € A. To see this, note that the only case in which we have v*(p) # v*(p) is when
7*(¢) < q¢*(p). Since q is p'-legal, this can only happen for ¢ € A. Next, we show that v

is G-legal. For this we use the following properties:

ARl
S

The proofs of these properties easily follow from the definitions (note that if u; < us and

ug < uy then ug — uz < u; — uy). Now, we show that v is G-legal.

o Let 7 =8/{t:o(p1,...,pn)} be a canonical right L-rule of G, and o be an L-
substitution. We show that o}, (v(a(p1)), ..., v(o(ps))) < v¥(o((p1, ..., ps))). Let
¢ = o(o(p1,-,pn)) and u = o, (v(a(p1)), ..., v(o(ps))). Since ¢ is G-legal, we
have of, (q(a(p1)), .- 4(o(pn))) < ¢°(¢). By Lemma [7.3.15 u = v(o(S)), and

op,(a(a(pr)), -, a(o(pn))) = q(a(S)). Thus if v*() = ¢* (), the claim follows by
Item 4] Otherwise, the construction of v ensures that v®(p) = max{v(p), ¢*(¢)}.

Thus v%(p) < v*(p). Now, by Lemma [7.4.5, the coherence of G entails that
u < vG(p).

o Let r=38,8/{f:o(p1,...,pn)} be a canonical left L-rule of G, and o an L-
substitution. We show that vf(a(o(p1,...,pn))) < o} (v(a(p1)), .., v(o(pn))). Let
¢ =0(o(p1, ..., pn)) and u = o}, (v(a(p1)), ..., v(a(ps))). Since ¢ is G-legal, we have
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¢ (p) < <% (q(0(p1)), -, qa(o(pn))). By Lemma u=v(0(81)) = v*(0(5))
and o, (q(o(p1)), -, a(o(pn))) = a(0(S1)) = ¢*(0(S2)). Thusifv*(p) = ¢*(p), then
the claim follows by Item [5] Otherwise, the construction of v ensures that we have

vf(ip) = min{v¥(p), ¢*(p)}, and so v*(p) < u.

It remains to show that v = H but v £ H. Let H' € H. Since q = H, there exists some
s € H' such that ¢*(s) < ¢*(s). Since q is p/-legal and frm[s] C frm[H], ¢*(¢) < ¢*(yp) for
every ¢ € frm[s]. The construction of v ensures that v(y) = ¢(¢) whenever ¢ € frm|[s].
Hence, v*(s) < v*(s), and consequently v = H'. Finally, we show that v = H. Let s € H.
Since ¢ & H, we have ¢ [~ s. Thus ¢(s) < 1. Item [3] above entails that v(s) < 1 as well,
and so v [~ s. O

Example 7.4.7. Since HG is coherent, it enjoys strong cut-admissibility. The extension
of HG with the rules for ~ and X from Examples [7.2.6] and [7.2.7] enjoys strong cut-

admissibility as well.

This leads to the following triple equivalence in canonical Godel calculi:
Corollary 7.4.8. The following are equivalent for a canonical Godel L-calculus G:

e G is coherent.
e G is strongly sub-analytic.

e G enjoys strong cut-admissibility.

Proof. Following Proposition[7.2.9 if G enjoys strong cut-admissibility then it is strongly
sub-analytic. In addition, following Proposition [7.4.4] if G is not coherent then it is not
strongly sub-analytic. The third link follows by Theorem [7.4.6] O

The decidability of coherent calculi is an easy corollary.

Corollary 7.4.9. Given a coherent canonical Godel L-calculus G, a finite set ‘H of

L-hypersequents and an L-hypersequent H, it is decidable whether ‘H g H or not.

Proof. By Corollary[7.4.8) if G is coherent then it is strongly sub-analytic. Thus it suffices
to check whether # b, H for p = (sub[H U{H}|, sub[H U {H}], sub[H U{H}|). This
can be as described in the discussion after Corollary [7.3.19 [

Note that the same equivalence of Corollary holds for the family of canonical
(two-sided) sequent systems [I7] and their single-conclusion counterparts [I4]. Another
similarity between canonical Godel calculi and canonical sequent calculi arises when
studying the property of axiom-expansion. Indeed, as shown in Corollary [4.4.8 canonical

sequent calculi exhibit a strong connection between determinism of the semantics of a
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certain connective, and the fact that this connective admits axiom-expansion (see also

[11], 43]). Next, we show that a similar connection exists in canonical Godel calculi.

Roughly speaking, a connective ¢ is deterministic in a calculus G if for every for-
mula o(¢1, ..., Par(e)), the truth values assigned to ¢i,...,¢ar) in G-legal normal £-
Gvaluations uniquely determine the truth value assigned to ¢(¢1, ..., ¢, ). Formally, this

property is defined follows:

Definition 7.4.10. Let G be a canonical Goédel L-calculus. An n-ary connective ¢ €
is deterministic in G if for every Godel set V and elements uq, ..., u, € V, there exist

canonical right and left £-rule ry,7; for ¢ in G (respectively), such that
O ((wr, ur), oovy (Up, up)) = O3 ((ur, u), oy (Un, Up)).

Indeed, if v is a G-legal normal L£-Gvaluation, then for every compound formula
© = (1, ..., ¢n), v(p) is forced to be greater than or equal to o},(v(p1),...,v(py)) for
every right rule r for o, and less than or equal to o},(v(¢1), ..., v(gn)) for every left rule

r for o. If the condition above holds, then this leaves exactly one option for v(y) given

v(pr), s 0(@n)-

Theorem 7.4.11. Let G be a coherent canonical Godel £-calculus. A connective admits

axiom-expansion in G iff it is deterministic in G.

Proof. Let ¢ be an n-ary connective, and let ¢ = o(p1,...,p,). By definition, ¢ admits
axiom-expansion in G iff I—G(p H for H={{f:p,t:¢}} and p = (L, L, {p1, ..., Dn})-

e Suppose that ¢ is deterministic in G. We show that kg, py H. By Theorem ,
it suffices to show that every G| j-legal L-Gvaluation is a model of H. Let v be a
G/ p-legal £-Gvaluation. Since ¢ is deterministic in G, there are canonical right and
left L-rules ry,7¢ for ¢ in G, such that o}; (v(p1),...,v(pn)) = oy (v(p1), ..., v(Pn))-
Since v is G-legal, o5 (v(p1), ..., v(pn)) < V() and v () < o5 (v(p1), ..., v(pn)). Tt
follows that v*(p) < v*(¢), and so v = H.

e Suppose that ¢ is not deterministic in G. Hence, there is a Godel set V and
Uty o Uy €V, such that off ((ui, ur), ..., (Un, un)) # O3 ((u1, 1), ..., (Un, uy)) for
every canonical right and left £-rules ry, r; for o in G. Let F = {p1, ..., pn, ¢}, and
define a partial £-Gvaluation v by: V, =V, Dom, = F, v(p;) = (u;, u;) for every
1 <i<n,and

v(p) = (min{o},(v(p1), ... ,v(pn)) | 7 is a canonical left L-rule for ¢ in G},

max{o},(v(p1),...,v(pn)) | r is a canonical right L-rule for ¢ in G}).

Then our assumption entails that v*(p) # v*(¢). Let p' = (F, F,{p1,...,pn}). It is
easy to see that v is a G -legal partial £L-Gvaluation. In particular, V() < vE(p)
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since G is coherent (see Lemma [7.4.5). Hence v*(p) < v*(p), and so v is not a
model of H. By Theorem [7.3.17, ¥g; o H. Now, suppose for contradiction that
G o H. By the proof of Theorem (again using the fact that G is coherent),

it follows that l_GTm H for p1 = (L,0,{p1,...,pn}). By Proposition , I—Grp2 H
for po = (sub[H],D,{p1, ..., pn}). This contradicts the fact that J"G[p/ H. ]

7.5 Soundness and Completeness Proofs

In this section we prove Theorem [7.3.17, For the rest of this section, let G be a canon-
ical Godel L-calculus, p = (F,C,.A) an L-proof-specification where F is closed under
subformulas, H a set of L-hypersequents, and Hy an F-hypersequent.

Soundness

Suppose that H I—G[p Hy, and so there exists a p-proof P in G of Hy from H. Let v
be a GJp-legal partial L-Gvaluation, which is a model of H. Using induction on the
length of P, we show that v = H for every L-hypersequent H appearing in P. It then
follows that v = Hy. Note that since all L-hypersequents in P are F-hypersequents, it
suffices to prove that v is a model of some component s € H for every L-hypersequent H
in P. This trivially holds for the £-hypersequents of H that appear in P. We show that
this property is also preserved by applications in P of the rules of G. Consider such an
application, and assume that v is a model of some component of every premise of this

application. We show that v is also a model of some component of the conclusion:

Weakenings For applications of the weakening rules, this is obvious.

(cut) Suppose that H | s; U sy is derived from H | sy U{f:¢} and H | sy U {t:¢} using
(cut) (here ss must be a negative sequent). Thus ¢ € C. If v |= s for some com-
ponent s € H, then we are done. Otherwise, v = s; U{f:¢p} and v |= 55 U {t:p}.
We show that v |= 51 Usy. By definition, we have v®(s; U {f:p}) < v®(s1) and
vE(s9) < v(p). Since p € C, v*(p) < vE(yp), and so vi(sy) < v(p). It follows that
vE(s1 U s2) < vf(sy U{f:p}). Therefore, v (s3 Usy) < v*(s1), and so v = 51 U sa.

(id) Suppose that {{f:p,t:p}} is derived using (id). Thus ¢ € A, and so v*(p) < v*(p).
Consequently, v = {f:p, t:p}.

(com) Suppose that H | s Ucy | soU ¢y is derived from H | s; U ¢y and H | sy U ¢y using
(com), where 1, o are negative sequents. If v = s for some s € H, then we are done.
Otherwise, v = s1 U c; and v = sy U ca. We show that v = s1 Ucy or v = s Ucy.
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Our assumption entails that v®(s; Ucp) < v*(s1Uc;p) and v¥(so U cp) < v¥(s9 U o).
By definition, v*(s; Uc¢;) = v*(s1) and v*(se U c3) = v*(sy). Hence, we have both
vi(s1Uep) <0¥(s1) and vf(sp Ucy) < v¥(sg). If vf(s1) < v¥(s1) then v = s; Uy
and we are done. Similarly, if v®(s2) < v®(sg), then v = sy U ¢y and we are
done. Otherwise, we obtain that v®(c;) < v*(s1) and v¥(cy) < v*(s2). Now, if
v¥(s1) < v¥(cy), we obtain that vf(c;) < v*(se) and so v | sy U ¢, and other-

wise (using the fact that < is linear) we have v®(c2) < v®(s1) and so v = s1 U cs.

Right rules Suppose H | {t:0(o(p1, ..., Par(o)))} U c is derived from {H | o(s) U c}ses,
using the right rule 7 =S/{t: ¢ (p1,...,Dar())} (here ¢ must be a negative se-
quent). If v |=s for some s € H, then we are done. Otherwise, v = o(s)Uc
for every s € S. Let ¢ = o(o(p1, ..., Par(s))), and suppose for a contradiction that
v £ {t:p} Uc. Since ¢ is a negative sequent, we have v*(c) > v*(¢). Now, since
¢ € F and F is closed under subformulas, we have also o({p1,...,pn}) C F.
Since v is 7-legal we have of, (v(0(p1)), -, v(0(Par(s)))) < v*(). By Lemmal7.3.15)
ob, (v(a(p1)) s (0 (Par(e)))) = v(o(S )), and so vf(c) > v(o(S)). By definition,
we have v®(c) > v(o(s)) = vi(o(s)) = v*(o(s)) for some s € S. It follows that
vi(o(s)) > v*(o(s)) and vi(c) > v®(o(s)). But then vf(o(s) Uc) > v¥(o(s) Uc), in
contradiction to the fact that v = o(s) Uc.

Left rules Suppose H | {f:0(0(p1, ..., Par(s)))} U c U ¢ is derived from {H | o(s) U c}ses,
and {H | 0(s;) U'}ses,, using the left rule r = 81, So/{f: ¢ (p1, ..., Par(e)) } (here ¢
must be a negative sequent). If v = s for some s € H, then we are done. Oth-
erwise, v = o (s) Uc for every s € Si, and v |= o(s) U for every s € Sy. Hence:
(1) for every s € Sy, either v¥(c) < v*(o(s)) or vi(o(s)) < v¥(o(s)); and (2) either
V() < v¥(d), or vi(a(s)) < v*() for every s € Sy, Let ¢ = a(o(p1, ..., Par(e)))-
Suppose for a contradiction that v [ {f:¢} UcU . Then by definition we have
vE{f:p} UcU ) > 0v*(). Therefore: (3) v*() < vf(c) and v*(¢') < v*(¢); and
(4) v(c') < v¥(p). From (2) and (3) we obtain (5): vf(o(s)) < v*(c) for every
s € 8y. Now, since ¢ € F and F is closed under subformulas, we have also
o({p1,-...pn}) € F. Since v is r-legal, v*(p) < o}, (v(a(p1)), ..., V(0 (Par(e))))- Let
z=0v(0(81)) = vi(0(S2)). By Lemma , o (v(a(pr)), -, v(0(Pare)))) = 7,
and so v¥(p) < z. Together with (4), we have that v*(¢/) < x. By (5), we obtain
that v®(0(s)) < x for every s € S,. Let sq be a sequent in Sy such that v*(s) obtains
amaximal value (i.e. v¥(sg) = v¥(0(S2))). In particular, v*(sg) < v(0(S1)) = v*(sg)-
This entails that v(o(S1)) < v¥(sp). Now, (3) and (5) imply that v*(so) < v¥(c).
It then follows that v(o(S1)) < v®(c). Hence v(o(s)) < vi(c) for some s € S;.
Equivalently, v¥(o(s)) — v*(0(s)) < v¥(c). This implies that v*(o(s)) < v(o(s))
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and v*(o(s)) < v¥(c). But this contradicts (1) above.

Completeness

Suppose that H g P Hy. We construct a G| j-legal partial £-Gvaluation v, which is a
model of H, but not of H,.
As the previous completeness proofs, v is constructed using a “maximal” hyperse-

quent. For this purpose, we introduce extended hypersequents:

Definition 7.5.1. An extended L-hypersequent is a (possibly infinite) set of extended
£—sequents[] Given two extended hypersequents 4, {25, we write {21 C 5 (and say that
Oy extends Q) if for every uy € 4, there exists s € 2y such that g C pus.

We shall use the same notations as above for extended hypersequents. For example, we
write © | p instead of Q U {u}. An extended F-hypersequent is also defined as expected
(namely, an extended hypersequent that consists only of formulas from F). In addition,

for the rest of this proof call an extended L-hypersequent €2

finite if || is finite, and so is |p| for every p € Q.
provable if H Fg; 0 H for some (ordinary) L£-hypersequent H C Q.

unprovable if it is not provable.

Ll e

maximal with respect to an L-formula ¢ if for every p € 2 and x € £4, the extended
L-hypersequent €2 | p U {x:p} is provable whenever x:¢ & .

internally maximal if it is maximal with respect to any ¢ € F.

mazimal with respect to an L-sequent s if | s is provable whenever {s} [Z ().

externally mazimal if it is maximal with respect to any F-sequent.

© N o o

maximal if it is an extended JF-hypersequent, unprovable, internally maximal, and

externally maximal.

Less formally, an extended hypersequent €2 is internally maximal if every formula
added on some side of some component of 2 would make it provable. Similarly, €2 is

externally maximal if every sequent added to {2 would make it provable.
Proposition 7.5.2. Let €2 be an extended L-hypersequent.

e Assume that 2 is maximal with respect to a formula ¢ € F. For every p €

- If f:p&p, then H '_Grp H|siU{f:p}|...| s, U{f:p} for some L-
hypersequent H C 2 and L-sequents s1, ..., s, C u.

"Recall that extended L-sequents are (possibly infinite) set of labelled L-formulas. In particular,
extended L-sequents are not necessarily single-conclusion.
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— If t:0 & p, then H I—G{p H | sU{t:p} for some L-hypersequent H C Q and

negative L-sequent s C p.
e Assume that € is maximal with respect to an F-sequent s. Then, if {s} £ 2, then
H Fg; o H | s for some L-hypersequent H C .
Proof. Directly follow from our definitions and the availability of the weakening rules. []

Next, we show that Hy can be extended to a maximal extended L-hypersequent ).

Lemma 7.5.3. Suppose that Q@ = py | ... | u, is an unprovable finite extended F-
hypersequent. Let ¢ € F, and let s be an F-sequent. Then there exists an unprovable
finite extended F-hypersequent 2, such that:

o OV =y |...] ul,, where n’ € {n,n+ 1}, u;, C p for every 1 <i <n.
e ) is maximal with respect to .

e () is maximal with respect to s.

Proof. First, if Q | s is unprovable, let " = n 4+ 1 and define p,11 = s. Otherwise,

let n’ = n. We recursively define a finite sequence of finite extended F-hypersequents,

Qo= || gy oo, Q= i || i, in which i C pi* for every 1 < j < n and
0 < i < n—1. First, define ,u? = p; for every 1 < j < n/. Let 0<i<n'—1
Assume that ; = g |...| pi, is defined. To construct Q;y; = it |...| pit!, we take some

maximal set X C £ (with respect to set inclusion) for which i} |...| pi U (Xi@) |...| gy,
is unprovable, and define pi1{ = i, U (X:p), and it

to verify that €2, = u?/ |...] qu has all of the required properties. For example, we show

= i} for every j # i+ 1. It is easy

that , is maximal with respect to ¢. Let pu € Q,/, and assume that x:¢ ¢ pu? (for

x € £2). This implies that pi™" |...| ui U {x:p} |...| ', " is provable. Using weakenings,

it easily follows that Q, | u? U {x:p} is provable. O
Lemma 7.5.4. There is some maximal extended L-hypersequent §2 that extends H.

Proof. Let g, ¢1, ... be an enumeration of all F-formulas, in which every formula appears
an infinite number of times. Let sg, s, ... be an enumeration of all F-sequents (with repe-

titions, if there is only finite number of them). We recursively define an infinite sequence

of unprovable finite extended F-hypersequents, Hy = s? |...| s0 , Hy = s{ |...| s, ..., in
which: (a) ng < ny < ... and (b) sé - sj-ﬂ for every i« > 0 and 1 < j < n;. First,
let ng = n and let Y |...| s9 be the original F-hypersequent Hy. Let i > 0. Assume

H; = s} |...| s, is defined. By Lemma [7.5.3] there exists an unprovable finite extended
F-hypersequent H' such that:

o H =4 |...| s, where n' € {n;,n; + 1}, and s; C s} for every 1 < i < n,.
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e H’is maximal with respect to ;.

e H'is maximal with respect to s;.

é-“ = s} for every 1 < j < n;y1. Note that after every step we have

an unprovable finite extended F-hypersequent, so Lemma [7.5.3| can be applied. Finally,

Let n;.1 =n/, and s

let N = max{ng,ny,...} + 1, if such a maximum exists, and infinity otherwise. Let
n(j) = min{i | 7 <n,;} for every 1 < j < N. Define p; = Uizn(j)s;'. for every 1 < j < N.
Let © be the extended F-hypersequent py |y | .... Obviously, Q extends Hy. We prove

that it is maximal:

Unprovability Suppose by way of contradiction that H Fg; p H for an L-hypersequent
H C Q. Assume that H = s; | ... | s,. The construction of €2 ensures that for
every 1 < i <n, there exists k; > 1 such that s; C py,. This entails that for every
1 <7 < n, there exists m; > 0 such that s; C SZ“ By the construction of the s?’s,
we have that for every 1 <7 <n and [ > m;, s; C sﬁw. Let m = max{my,...,my}.
Then, by definition H T H,,. Since H Fg; P H, it follows that H,, is provable.
But, this contradicts the fact that H is unprovable, and that each application of
Lemma yields an unprovable extended L-hypersequent.

Internal Maximality Let ¢ € F, p; € Q, and x € £,. Since we included ¢ infinite
number of times in the enumeration of F-formulas, there exists some ¢ > n(j) such
that ¢; = . Our construction ensures that H;,; is maximal with respect to ¢,
and so if x:p & s?’l then H; 1 | s?“l U {x:¢} is provable. Since H;; C €, it follows
that if x:p & p1; then Q | pu; U {x:p} is provable.

External Maximality Let s be an F-sequent. Assume that s = s; (i > 0), our con-
struction ensures that H,; is maximal with respect to s. Hence, H; ;1 | s is provable

whenever {s} Z H; 1. Since H;y1 C Q, we have that Q | s is provable whenever

{s} £ Q. O

Using the maximal extended L-hypersequent 2 (that extends Hy), we are not ready
to construct a GJp-legal partial L-Gvaluation v which is a model of H, but not of Hj.
For every ¢ € F, define L(p) and R(y) as follows:

Lip)={neQ|fpep} and  R(p)={pecQ|tp&pu}
v is defined as follows:

1.V, =(V,Q), where: V={L(p)| e FU{R(p) | e FtU{Q,0} (C denotes
set inclusion).

2. Dom, = F.

3. For every p € F, v(p) = (L(p), R(¥)).



7.5. SOUNDNESS AND COMPLETENESS PROOFS 129

First, we show that V, = (V, C) is indeed a Godel set (see Definition [7.3.1)). Clearly,
C is a partial order on V, Q is a maximal element, and ) is a minimal one. To see that

V' is linearly ordered by C, it suffices to prove the following:

1. L(p1) € L(pa) or L(ps) C L(py) for every o1, po € F. To see this, suppose for a
contradiction that L(p1) € L(ps) and L(ps) € L(p;) for some @1, @9 € F. Thus
there exist py, e € Q, such that py € L(py) \ L(p2) and ps € L(p2) \ L(p1). Hence,
fip1 € 1, 01 & pio, T:109 € g and f:pg & p1y. By Proposition [7.5.2] there exist an
L-hypersequent H; C € and L-sequents sy, ..., s, C p1 such that

H I—G{p Hy | siU{f:pa}|...| sp U{f:2}.

/

Similarly, there exist Hy C Q2 and s/, ..., s., C u9, such that

r m

H I—G{p Hy | siU{f:01} |...] s, U{f:p1}.
By Proposition [7.2.10}
H l_Grp Hy | Hy| s U{f:01} |ooo| s U{E:01} | S U{E:02} | o] 80, U {£:02}.
But, €2 extends this hypersequent, and this contradicts the fact that €2 is unprovable.

2. R(p1) C R(p2) or R(p2) € R(yp1) for every ¢y, o € F. To see this, suppose for a
contradiction that R(y1) € R(ps) and R(ps) € R(¢p1) for some ¢y, ps € F. Thus
there are puy, o € €2, such that p; € R(p1) \ R(p2) and pe € R(p2) \ R(p1). Hence,
tipr & pa, tipr € o, tipo € py and tips & po. By Proposition [7.5.2] there exist £-
hypersequents Hy, Hy C {2 and negative L-sequents sq, so such that

H |_Grp Hi|siU{t:p1} and H l_GTp Hy | s U{t:pq}.
By applying (com), we obtain
H I_G[p H1 | Hg | S92 U {tf(pl} | S1 U {ti(pg}.
Again, since () extends this L-hypersequent, this contradicts the fact that €2 is

unprovable.

3. L(p1) C R(p2) or R(ps) C L(py) for every ¢; € F and ¢y € F. To see this, sup-
pose for a contradiction that L(p;) € R(p2) and R(ps2) € L(p;) for some ¢, € F
and @y € F. Let py, po € €2, such that py € L(p1) \ R(p2) and ps € R(p2) \ L(p1).

Hence, f:p1 € py, £:01 € o, tips € g and tips € . By Proposition there
exist L-hypersequents Hy, Hy C €2, L-sequents sq,...,s, C pus and a negative L-

sequent s C g, such that
Htay, H | s U{f:o1} || sn U{f:p1} and H Fai, Ha | 8" U{tipa}.

By Proposition [7.2.10, H I—G[p Hi | Hy | s1Us || s, US| {f:01,t:02}. Again,
this contradicts the fact that €2 is unprovable.

Now, it is easy to verify that v is a model of H but not of Hy:
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e Let H be an F-hypersequent in H. Since () is unprovable, H [Z Q2. Thus there

exists some L-sequent s € H such that s  u for every € 2. This implies that for
every u € €, either u & L(y) for some ¢ such that £:¢ € s, or u € R(yp) for some ¢
such that t:p € s. Tt follows that for every u € €, we have pu & v*(s) or p € v®(s).
Thus v*(s) C v*(s), and so v = s. Consequently, v = H.

Let s € Hy. Since Hy C €, there exists u € €2 such that s C p. Hence p € L(yp) for
every ¢ such that f:p € s, and u & R(p) for every ¢ such that t:p € s. It follows
that u € v®(s) and p & v*(s). Therefore, v*(s) Z v*(s), and so v [~ s. Consequently,
v £~ Hy.

It remains to show that v is G[-legal. First, we show that it is p-legal. By definition
Dom, = F. In addition:

e Let o € CNF. Assume for a contradiction that v*(¢) € v¥(yp), and thus there ex-

ists some p € 2 such that u € R(p) but u & L(p). Thus t:p & p and f:¢p & p. By
Proposition|[7.5.2] there exist £-hypersequents Hy, Hy T Q, L-sequents s1, ..., s, C i
and a negative L-sequent s’ C pu, such that H I—G[p Hy | sy U{f:p} |...] s U{f:}
and ‘H I—G{p H, | ' U{t:¢}. By n consecutive applications of (cut) (on ¢, which is
an element of C), we obtain H I—G(p Hy | Hy|s51Us |...| s, US', but this contra-
dicts the fact that €2 is unprovable.

Let p € ANF. Thus H '_Grp {{f:¢,t:¢}} (by applying (id) with ¢, which is
an element of A). Since ) is unprovable, either f:o € u or t:p & p for every
€ Q. Equivalently, for every p €, either u & L(p) or u € R(p). It follows
that L(¢) C R(y).

To show that v is G-legal, we first prove that the following hold:

(a)

For every F-sequent s, if v¥(s) C v®(s) then there exists an £-hypersequent H' C Q
such that H I—G[p H'|s.

Proof. Suppose that there does not exist H' C  such that H '_Grp H'|s. Then
Proposition[7.5.2)implies that {s} C Q. Hence s C y for some p € Q. By definition,
i € L(p) for every ¢ such that f:¢ € s, and u & R(p) for ¢ such that t:p € s. It
follows that € v®(s) and p & v*(s). O

For every F-sequent s, if u € v(s), then there exist an L-hypersequent H' C ), and

a negative L-sequent s’ C p, such that H g, H' | sU .

p

Proof. Suppose that p € v(s) = v*(s) = v*(s). Now, if vf(s) C v*(s), then the

claim follows by (a) (take s’ =()). Otherwise, u € v*(s). Hence there is some
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v € L such that t:p € s and p € R(p). Thus t:p & pu. By (possibly) using weak-
ening, Proposition implies that there exist an L£-hypersequent H' C €2, and a

negative L-sequent s’ C p, such that H g, H' | sU s O

p

For every negative F-sequent s, if u & v*(s) then there exist an L-hypersequent
H' C Q and L-sequents s1, ..., s, C u such that H I—G[p H' | sUsy|...| sUsy,.

Proof. Suppose that p & v®(s). Thus there exists some ¢ € L such that f:p € s
and p & L(yp). Hence, f:¢ ¢ pu. The claim follows from Proposition [7.5.2] (possibly
by using weakenings). O

Next, we show that v is r-legal for each canonical L-rule r of G:

o Let r=S5/{t:0(p1,...,Par(e))} be a right canonical L-rule of G, and ¢ an L-

substitution, such that o({p1, ..., pn})U{p} C F, where p = g (o(p1, ..., Par(s))). Us-
ing Lemma(7.3.15] it suffices to prove that v(c(S)) € R(y). Let u € v(c(S)). Sup-
pose that S = {s1, ..., s, }. Since p € v(c(S)), (b) entails that for every 1 <i <mn,
there exist an L-hypersequent H; C ) and a negative L-sequent s; C p, such that
H I—G{p H; | s;Uo(s;). By applying the rule r, we obtain that

Htay, H || Hy | s{U .U s, U {tip}).
The fact that €2 is unprovable then entails that t:p & u, and so u € R(p).

Let 7 = &1, So/{f: 0 (p1, .-, Pare))} be a left canonical L-rule of G, and o an L-
substitution, such that o({p1,...,pn}) U {¢} C F, where ¢ = a(o(p1, ..., Par(e)))-
Using Lemma [7.3.15 it suffices to prove that L(p) C v(c(S1)) — v*(0(S2)). Let
p € Q and suppose that p & v(o(S1)) — v¥(0(Sz2)). Hence, v(o(S1)) € v¥(0(Sz))
and pu &€ v*(0(Sy)). Let p € v(o(Sy)) such that p' & v*(0(Ssz)). Suppose that
S1 = {s1,..., 8.} and Sy = {s, ..., s, }. We have the following:

(1) Since u' € v(0(S1)), we have u' € v(o(s;)) for every 1 <i<n. (b) entails
that for every 1 <1 < n, there exist an L-hypersequent H; C (2, and a neg-
ative L-sequent ¢; C 4/, such that H g, 0 H;|c;Uo(s;). The availability
of weakenings entail that H '_Grp Hy | cUo(s;) for every 1 <i <mn, where
H=H |..|H,and c=c; U...Ucy,.

(2) Since p' € vH(0(S2)), 1 € vi(c({ | £:40 € s})) for every 1 <i < m. (c) en-
tails that for every 1 < i < m, there exist an L-hypersequent H; C 2 and L-
sequents si, ..., s, C u' such that Far, Hi | siUo(s)) |...] sh Uo(s]). The
availability of weakenings entail that H I—G{p H'|siUo(s)) |...| s, Uo(s]) for
every 1 <i < m, where H = H| |...| H],.
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(3) Similarly, the fact that p & v*(0(S2)) entails that for every 1 <i < m, there
exist an L-hypersequent H! C Q and L-sequents ¢, ..., ¢, C p for which we
have H g, H} | A Uo(sh)|...| C;; Uo(s:). The availabillity of weakenings
entail that H '_Grp H!'|dUo(sl)]...| CZ; Uo(s;) for every 1 <i < m, where
H'=H!|..| H".

Let H*=H | H' | H". From (1) and (2), by Proposition we obtain that the
following L-hypersequent has a p-proof in G of H:

H* [ cUsiU{f:p}|...|cUs, U{fp}|...]cUsTU{fip} |...| cUsT U{fip}.
Similarly, from (1) and (3), by Proposition we obtain that the following
L-hypersequent has a p-proof in G of H:

H*|cUeci U{f:p}|...| cU 0711/1 U{Ep) [l eUe" Uit} || cucy U{fp}.
By Proposition it follows that the following hypersequent has a p-proof in
G of H:

H*|cUsy|..]eUspy |..lcUsP|..|cUsy |

clU{fp}]...| ciL,l U{Ep} [ " U{fip} ] o U{fip}.
Now, if £:¢0 € u, then ) extends this L£-hypersequent, and this contradicts the fact
that €2 is unprovable. Therefore, f:¢ ¢ u, and consequently p & L(ip).



Chapter 8

Calculus for First-Order Godel Logic

So far we have considered logics and calculi only at the propositional level. However, the
ideas and methods described in the previous chapters are applicable for first-order calculi
as well. In this chapter we demonstrate our methods for the hypersequent calculus HIF
for standard first-order Godel logic (standard means that the real interval [0, 1] can be
used as the underlying set of truth values)[| HIF, introduced in [30], is obtained from
HG (the original hypersequent calculus for propositional Godel logic, see Chapter @ by
adding standard (hypersequential versions of) rules for the quantifiers V and 3. It was
proved in [30] that HIF is sound and complete for standard first-order Godel logic by
showing its equivalence to an Hilbert system for this logic (see [63]). Furthermore, it was
shown in [30] and [22] that HIF admits cut-elimination| As a corollary, one obtains
Herbrand theorem for the prenex fragment of this logic [76].

In this chapter we obtain alternative semantic proofs for these facts, by using the ideas
and techniques from Chapter [7] First, we briefly present standard first-order Godel logic
(from a many-valued semantic point of view), and the hypersequent calculus HIF. Then
we prove the soundness of HIF for standard first-order Godel logic. The completeness
proof is tied together with cut-admissibility and involves two stages: (i) We present
a non-deterministic semantics and show its completeness for the cut-free fragment of
HIF; (i7) It is shown that from every non-deterministic counter-model, one can extract
a usual counter-model. From these two facts together, it easily follows that HIF enjoys

cut-admissibility, and that it is complete for standard first-order Godel logic.

Note that unlike previous chapters, this chapters studies one specific calculus for a

INote that Gédel logic is the only fundamental fuzzy logic whose first-order version is recursively
axiomatizable [76].

2In fact, the first syntactic proof in [30] of cut-elimination was erroneous. A corrected syntactic proof
appear in [22]. There has also been a gap in the proof given in [4] for HG in its handling of the case of
disjunction.

133
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particular logic, aiming to demonstrate the usefulness of semantic tools in studying first-
order calculi. It should be also possible to define and study general canonical rules for
quantifiers in this context as done in [I8, [98]. This chapter also serves as a preparation
for the next one, where we extend of HIF with rules for second-order quantifiers. Cut-
admissibility for HIF itself can be derived as a corollary of the results of the next chapter.

However, to make our presentation more accessible we first include here the full proof for

HIF.

Remark 8.0.5. The method of proving cut-admissibility in this chapter is similar to
what we did for (coherent) canonical Gédel hypersequent calculi in Chapter . Indeed,
a general cut-admissibility theorem (Theorem was proven in Chapter [7] by (uni-
formly) extracting a G-legal £-Gvaluation from a G[( L,0, £)-legal L-Gvaluation. The
non-deterministic semantics of the cut-free fragment of HIF developed in this chapter is
a natural first-order version of the semantics obtained in Chapter [7| for cut-free canonical

Godel hypersequent calculi (i.e., using the proof-specification (£, (, £)).

Publications Related to this Chapter

The results of this chapter were included in [16] and [72]. Nevertheless, our method
here is completely different (and it allows generalization for second-order). In [16] [72]
we extended the results of [10] concerning the propositional calculus HG to the first-
order calculus HIF. As in [I0] this was done by proving the completeness of the cut-free
part of HIF for its Kripke-style semantics (thereby proving both completeness of the
calculus and the admissibility of the cut rule in it). In this chapter we take a novel
approach which is very close to the methods of Chapter [/} In particular, we consider
many-valued semantics rather than Kripke-style one. Note also that [16] introduced a

multiple-conclusion calculus for first-order Godel logic that is not included here.

8.1 Preliminaries

In what follows, £! denotes an arbitrary first-order language, defined by:
Definition 8.1.1. A first-order language consists of the following:

1. Infinitely many variables vy, vs, .... We use the metavariables x, y, z (with or without

subscripts) for variables.
2. A propositional constant L.
3. Binary connectives A, V, D. We use ¢ as a metavariable for the binary connectives.

4. Quantifiers V and 4. We use @) as a metavariable for the quantifiers.
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5. An arbitrary set of constant symbols. The metavariable ¢ is used to range over
constant symbols.

6. An arbitrary set of function symbols. The metavariable f is used to range over
them.

7. An arbitrary set of predicate symbols. The metavariable p is used to range over
them.

8. Parentheses (" and ’)".

Definition 8.1.2. The set of L!-terms consists of: (i) all variables of £!; (ii) all constant
symbols of £'; and (i7i) if f is an n-ary function symbol of £! and t1, ..., t, are L'-terms
then f(ty,...,t,) is an L'-term. We use ¢ (with or without subscripts) as a metavariable

for £'-terms. The set of variables occurring in an L!'-term ¢ is defined as usual, and
denoted by Fult].

Following the convention of Girard in [58], we define a first-order formula as an
equivalence class of what we call concrete formulas, so that two formulas that differ
only by the names of their bound variables are considered the Sameﬂ This is convenient
for handling the bureaucracy of free and bound variables. Moreover, it simplifies the

non-deterministic semantics below (see Remark [8.5.7]).
Definition 8.1.3. Concrete L!-formulas are inductively defined as follows:

1. p(ty,...,t,) is a concrete L'-formula for every predicate symbol p of arity n and
Li-terms tq, ..., t,.

2. 1 is a concrete £L!-formula.

3. If ®; and P, are concrete L*-formulas, so are (®1 A @), (D1 V Py), and (P D Py).

4. If @ is a concrete L'-formula, and x is a variable of £, then (Vz®) and (Jz®) are

concrete L'-formulas.

We use @ (with or without subscripts) as a metavariable for concrete £'-formulas. Free
and bound variables in concrete L'-formulas are defined as usual. We denote by Fv[®],
the set of variables occurring free in a concrete £'-formula ®. Alpha-equivalence between
concrete L-formulas is defined as usual (renaming of bound variables). We denote by [®],
the set of all concrete £'-formulas which are alpha-equivalent to ® (i.e. the equivalence
class of ® under alpha-equivalence). cp[®], the complexity of a concrete L'-formula ®
is the sum of the numbers of occurrences of quantifiers, connectives (including 1), and

atomic concrete formulas (formulas of the form p(¢y,...,t,)) in ®.

3Since [58] does not provide all the technical details for this convention, we do it here.
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Definition 8.1.4. An L-formula is an equivalence class of concrete £*-formulas under
alpha-equivalence. We mainly use ¢, (with or without subscripts) as metavariables for
L'-formulas. The set of free variables and the complexity of an £*-formula are defined
using representatives, i.e. for an L'-formula ¢, Fv[p] = Fv[®] and cplp] = cp[®P] for
some ® € .

In the last definition and henceforth, it is easy to verify that all notions defined using

representatives are well-defined.
Definition 8.1.5. We define two operations on £!-formulas:

e For o € {A,V,D}, and L'-formulas p; and (ps:
(10 @2) = [(P1 0 Pg)], for some &1 € 1 and Py € .
e For Q € {V,3}, a variable x of £, and an £'-formula ¢:
(Qzp) = [(Qxd)], for some & € ¢.

The next proposition allows us to use inductive definitions and to prove claims by

induction on complexity of formulas:
Proposition 8.1.6. Exactly one of the following holds for every £!-formula ¢:

e cp[p] =1 and exactly one of the following holds:
— ¢ = {p(ty, ..., t,)} for some n-ary predicate symbol p of £ and L'-terms
s
—p={L}
e © = (p10¢y) for some ¢ € {A,V, D}, and unique L-formulas ¢; and s such that

cplipr] < eplip] and eplgps] < epli].
e For every variable x & Fu[y], ¢ = (Qz) for some Q € {V,3}, and unique L£!-
formula v such that ep[y)] < eply].

Substitutions are defined as follows:
Definition 8.1.7. Let t be an £'-term and x a variable of £!.

1. Given an L'-term ¢/, #'{t/z} is inductively defined by:
t =z
t{t} =<t t'=yfory#uz ort =c

f(tl{t/x}, ,tn{t/x}) t, - f(tl, ,tn)
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2. Given an L!'-formula ¢, p{!/z} is inductively defined by:

({p(t {1}, {0 = {p(tr, . 1)}
@ e={L1}
t/pl = <
TN atro sl o= (orom)
L(Quip{t/2}) v = (Qui) for y & Fult] U {x}

Note that the above substitution operations are well-defined. In particular, the choice

of the variable y is immaterial.

8.2 Standard First-Order Godel Logic

In this section we briefly present standard first-order Gédel logic from a (many-valued)
semantic point of view (see, e.g., [63, [76] for more detailed presentations). The first

component of the semantics is the set of truth values. These should form a Godel set:

Definition 8.2.1. A (standard) Gddel set V = (V, <) is defined just like a propositional
Godel set (see Definition|[7.3.1]), with the additional restriction that V is a complete totally

ordered set. The operations infy and sup,, are defined as usual.

Next, the semantic structures include a domain and an interpretation function defined

as follows:

Definition 8.2.2. A domain is a non-empty set D. Given a domain D, an (L', D)-
interpretation is a function I assigning an element in D to every constant symbol of £!,

and a function in D™ — D to every n-ary function symbol of £*.
To interpret predicate symbols we use fuzzy subsets:

Definition 8.2.3. Given a Godel set V, and some non-empty set D, a function D from
D to V is called a fuzzy subset of D over V.

Predicate symbols are naturally interpreted as fuzzy subsets of tuples of elements of
D.

Definition 8.2.4. An LI-structure is a triple W = (V, D, I, P), where:

1. Vis a Godel set.

2. D is a domain.

3. I is an (L', D)-interpretation.

4. P is a function assigning a fuzzy subset of D" over V to every nm-ary predicate
symbol of L.
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As usual, an additional function is used for interpreting the free variables.
Definition 8.2.5. Let D be a domain.

1. An (L' D)-assignment is a function assigning elements of D to the variables of L.
2. Given an (£!, D)-interpretation I and an (£!, D)-assignment o, o! is the function

assigning elements of D to all £!-terms, recursively defined by:

e o’[c|] = I[c] for every constant symbol ¢ of L.
e ol[x] = olx] for every variable x of L.
o ol[f(ty,....tn)] = I[f](c![t1], ..., c![t,]) for every m-ary function symbol f of

LY and n LY-terms tq, ..., 1,.

3. Let o be an (L*, D)-assignment. Given a variable z of £! and d € D!, we denote
by 04.—q the (L, D)-assignment that is identical to o except for o,.—4[x] = d. This

notation is naturally extended to several distinct variables (e.g. 0y,.—d; vy:=d,)-

Lemma 8.2.6. Let D be a domain, o an (£!, D)-assignment, ¢ an L'-term, and z a
variable of £!. For every Ll-term t': ol [t'/{t/z}]] = o [t'].

z:=0l[t]

Proof. By usual induction on the structure of ¢'. m

We can now define the truth value assigned by a given structure to an arbitrary
formula with respect to some assignment. This definition generalizes in a natural way
the usual recursive definition used in classical higher-order logics, where instead of the
usual truth tables we use their counterparts of Godel logic: A corresponds to min, V to
max, and the implication D is interpreted as the — operation. For the quantifiers, we
take inf and sup. Since the set of truth values is complete by definition, inf and sup are

always defined.

Definition 8.2.7. Let W = (V, D, I, P) be an L -structure. For every £!-formula ¢ and
(L', D)-assignment o, W/p, o] is the element of V inductively defined as follows:

(Plpllo?[t], o' t]] o= {plt1, o, 1)}

min{W(p1, 0], Wiz, 0]} o = (

Wlp, 0] = § max{W(p1, o], W(pz, 0]} ¢ = (
Wler, 0] = Wieps, 0] ¢ =(p1 D ¢2)

infgep W[, 04.—d] v =(

| SUPdep W, 0= =
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It can be verified that the choice of x in the last definition is immaterial, and W]y, o]

is well-defined. The following usual lemmas will be needed below:

Lemma 8.2.8. Let W = (V, D, I, P) be an L'-structure, x a variable of £, and d an
element of D. Then Wy, 0,.—4] = W]p, o] for every L'-formula ¢ such that @ ¢ Fulg],

and (L', D)-assignment o.

Proof. After proving the claim for £'-terms (that ol _[t] = o![t] for every L£!-term such
that = ¢ Folt], and (L', D)-assignment o), the claim is obtained by usual induction on
the complexity of ¢. O

Lemma 8.2.9. Let W = (V, D, I, P) be an L-structure, ¢t an L£-term, and z a variable

of £!. For every L'-formula ¢, and (£, D)-assignment o:

W[QO, Ux::al[t}] = W[(p{t/x}7 U]'

Proof. We prove the claim by induction on the complexity of . First, suppose that
cple] = 1, and let o be an (L, D)-assignment. Exactly one of the following holds:

e ¢ ={L}. In this case the claim obviously holds.

o v ={p(t1,...,tn)}. In this case, p{t/=} = {p(t1{t/=}, ..., to{t/=})}. Thus:
Wip{t/z}, 0] = Ppllo’ [ti{t/s}], .., o [tu{t/e}]]-

By Lemma 28 Plllo’ [t {/e o0 ftultfe}] = PIAIL ooy [t]s 0%t
By definition, this is equal to W[y, 0,._,11)-

Next, suppose that cp[p] > 1, and that the claim holds for £'-formulas of lower com-
plexity. Let o be an (£, D)-assignment. Exactly one of the following holds:

e o = (p1 0 py) for some o € {A,V,D}, and L'-formulas ¢; and @, such that
cplipn] < eply] and epliwo] < cpp]. By definition, p{t/e} = (¢1{!/a} © 2{!/c}). We
continue with ¢ =D (the proof is similar for A and V). By the induction hypothesis,
Wlp{!fe}, o] = Wlpr{!/e}, 0] = Wlpa{!/a}, 0] = W1, 00grpg] = W2, 00grg]-
By definition, this is equal to W[y, 0,._11]-

e ¢ = (Quv) for some Q € {V,3}, variable y & {z} U Fu[t] of £, and L'-formula
¥ such that cp[t)] < eplp]. By definition, ¢{t/z} = (Qyiv{/=}). Continuing
with @ = V (3 is similar), we have W[p{!/=}, 0] = infgep W[Y{t/z},0,=4]. By
the induction hypothesis, W[y {/z}, 0y.—a] = W, 0y—gp—sry] for every d € D
(note that y # x), and so W[p{!/z}] = infaep W[, 0y._gr.—01py]. By definition,
infaep WY, 0y—dvi=orig] = WIP, Onimorig]- u
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Finally, we define standard first-order Godel logic. For simplicity, unlike in the previ-
ous chapters, we identify a logic with its set of theorems and do not consider consequence

relations.

Definition 8.2.10. For an L£!-formula ¢, we write -8t ¢ if W[p, o] = 1 for every
Lt-structure W = (V, D, I, P) and (L, D)-assignment 0. GO,: is the logic consisting of
all formulas ¢ such that [FG%zt o,

8.3 The Hypersequent Calculus HIF

In this section we present the hypersequent calculus HIF for G6,: from [30] (adapted
to our definitions, where formulas are equivalence classes of concrete formulas). (single-
conclusion) £'-sequents and £'-hypersequents are defined exactly as in Chapter . HIF
is obtained by augmenting the calculus HG (see Chapter , and Table in particular),

with the following rules for first-order quantifiers:

(£) H|T,p{t)e} = FE (&) H|T=¢p
H|T,(Vzp) = E H|T = (Vzyp)

(£:3) H|T,p=FE (t:3) H|T = o{t/z}
H|T,(Jzp) = E HI|T = (Jzp)

Applications of the rules (t:V) and (f:3) must obey the eigenvariable condition: z is

not a free variable in the lower hypersequent.

Below, we write Fgmr H to denote that an £!-hypersequent H is provable in HIF,
and l—glF H to denote that H is provable in HIF without applying (cut). Several

clarifications should be noted:

1. The above rules are formulated by schemes using metavariables. For example, an
L-hypersequent H; can be derived from an £!-hypersequent H, by applying the
rule (£:V) iff Hy = HU{T = (Vzp)} and Hy = HU{T' U p{!/z} = E} for some
L-hypersequent H, finite set I' of L£!-formulas, variable z of £, L'-formula ¢,

L!-term t, and singleton or empty set F of £!-formulas.

2. Since formulas are equivalence classes, the rules (t:V), (f:3) could be written as
well as:
H|T = p{v/z H|T,p{ve} = FE
(o) SLIT=eht g HID et
H|T = (Vzyp) H|T,(3zp) = E
where y is not a free variable in the lower hypersequent.

The following standard lemma establishes the admissibility of substitution:
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Lemma 8.3.1. If bypp H, then Fge H{¥/z} for every variables x,y of £, such that
y ¢ Fu[H]. The same holds for ¢ .

Next, the rule (£:3) can be generalized as follows.

Proposition 8.3.2. For every n > 0, L-hypersequent H, L'-sequents sy, ...,s,, L£!-
formula ¢, and variable © € Fu[H | s1 |...| sp): if Fae H | s1 U{f:0} |...| s, U{f:p}
then Famr H | 51U {£:(32¢)} |...| s, U {£:(32z¢)}. The same holds for FJ ..

Proof. We use induction on n. The claim is trivial for n = 0. Now assume that the
claim holds for n — 1, we prove it for n. Let H be an L'-hypersequent, si,...,s, L£!-
sequents, ¢ an L!'-formula, and = a variable of £ such that x & Fu[H | s1 |...| s,]. Let
Hy=H | s U{f:p} |...| sp U{f:p}. Suppose that Fur Hy. Let y be a variable of £!
such that y ¢ Fu[Hp]. By Lemma [8.3.1] e Ho{v/c}. Using a generalized version of
(com) (see Proposition , the following £!-hypersequent is cut-free derivable from
Hy and Ho{v/z}: {H | s, U{f:0} | st U{f:o{¥/c}} |...] Sn—1 U {f:p{¥/z}} (to see this,
take Hy = H | s, U{f:p} and Hy = H | sU{f:p{¥/z}} | ...| sn_1U{f:0{¥/z}}). By an ap-
plication of (£:3), we obtain: H | s, U{f:(3z)} | s1 U{f:0{¥/x}} |...| Sn_1 U {£:0{¥/a}}.
The induction hypothesis entails that by H | s1 U {£:(3z¢)} |...| s, U {f:(Jzp)}. Since

cuts were not involved in this proof, the proof for l—i{IF is exactly the same. n

8.4 Soundness

In this section we prove the soundness of HIF for Go,:. The following definition is the
first-order version of Definition [7.3.4]

Definition 8.4.1. Let W = (V, D, I, P) be an L'-structure.

1. Given an L'-sequent s and an (£, D)-assignment o, W¥[s, o], W*[s, o] and W(s, o]
are defined as follow:
(a) Wi[s, o] = min{W][p, 0] | f:p € s}.
(b) W*[s, o] = max{W]p, o] | t:¢ € s}.
(c) WIs,a] = Wfi[s,a] = W*[s,d].
2. An (L' D)-assignment o is a model (with respect to W) of:

(a) an L1-sequent s (denoted by: W, o = s) if W(s, o] = 1.
(b) an L!-hypersequent H (denoted by: W, o = H) if W, 0 = s for some s € H.

3. W is a model of an L*-hypersequent H if W, o = H for every (L', D)-assignment

ag.
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Theorem 8.4.2. Let H be an L!-hypersequent. If Fgyp H, then every L!-structure is
a model of H.

Proof. Let W = (V, D, I, P) be an L'-structure, where ¥V = (V, <). It suffices to prove
soundness of each possible application of a rule of HIF. For the weakening rules, (cut),
(com), and (id) this is as in Section We do here several other cases and leave the
rest to the reader:

(t: D) Suppose that H | sU{t:(¢1 D pq)} is derived from H | s U {f:p1,t:pa} using

(t: D) (here s must be a negative L'-sequent). Let o be an (£!, D)-assignment. If
W, o = ¢ for some s’ € H, then we are done. Otherwise, W, o = sU {f:¢1,t:02}.
Thus, either W[p1, o] < Wi[s, o] and W|p1, a] < W]pa, o], or Wi[s, o] < W]ps, o].
In both cases, it follows that Wi[s, o] < W|p1,0] — W[pa,0]. By definition,
Wip1, 0] = W]pa, o] = W[p1 D ¢2,0]. It follows that W, o = s U {t:(p1 D ¢2)},
and so W,o = H | sU{t:(p1 D p2)}.

(f: D) Suppose that H | s UsU {f:(¢1 D @2 = E is derived from H | s’ U{t:¢;} and

(£:V)

H | sU{f:po} using (f: D) (here s’ must be a negative L'-sequent). Let o be
an (L', D)-assignment. If W, o =" for some s” € H, then we are done. Oth-
erwise, W,o = s’ U{t:o1} and W,o0 E sU{f:pa}. Let u; = WHs' U s,0] and
ug = W*[s,o]. If uy < ug, then W, o =T, (¢1 D ¢2) = E, and we are done. Oth-
erwise, we have u; < Wiy, 0], Wlps, o] < ug, and so Wlps, 0] < Wlp1,0]. It
follows that

Wl(e1 D @2),0] = Wler, 0] = Wlpa, 0] = Wips, 0] < us.
Consequently, W, o |= ' U s U {f:(p1 D ¢2)} in this case as well.

Suppose that H = H' | sU {t:(Vzg)} is derived from H'|sU {t:p} using (t:V)
(where z ¢ Fuv[H], and s is a negative L'-sequent). Assume that W is not a
model of H. Thus there exists an (L£!, D)-assignment o, such that W,o £~ H.
Hence, W, o £ ¢ for every s € H', and W, o [~ s U {t:(Vzp)}. Thus we have
Wi[s, o] > W[(Vzp),o]. Tt follows that WE[s, o] > W]p, 0,.—4] for some d € D.
Since x ¢ Fvl[s], by Lemma we have that W[y, 0,.—4] = W[, o] for every ¢
that occurs in s. It follows that W, 0,.—q [~ sU {t:p}. Moreover, since = ¢ Fv[H'],
again using by Lemma [8.2.8] we obtain that W, 0,.—4 [~ &' for every s’ € H'. Hence,
W, 04.—q = H' | sU{t:¢}, and consequently W is not a model of H' | s U {t:p}.

Suppose that H = H' | s U {£:(Vzp)} is derived from H' | s U {f:¢{*/=}} using (£:V).
Assume that W, o [~ H for some (L', D)-assignment o. Hence, W, o [~ s for ev-
ery s € H', and W,o [~ s U {f:(Vxp)}. Let u = W*[s,0]. The assumption that
W, o = sU{£:(Vay)} entails that WE[s, o] > u and W[(Vxe), o] > u. By definition,
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W[(Vxp), o] = infgep W], 04.—q]. Thus W[y, 0,.—4] > u for every d € D. In par-
ticular, W(p, 0.—o1jy] > u. Lemma implies that W|[p{t/z}, o] > u. It follows
that W, o £~ s U {f:p{t/z}}. Hence W is not a model of H' | s U {f:p{t/}}. O

Soundness for GO,: is an obvious corollary:
Corollary 8.4.3. For every L!-formula ¢, if Fyre {{t:p}} then [FG8ct .

Proof. Follows from Theorem [8.4.2 since for every L!-structure W = (V, D, I, P) and
(L', D)-assignment o: o is a model of {{t:¢}} with respect to W iff W[y, o] = 1. O

8.5 Complete Non-deterministic Semantics

In this section we present a non-deterministic semantics for which the cut-free fragment
of HIF is complete. This semantics will be used in the next section, where we show that
ordinary counter-models can be extracted out of non-deterministic ones. As corollaries,
we will obtain the completeness of HIF for the (usual) semantics described above, and
the fact that (cut) is admissible in HIF.

The non-deterministic semantics is based on quasi-L!-structures. The idea behind
these structures is similar to what we had in Chapter [7] for accommodating systems in
which (cut) is not available (i.e. for the proof-specification (£,0, £)). Thus quasi-L£*-
structures assign two truth values to each formula — one for its “f-labelled” occurrences,
and one for its “t-labelled” ones (see Page [113)).

Definition 8.5.1. Let V = (V, <) be a Godel set. Given some non-empty set D, a
function D from D to {(uf,u*) € V x V | uf < u'} is called a quasi fuzzy subset of D

over V.
Definition 8.5.2. A quasi-L*-structure is a tuple @ = (V, D, I, P,v), where:

1. V, D, and I are defined as in L'-structures (Definition .

2. P is a function assigning a quast fuzzy subset of D™ over V to every n-ary predicate
symbol of £*.

3. v is a function assigning a pair in {(uf,u*) € V x V | ' < u*} to every ordered
pair of the form (p, o), where ¢ is an L*-formula and o is an (£, D)-assignment,
such that v[p, 0,.—4] = v[p{¥/z}, 0,.=4] for every variable z, variable y ¢ Fv[yp], and
deD.

Note that quasi-structures include a function v that assigns truth values to every

formula. This is related to the fact that the semantics is non-deterministic. Thus, in
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contrast to (ordinary) structures, in quasi structures the values of the atomic formulas
do not uniquely determine the values of all compound formulas. The function v is then
used to "store* the values of the compound formulas. Obviously, in order to be able to
extract an ordinary counter-model out of a quasi-structure, further conditions should be

imposed:

Notation 8.5.3. For each function F' whose range is {(uf,u*) € V x V | ut < u*}
(e.g. the functions P[p| for every predicate symbol p and v from Definition [8.5.2)), we
denote by F* and F'* the functions obtained from F' by taking only the left and the right
components (respectively). For instance, for every ¢ and o, v¥[p, o] is the left component

of the pair v[p, o].

Definition 8.5.4. Let Q@ = (V, D, I, P,v) be a quasi-L!-structure. For every £!-formula

@ and (L', D)-assignment o, v,|p, o] is the pair defined as follows:
(

Ppllo’[ta], .., o [tn]] o ={p(tr, ..., 1)}
(0,0) p={Ll}
(min{v*[p1, o], v*[pa, o]}, min{v*[p1, 0], v*[pa, 0]}) @ = (01 A @2)
o[, 0] = § (max{v[p1, 0], v [ip2, o]}, max{v®[1, o], v*[2, 01}) @ = (91 V 2)
(v*[ip1, 0] = V[, 0], v 1, 0] = v*[ip2, o)) ¢ =(p1 D ¢2)
(infgep v [0, 04.—a], infgep V[V, 04d]) o = (Vap)
(SUpgep V[V, 0r=d], SUD yep V* [, Ou=d]) ¢ = (3z¢)

\

The condition on v in Definition [8.5.2| ensures that Q is well-defined, namely that the
choice of x is immaterial. It is straightforward to verify that vole, o]t < vglp,o]* for
every L'-formula ¢ and (£!, D)-assignment o (for D, note that if u; < uy and usz < uy
then ug — ug < uy — uy).

Notation 8.5.5. Let V = (V| <) be a Godel set. For u € V and a pair (uf,u*) € V x V
with uf < u®, we write u € (uf,u®) if u* < u < w*. For two pairs (uf,u}), (ul, ul) in

{(uf,u*y € V x V| uf <u*}, we write (uf,ub) C (uf, ul) if uf > uf and ut < ul.

Definition 8.5.6. A quasi-L'-structure Q = (V, D, I, P,v) is called legal if we have
volyp, o] C vlp, o] for every L-formula ¢ and (L', D)-assignment o.

We can now demonstrate the non-deterministic nature of the semantics. For in-
stance, consider an L'-formula of the form (¢; A ps). Suppose that v[p;, o] = (ul, ut)

and v[pg, 0] = (uk, ul). All we require from v[(ip1 A 2), 0] is that

<min{u{7 u;}v min{u‘i? u§}> - U[(Qpl A 902)7 U]'
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In other words, every pair (uf,u*) such that «* < min{uf, uf} and min{ut, vt} < u® can
be chosen as a value for v[(p1 A p2),0]. Thus, in contrast to ordinary structures, here

the values of (1, 0) and (p2,0) do not uniquely determine the value of ((p1 A p2), o).

Remark 8.5.7. Since formulas are defined to be alpha equivalence classes of concrete
formulas, we do not have to explicitly enforce that two alpha-equivalent formulas obtain
the same value. Previous works on non-deterministic semantics for languages with quan-
tifiers, such as [I§], studied structures in which truth values are non-deterministically

assigned to concrete formulas. In this case, additional restrictions are needed.

The notion of model for quasi-L*-structures is a natural first-order version of what we

had for Gvaluations in Chapter [7] (see Definition [7.3.4):
Definition 8.5.8. Let @ = (V, D, I, P,v) be a quasi-L!-structure.

1. Given an L'-sequent s and an (L', D)-assignment o, Q*[s, o], Q%[s, o] and Q|s, 7]

are defined as follow:

(a) Qf[s, o] = min{vt[p, o] | f:p € s}.
(b) QF[s, o] = max{v*[p,0] | t:p € s}.
(c) Qls,o] = Qf[s, o] = Q%s, a].

2. An (L' D)-assignment o is a model (with respect to Q) of:

(a) an L!-sequent s (denoted by: Q, o k= s) if Q[s, 0] = 1.
(b) an LI-hypersequent H (denoted by: Q,0 = H) if Q,0 |= s for some s € H.

3. Qs a model of an L'-hypersequent H if Q, 0 = H for every (L', D)-assignment o.
Now we can state the main completeness theorem.

Theorem 8.5.9. Suppose that b‘;{IF H, for some L'-hypersequent Hy. Then there exists

a legal quasi-L*-structure that is not a model of Hy.

The rest of this section is devoted to prove this theorem. First, we introduce the two

main ingredients of this proof: maximal extended hypersequents and Herbrand domains.

Maximal Extended Hypersequents

As in Chapter [7, maximal extended L!-hypersequents will play a crucial role in the
completeness proof below. These are defined exactly as in Section but here we add

one more requirement:
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Definition 8.5.10. An extended L£'-sequent p admits the witness property if the follow-

ing hold for every £'-formula ¢, and variable x of £*:

1. If t:(Vzp) € p, then t:p{¥/z} € p for some variable y of L.
2. If £:(3x¢) € p, then £:0{¥/z} € u for some variable y of L*.

An extended L*-hypersequent Q admits the witness property if every p € Q admits the
witness property. Q is called maximal if it is unprovable, internally maximal, externally
maximal, and it admits the witness property (see Section [7.5) [f

As in Section the following hold:
Proposition 8.5.11. Let Q be an extended L£!-hypersequent.
e Assume that €2 is maximal with respect to an £'-formula . For every p € Q:

— Iff:o & p, then F& o H | sy U {f:0} |...| 5, U {f:0} for some L£1-hypersequent
H E Q and L'-sequents sy, ..., s, C p.

— Ift:p & p, then F 1w H | s U {t:p} for some £1-hypersequent H C Q and neg-

ative L'-sequent s C p.

e Assume that € is maximal with respect to an £'-sequent s. Then, if {s} [Z Q, then
there exists an £'-hypersequent H = Q such that . H | s.

Lemma 8.5.12. Every unprovable £*-hypersequent can be extended to a mazimal ex-

tended L!-hypersequent.

Proof. The proof proceeds similarly to the proof of Lemma|7.5.4] To obtain an extended
L*-hypersequent that admits the witness property, we add another step in the definition
of H;.1, based on the following claim:

Let Q =y |...| g, be an unprovable finite extended L£'-hypersequent. Then there
exists an unprovable finite extended £!-hypersequent €’ of the form g} |...| p),, such that
w; € il for every 1 <i < n, and €2 admits the witness property.

To prove this claim describe an extension of € to €. This extension is done in steps/[]

In every step, we take some extended L£'-sequent p € Q, and proceed as follows:

e If ;1 contains a labelled formula of the form t:(Vay), we take a variable y of L£!,

which is not free in the current hypersequent, and add t:p{¥/=} to p.

4Obviously, instead of H kg p H that we had in the definition of “provable extended hypersequent”

in Section , we should have }—;‘{fIF H for the present case.
SFormally, this extension should be defined inductively, but the intention should be clear.
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e If 1 contains a labelled formula of the form f:(3zp), we take a variable y of L',

which is not free in the current hypersequent, and add f:p{¥/=} to p.

We continue this procedure until the obtained extended L!-hypersequent admits the
witness property. Note that since the number of formulas in €2 is finite, and the complexity
of the formulas which are added is decreasing, this procedure would terminate after a
finite number of steps. € is the finite extended L£!-hypersequent obtained from € by
this procedure. We show that every such extension keeps the extended £-hypersequent

unprovable (and thus €' is unprovable):

e Suppose that an unprovable extended L£!-hypersequent 2; contains an extended
L'-sequent g, that contains a labelled formula of the form t:(Vxy). Let s be
the extended L!-hypersequent obtained from Q; by adding t:p{¥/z} to u, where
y is a variable which does not occur in Fv[€);]. Assume for contradiction that €2,
is provable. Hence there exist an L£!-hypersequent H C s, and a negative £!-
sequent s' C y, such that i H | s’ U {t:p{¥/z}}. By applying (t:V), we obtain
FeS e H | s' U {t:(Vzy)}. This contradicts the fact the Qy is unprovable.

e Suppose that an unprovable extended L£!-hypersequent €; contains an extended
L'-sequent pu, that contains a labelled formula of the form f:(3xyp). Let Qy be
the extended L!'-hypersequent obtained from Q; by adding f:p{¥/=} to u, where
y is a variable which does not occur in Fv[;]. Assume for contradiction that
Q, is provable. Hence Ff o H | s} U {f:0{¥/x}} |...| s, U {f:0{¥/c}} for some L!-
hypersequent H C €, and L'-sequents s},..., s, C p. Proposition entails
that Fi i H | ) U{f:(3z¢)} |...| s, U {£:(3z¢)}. This contradicts the fact the €

is unprovable. O]

The Herbrand Domain

Definition 8.5.13. The Herbrand domain for £, denoted by D*', is the domain con-
sisting of all £'-terms. The Herbrand interpretation for £, denoted by I, is the
(£, D*)-interpretation defined by: I[¢] = ¢ for every constant symbol ¢ of £!, and
I[f] = My, ..., t, € DX . f(ty, ..., t,) for every n-ary function symbol f of L.

Below, given an (£!, D*")-assignment o and an L£!-term ¢, we write o[t] instead of
o'ct[t] (see Definition [8.2.5). In addition, (£, D*')-assignments are extended to apply
on L-formulas. Roughly speaking, every occurrence of a free variable x in a formula ¢ is

replaced in o[g] by o[z]|. Formally, this is defined as follows.
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Definition 8.5.14. Let ¢ be an L!-formula, and o an (£, D*")-assignment. The set of
free variables of the pair (p, o) (denoted by Fv[{p,0)]) consists of the variables of o]

for every variable x € Fv|p].

Definition 8.5.15. (£, D*")-assignments are extended to £!-formulas, according to the

following inductive definition:
({p(olti), - olta)} @ = {pltr, o a)}
{1} p={Ll}
(opa] © ofia]) p = (p104p2)
((Qrom—[¢]) ¢ = (Quy) for z & Fo[(p,0)]

olp] =

Note that the choice of z in the last definition is immaterial, and thus o[y] is well-

defined. The following technical lemmas are needed in the completeness proof.
Lemma 8.5.16. Let ¢t be an £'-term.

L. 0pi[t'] = 0yi[t'{¥/c}] for every Li-term ¢/, (L1, D*')-assignment o, and variables
x,y such that y & Folt'].

2. Opit] 0] = 0yi[p{¥/x}] for every L'-formula o, (L', D' )-assignment o, and vari-
ables .,y such that y € Fulyp].

Proof. This first claim is proved by induction on the structure of ¢':

e Suppose that ¢ = ¢ for some constant symbol ¢ of £!, or ¢’ = z for some variable
z & {x,y}. Then t'{v/e} =1, and 0,.—[t'] = oy.=[t'].

e Suppose that ¢’ = x. Then o,.[t']| =¢, and oy [t'{¥/z}] = oy.t[y] = 1.

e Suppose that ¢ = f(ty,...,t,) for some n-ary function symbol f of £, and L£!-
terms tq,...,t,. Then, o,.[t']| = f(op=[t1], ..., 0m=¢[tn]). By the induction hy-
potheses this term equals f(oy.—[t1{¥/z}], ..., 0ymt[tn{¥/z}]), Which in turn equals
Tyt f(t1, s ta) {9/e}].

Next, we prove the second claim in the lemma by induction on the complexity of . First,
suppose that cp[p] = 1. Let o be an (£, D*')-assignment, and x,y variables such that
y & Fv[p]. Exactly one of the following holds:

e o ={p(ty,...,t,)} for some n-ary predicate symbol p of £L* and L -terms t1, ..., t,.
Then, by definition o,.;[¢| = {p(op=t[t1], ..., Tuzt[tn]) }. Since y & Fult;] for every
1 < i < n, this formula equals {p(oy,.—[t1{¥/z}], ..., 0y.=t[tn{¥/z}])}, which is, by
definition, oy.—;[p{¥/z}].

o v ={L}. Then, op—ilp] = { L} = gy=i[p{¥/}].
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Next, suppose that ¢p[p] > 1, and that the claim holds for £!-formulas of lower complex-
ity. Let o be an (£!, D*')-assignment, and z,y variables such that y ¢ Fu[p]. Exactly
one of the following holds:

o = (p1oyy) for o € {A,V, D} and L'-formulas 1 and ¢y such that cp[p1] < cply]
and cp[ps] < eplp]. Then, o,.—¢[p] = (0p=t|p1] © Tr=t[@2]). By the induction
hypothesis, this £!'-formula is equal to (o,.—[¢1{¥/z}] © oymt[@2{¥/z}]). And, by
definition, this is equal to o,.—¢[@{v/z}].

e v = (Qz¢) for Q € {V,3}, L:-formula ¢ such that c¢p[t)] < ep[y], and variable
z & {z,y} Uolp] U Fult]. Then, o,-4[¢] = (Q204—t..—.[¢]). By the induction
hypothesis, this £'-formula is equal to (Qz0y.— ..—.[1){¥/2}]). And this is (by defi-
nition) equal to oy.—[(Qz1{¥/z})], which is equal to o,.—[p{¥/z}]. O

Lemma 8.5.17. Let t be an £'-term.

1. Opesa [t]{t)2} = 0aimy[t] for every Ll-term ¢/, (L1, DF)-assignment o, and variables
x, z such that z € Fulo[t']].

2. Ops{t/z} = Oumi|ip] for every Ll-formula ¢, (L', D*)-assignment o, and vari-
ables x, z such that z ¢ Fuvlo|[p]].

Proof. The first claim is proved by induction on the structure of ¢':

e Suppose that ¢ = ¢ for some constant symbol ¢ of £*. Then:
O [} = T [A{} = eftfe} = ¢ = T9[d] = o0 [].

e Suppose that ¢ = y for a variable y # z. Then o,._.[t'|[{!/:} = o[y]{/-}. Since
z & Fololyl]], we have o[y]{t/-} = o[y]. The claim follows since o[y| = 0,.—¢[y].

e Suppose that ¢’ = x. Then, o,._.[t']{t/:} = 2{t/:} =t = 0p.t[z].

e Suppose that t' = f(ty, ..., t,) for some n-ary function symbol f of £, and L-terms
t1,...,t,. Then,

Ou=z [t {2} = f(On=z[ti]s o s One[ta]) 1Yo} = flOm=e[i]{V/2} s Onme[ta] {/2))

By the induction hypotheses this term equals f(0,.—¢[t1], ..., 0p.=¢[tn]), which in turn

equals o,.—[t'].

Next, we prove the second claim in the lemma by induction on the complexity of . First,
suppose that ¢p[p] = 1. Let o be an (£, D*")-assignment, and x, z variables such that
z & Fulo[p]]. Exactly one of the following holds:

e o = {p(ty,...,t,)} for some n-ary predicate symbol p of £!, and L*-terms t, ..., t,.
Then, by definition
Ou=z| P2} = Ap(On=:[te], s O [tn] ) HY2} =
= {plow=2[t:1[{"/z}, .., oz [ta] {/=}) }-
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Since z ¢ Fvlo[t;]] for every 1 < i < n, the claim above for terms entails that this

formula equals {p(0,.—¢[t1], ... , 0w=t[tn]) }, Which is, by definition, o,._[¢].
o o ={Ll}. Then, ou—.[p[{*/:} = {L} = ouzlp].

Next, suppose that ¢p[¢] > 1, and that the claim holds for £!-formulas of lower complex-
ity. Let o be an (£, D' )-assignment, and z, z variables such that z ¢ Fv[o[y]]. Exactly
one of the following holds:

e 0 = (p1oyy) for o € {A,V, D} and L'-formulas ¢; and ¢, such that cplp1] < ep[y]
and cplps] < eplg]. Then, op.—o[@{t/z} = (Ow=z[@1]{¥/z} © Ow=z[@2]{?/}). By the
induction hypothesis, this £'-formula is equal to (0.—¢[¢1] © 0u—t[p2]). And, by
definition, this is equal to o,.—[¢].

e v = (Quy) for Q € {V,3}, L:-formula ¢ such that cp[¢)] < cply], and variable
y & Fult)U {z, 2} U Fv[o[y]]. Then,

Fume [} = Qe = (QuOmymy [0,
By the induction hypothesis, this £!-formula is equal to (Qyo.—ty.—y[¥]). And this
is (by definition) equal to o,.—¢[¢]. O

Proof of Theorem [8.5.9|

Suppose that b‘;{IF Hy. The availability of external and internal weakenings ensures that
H, is unprovable. By Lemma [8.5.12] there exists a maximal extended L£!-hypersequent
" such that Hy C ©Q*. We use Q* to construct a counter-model for Hy in the form of a
quasi-L-structure @ = (V, D, I, P, v).

First, we define a bounded linearly ordered set ), that will be used to construct
(using the Dedekind-MacNeille completion) the Godel set V. For every L£!-formula ¢ we
define:

Ligl ={pe [fipepn}, Rlp={ne |tpdnu}

Let Vo = (Vo, ©), where

Vo = {L(p) | ¢ is an L'-formula} U {R(p) | ¢ is an L'-formula} U {Q*, 0}.
Clearly, V is partially ordered set, bounded by 0 = () and 1 = Q*. The proof that V is
linearly ordered by C proceeds exactly as in Section [7.5l Now, since ), might not be
complete, we consider its Dedekind-MacNeille completion V = (V, C) defined by:

V= {CV, | () =1}

where II' ={Q eV, | & CQforall O e H}and It ={Q €V, | Q C X for all ' € IT}.
V is a bounded complete linearly ordered set (see [76]), and thus it forms a Gddel set.

Note that using C as the order relation, min and max are sets intersection and sets union
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(respectively). In addition, the function 1 : Vy — V defined by n(Q2) = {Q}* is injective
and it satisfies the following propertiesﬁ

o {0} =n(®).

e For every Q) € V:

— QC Qiff n(Q2) S (). = () Un(Q) =n(QuU).
= n(Q) Nn(Q) =nQN). = 1(Q) = Q) =n(Q = Q)

e For every ) € Vj and II C V:
— IFQ CNgen &, then n(Q2) C inforenn(Q).
— I Neyen ' € Q, then infoenn(Q) C n(9).
— IfQ C Ugen ', then n(Q) C supg e n(€2).
— I Ugen & € Q, then supg,cyn(€2) € n(Q).

The proofs of these properties are straightforward (note that the linearity of 1 is needed
in some of them).
Henceforth, we will identify the elements of Vi of the form {Q} with the (unique) corre-

sponding element ), and freely use the properties above.

Next, for every formula ¢, let Q*[¢] be the pair defined by: Q*[p] = (L[¢], R[¢]).
Note that Q*[¢] € {(uf,u*) € V x V | ut C u*} for every L'-formula . Indeed, in the
presence of (id), either f:p & p or t:p & p for every u € Q and L'-formula ¢ (other-
wise, {{f:¢,t:0}} C Q, contradicting the fact that € is unprovable), and consequently,
L[] € R[p]. Let D be the Herbrand domain for £, I the Herbrand interpretation for

L', and define P and v as follows:

e For every n-ary predicate symbol p of L', P[p] = My, ..., t, € D.Q*[{p(t1, ..., ta) }.
e For every L'-formula ¢ and (L', D)-assignment o, v[p, o] = Q*[o[¢]].

It is easy to verify the condition on v from Definition[8.5.2] Indeed, Lemma[8.5.16 ensures
that if y & Fu[y], then for every L£!-term we have o,.—¢[p] = 0y.—t[¢{¥/2}]. This implies
that v[p, 0. = v[p{¥/z}, 0] for every t € D.

We show that Q is not a model of Hy. Consider the (£, D)-assignment 0,4 defined
by oi4[x] = x for every variable z of £L*. Let s € Hy. Since Hy T Q*, there exists some
p € QF such that s C . We claim that p € v¥[p, ;4] whenever £:¢ € s, and p & v*[p, 0y4]
whenever t:p € s. To see this, it suffices to note that o;4[p] = ¢ for every L!'-formula .

This fact follows from the definition of o;4[¢]. Consequently, vi[p, 0:4] € v*[p, 0:4], and
so Q,0i4 £ s.

6 All operations notations from Definition are adopted to the set Vy in the obvious way.
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It remains to prove that Q is legal, namely that vy[p, o] C v[p, o] for every L*-formula
@ and (L', D)-assignment o. Let ¢ be an £!-formula, and o an (£*, D)-assignment. Then,

exactly one of the following holds:

o ¢ ={p(ty,...,t,)} for some n-ary predicate symbol p of £, and L -terms t1, ..., t,.
Then, by definition:

yQ[@? U] = P[p] [U[tl]v >U{tn]] = Q*[{p<a[t1]7 7U[tn])}] = Q*[U[SO]] = U[QO, U]'

o o ={L}. Then, vy[p,a] = (D,0). To see that vy[p, o] C v[p, o], it suffices to note
that vf[p, 0] = 0. This follows from the fact that f:o[p] = £:{L} & p for every
p€ Q. (Otherwise, {{f:{L}}} C Q*, but . {{£:{L}}} by applying the rule
(f: 1).)

e © = (ip1 A o) for some L -formulas ¢; and ¢y. Then:
voly, o] = (Vg1 o] Nutlps, o], v%[p1, 0] NV [, 0]).
We first prove that vf[p, o] C vf[p1, o]Nvt[ps, o]. Let u &€ vip1, o] (u & v¥[pa, o] is
symmetric). Thus f:0(p;] & p. We show that p & v¥[p, o]. By Proposition [8.5.11]
since f:o[p1] € p, there exist an L'-hypersequent H; C Q* and L'-sequents
S1,... .8 C , such that F o Hy | sy U {f:0]@1]} |...| sn U {f:0[p1]}. The avail-
ability of weakening and (£:A) entails that F§l, H for
H = Hy | s1U{t:(o[pr] Aalpa])} [ ] sn U{E:(aler] A apa])}

Since ©* is unprovable, H IZ Q*, and thus f:(o[p1] A olps]) € p. By definition,
(o[e1] A alps]) = olp]. Tt follows that p & vi[p, o).

Next, we prove that v*[p1, 0] Nvtpse, o] C vtp,o]. Let u € v*[p1, 0] N v*ps, g].
Then we have t:o(p1] € p and t:o|ps] & p. By Proposition [8.5.11] there exist
L-hypersequents Hy, H, C Q*, and negative L!-sequents s;,sy C pu, such that
Fe e Hy | sy U {t:o[p1]} and Fp Hy | 2 U {t:0[ps]}. The availability of (t:A)
entails that FJ o H for H = Hy | Hy | s1 U so U {t:(c[g1] A ofps])}. Since
is unprovable, H IZ Q*, and thus t:o[p] = t:(o]p1] A olps]) & u. It follows that

€ vp, ol

e © = (i1 V py) for some L'-formulas ¢; and ¢y. Then:
volip; o] = (v*[i1, o] Uv*[ps, o], v [ip1, 0] U™ [i02, 0]).

We first prove that vf[p, o] C vf[p1, o] Uvt[ps, o]. Let u & vt[p1, 0] Uvt[pg, o]. We
prove that p & vf[p, o]. Our assumption entails that f:o[p1] & p and f:0(ps] &€ p.
By Proposition , there exist £!-hypersequents H;, H, C Q*, and L'-sequents
81y ey Spy 8hy ey 8 C py such that F e Hy | sy U {£:0[@1]} |...| sn U {f:0[p1]} and

r m
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Fe e Ho | s U{f:0[pa]} |...] 8%, U {f:0]wa]}. As in the proof of Proposition ,
it is possible to use (com) and (f:V) to obtain that Flp H for
H = Hy | Hy | sy U{f:(olei] Volpa])} [ .| sn U{E:(alp1] V olpa])}
| sy U{E:(ole] Volpa)} || 55, U{E:(a[n] V o))}
Since ©* is unprovable, H IZ Q*, and thus f:(o[p1] V olps]) € p. By definition,
(olp1] V olps]) = op]. Tt follows that u & vi[p, o].

Next, we prove that v*[p, 0] U vt[pse, 0] C v*[p,0]. Let pu € v*[p1, 0], and so
tiofp1] € p (the case that p € v*[ps, 0] is symmetric). By Proposition [8.5.11]
there exist an L£'-hypersequent H; C Q*, and a negative L!-sequent s C pu, such
that F&w Hy | s U {t:0]¢1]}. The availability of weakening and (t:V) entails that
Fef o H for H=Hy | s U{t:(c]e1] V ofps])}. Since Q* is unprovable, H Z Q*, and
thus t:o[p] = t:(ofe1] V olps]) € p. It follows that u € v*{p, o).

e © = (ip1 D o) for some L-formulas ¢; and ¢y. Then:
29[907 U] = <Uf [9017 U] - Ut[9027 0]7 v* [9017 U] - Uf[‘tDZv U])
We first prove that vf[p, o] C v*[p1, 0] = v g, 0]. Let u & v*[p1, o] = v[pa, o).
Then, v*[p1, 0] € vi[ps, 0] and p & v]ps, o]. Let 1/ € Q* such that p’ € v*[py, 0],

and ' & vips,0]. Hence, tio[p1] € p' and f:0[ps] & p'. By Proposition [8.5.11},
there exist £'-hypersequents Hy, Hy C Q*, a negative £'-sequent s’ C 1/, and L*-

sequents s, ..., s, C p/, such that o Hy | ' U {t:0[p1]}, and
e Ha | 8y U {:0lpal} || s}, U {E:0]p]}.
By n consecutive applications of (f: D) (note that (c[p1] D olgs]) = oly]), we
obtain that
e Hy | Hy | S'U S, U{f:0]@]} |...| s’ Us, U {f:0lg]}. (8.1)
Since p € v¥[pg, 0], we also have f:0[ps] & p. Proposition entails that there
also exist L'-hypersequent Hy T Q* and L!-sequents si,...,S,, C u, such that
He o Ha | 5y U {f:0[0a]} | ...| $m U {f:0]s]}. By another m applications of (£: D),
we obtain that
e Hy | Hs | 8" UsiU{f:0]@]} |...| 8" Uspm U {f:0[0]}. (8.2)
Using a generalized version of (com) (see Proposition [7.2.10]) we obtain from
and above:
F e Hy | Hy | Hy | 8 Us) || 8 US| sy U{E:0[o]} |...] sm U {E:0(0]}.
Now, if f:0[p] € p, then Q* extends this hypersequent, and this contradicts the fact
that Q* is unprovable. Therefore, £:0(p] € 1, and consequently p & vi[o[p]].

Next, we prove that vf[p1, 0] — v*[p2, 0] C vt[p,o]. Suppose that u & v*[p, o],
and so t:o[p] € u. To show that u & vi[p1, 0] — v*[ps, 0], we first show that
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i & vtps, o] and then we show that vi[p1, 0] € v¥[ps, o]:

1. Assume for contradiction that p € v*[p9, 0], and thus t:o[ps] & p. Then by
Proposition there exist an L!-hypersequent H C Q* and a negative
Ll-sequent s C p, such that Fm H | sU{t:0]w.]}. By applying internal
weakening we obtain & . H | s U {f:0[p1], t:0[ps]}. Using (t: D) we obtain
Fef o H | sU {t:0[p]}. This contradicts the fact that Q* is unprovable (be-
cause H | sU {t:o[g]} C Q).

2. Note that the fact that Q* is unprovable and the availability of (t: D) also

entail that 1 o H | {f:0[¢1], t:0[pa]}. Therefore, Proposition [8.5.11| entails
that {f:0[p1], t:0[pa]} © Q*. Thus there is an extended L'-sequent p' € Q*,

such that f:of[p;] € ¢’ and t:o[ps] € 1. Consequently, i/ € vf[p, o] and
W' & v*[p2, 0]. Hence v*[ip1, 0] Z v%[ipa, 0].

e ¢ = (Jx¢)) for some variable z & Fv[o[p]] and L*-formula . Then:

QQ[307 U] = <Sup Ut W, Um::t]7 sup Uf W; O-:E::tD‘
teD teD

We first prove that v*[p, o] C sup,ep v [¢), 04.—¢]. Suppose that u € v*[p, o]. Thus
f:op] € u. By definition, ofp] = (ro,.—.[¢)]). Since Q* admits the witness
property, there exists a variable y of £!, such that f:o,._.[¢]{¥/z} € p. By
Lemma 8.5.17, 04.u[]{¥/a} = 04:— [¥)]. Tt follows that p € v*[¥), 0,.—,], and there-
fore 1 € U,ep v [, 0imi].

Next, we prove that sup,cp v*[¢), 04.—¢) C v*[p,0]. Let p € U,cp v*[¢), 0p:=¢]. Thus
€ V1), 04ey) for some ¢ € D. By definition, t:0,.—[t)] € p. By Lemma [8.5.17]
Opet[VV] = Opee[]{!/=}. By Proposition , F e H | s U {t:00—a[00]{t/x}} for
some L'-hypersequent H C Q*, and negative L!-sequent s C . By an applica-
tion of (t:3), we obtain F& o H | s U {t:(3z0,—.[)])}. Since Q* is unprovable,
t:(Jzo,.—.[¢]) € p. By definition, (Fzo,.—.[¢]) = olp]. It follows that u € v*[p, o).

e The case ¢ = (Va1)) is handled similarly. O

8.6 Completeness for the Ordinary Semantics

In this section we use the complete semantics of quasi-structures to prove the complete-

ness of HIF for the (ordinary) structures of first-order Gédel logic. To do so, we show

that from every legal quasi-structure which is a counter-model of some hypersequent H,

it is possible to extract an (ordinary) structure, which is also not a model of H.
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Theorem 8.6.1. Let Q = (V, D, I, P,v) be a legal quasi-L*-structure. There exists an
L'-structure W = (V, D, I, P'), such that W|p, o] € v[p, o] for every L!'-formula ¢ and

(L', D)-assignment o.

Proof. Define P’ by P'[p] = P[p]* for every predicate symbol p. We prove that the £*-
structure W = (V, D, I, P') satisfies the requirement in the theorem. Let V = (V, <).
We use induction on the complexity of ¢ to show that W[y, o] € v[p, o] for every L!-
formula ¢ and (L', D)-assignment o. Note that since Q is legal, it suffices to show that
Wlp, o] € vglp, o] for every L'-formula ¢ and (L', D)-assignment o. First, suppose that
cple] = 1, and let o be an (L, D)-assignment. Exactly one of the following holds:

o ¢ ={p(ty,...,t,)} for some n-ary predicate symbol p of £, and L -terms t1, ..., t,.
By definition, W(p, o] = P'[pl[o’[t1], ..., o' [t,]] = Pplf[o’[t1]], ..., o' [ta]]] € vole. ol.

e o ={L}. Then by definition, W[p,o] =0 € (0,0) = volp, g].

Next, suppose that cp[p] > 1, and that the claim holds for £'-formulas of lower com-
plexity. Let o be an (£*, D)-assignment. Exactly one of the following holds:

e © = (p1/\g2) for L:-formulas 1 and ¢y such that ep[p1] < ep[p] and eplps] < eple].
By the induction hypothesis,
Wipr,0] € (v*[p1,0],v"[p1,0]) and  Wlps, 0] € (v*[2, 0], 0" [p2, 0]).
Hence,
min{W[p1, o], Wlps, o]} € (min{v’[p, 0], v%[ps, 0]}, min{v*[ey, 0], v% @2, 0]}),
and so Wy, g] € vglp, ol.
e © = (p1 Vo) for L1-formulas p; and ¢y such that cp[e1] < eplp] and eplps] < eplp].
This case is similar to the previous case (replace min by max).
e © = (¢1 D o) for L1-formulas 1 and s such that ep[e:] < eple] and eplps] < eple].
By the induction hypothesis,
W1, 0] € (vF[p1,0],v%[p1,0]) and  Wips, 0] € (v'[p2, 0], v%[p2, o).
Since u; < v’ < up and ug < u” < uy imply that us — ug < v’ — v’ < wuy — uy, we
obtain that: Wpi, 0] — Wlps, 0] € (v*[p1,0] = v, 0], v[p1, 0] —= v¥[p2, o)),
and so Wy, 0] € vo[p, o).
e v = (Quv) for some Q € {V,3}, variable x of L', and L£'-formula 1 such that
eply] < eple]. We continue with @ = V (the proof is similar for 3). By the
induction hypothesis, for every d € D, W), 04.—q] € v[th, 0,.—4]. Hence,

Wp, 0] = inf W, 0] € (f v [, 0icd], inf o[, 0cl) = vl ). O

Corollary 8.6.2. If /5 . H, then there exists an £!-structure which is not a model of
H.
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Proof. Suppose that '7/;{11? H. Then, by Theorem m there exists a legal quasi-L£!-
structure @ = (V, D, I, P,v), which is not a model of H. This implies that there exists
an (L', D)-assignment o, such that Q,o [~ s for every s € H. Let W = (V,D,I, P’) be
an L'-structure satisfying the requirement in Theorem We show that W, o [~ H.
Let s € H. Since Q, 0 [~ s, we have Qf[s, 0] > QF[s, o]. The fact that W[y, o] € v[p, 0]
for every ¢ entails that W[, o] > v¥[p, o] and W*[p, o] < v¥[p, o] for every ¢. It follows
that Wi[s, o] > W*[s, o], and so W, 0 }~ s. O

Corollary 8.6.3. For every L!-formula ¢, if [F952t ¢ then Fgpp {{t:¢}}.
Finally, we automatically obtain the admissibility of the cut rule:

Corollary 8.6.4. If an £!-hypersequent is provable in HIF then it is provable in HIF
without applying (cut).

Proof. Note that if an £'-hypersequent H is provable in HIF, then every L-structure
is a model of H. By Corollary 8.6.2, this implies that Fijp H. []

Remark 8.6.5. While we allowed any Godel set to serve as the set of truth values in
L-structures, we could equivalently take the real interval [0, 1]. Obviously, soundness for
[0,1] is a particular instance. Completeness for [0, 1] can be obtained by embedding the
set Vy in the proof of Theorem into the rational numbers in [0, 1], and continuing
the proof with V = [0, 1].



Chapter 9

Calculus for Second-Order Godel
Logic

Fuzzy logics, and Godel logic in particular, have a wide variety of applications, as they
provide a reasonable model of certain very common vagueness phenomena. Both their
propositional and first-order versions are well-studied by now (see, e.g., [63]). Clearly,
for many interesting applications (see, e.g., [38] and Section 5.5.2 in Chapter I of [45]),
propositional and first-order fuzzy logics do not suffice, and one has to use higher-order
versions. These are much less developed (see, e.g., [95] and [45]), especially from the
proof-theoretic perspective. Evidently, higher-order fuzzy logics deserve a proof-theoretic
study, with the aim of providing a basis for automated deduction methods, as well as a
complimentary point of view in the investigation of these logics.

In this chapter we study the extension of HIF with usual rules for second-order
quantifiers. These consist of the single-conclusion hypersequent version of the rules for
introducing the second-order quantifiers in the ordinary sequent calculus for classical
logic (see, e.g., [58, 00]). We denote by HIF? the extension of HIF with these rules.
To the best of our knowledge, this system is studied here for the first time. Our main
results is that HIF? is sound and complete for second-order Godel logic, and that (cut)
is admissible in HIF2. It should be noted that like in the case of second-order classical
logic, the obtained calculus characterizes Henkin-style second-order Godel logic. Thus
second-order quantifiers range over a domain (of fuzzy sets) that is directly specified
in the second-order structure, and this domain should admit full comprehension. This
is in contrast to what is called the standard semantics, where second-order quantifiers
range over all subsets of the universe. Hence HIF? is practically a system for two-sorted
first-order Godel logic together with the comprehension axiom (see also [37]).

Our approach in proving cut-admissibility for HIF? is (of-course) semantic, and it is
similar to the one taken in Chapter |8 for HIF. Note that unlike in first-order calculi,
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usual syntactic arguments for cut-elimination dramatically fail for the rules of second-
order quantifiers. Thus the first proof of cut-admissibility for the extension of LK with

rules for second-order quantifiers was also semantic (see also the discussion in Chapter ,

page .

Publications Related to this Chapter

The material in this chapter was not published before.

9.1 Preliminaries

For the simplicity of the presentation, we follow [58] and restrict ourselves to simplified
second-order languages, in which the second-order part of the signature consists only of
one predicate symbol e (with the intuitive meaning of set inclusion). This is formulated

in the next definition.

Definition 9.1.1. A simple second-order language is obtained by augmenting a first-
order language (see Definition [8.1.1]) with the following:

1. Infinitely many set variables x1, X2, .... We use the metavariables XY, Z (with or
without subscripts) for set variables. To avoid confusion, we shall refer the variables
vy, Vs, ... of the underlying first-order language as individual variables.

2. Set quantifiers V° and 3°. We use (Q° as a metavariable for the set quantifiers. We
shall refer the quantifiers V, 3 of the underlying first-order language as individual
quantifiers, and usually denote them by V' and 3.

3. An arbitrary set of set constant symbols. The metavariable C' are is to range over set
constant symbols. We shall refer the constant symbols of the underlying first-order
language as individual constant symbols.

4. A predicate symbol € with two places, the first for individuals and the second for

sets.
In what follows, £2 denotes an arbitrary simple second-order language.

Definition 9.1.2. The set of £L2-terms consists of first-order £2-terms and second-order
L3-terms. First-order £2-terms are defined as in Definition [8.1.2) while second-order
L2-terms consists of all set variables of £2 and all set constant symbols of £2. We use
T (with or without subscripts) as a metavariable for second-order £?-terms. The set
of (individual) variables occurring in a first-order £?-term ¢ is defined as usual, and

denoted by Fv[t]. Similarly, the set of set variables occurring in a second-order £2-term
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T is denoted by Fu[T]. Substitutions in first-order £2-terms (denoted by t'{!/z}) are
defined as in Definition

Definition 9.1.3. Concrete L?-formulas are defined as for a first-order language (Defi-
nition [8.1.3)), with the following additions:

1. (teT') is a concrete L*-formula for every first-order L£2-term ¢ and second-order
L2-term T
2. If @ is a concrete L2-formula, and X is a set variable of £2, then (V*X®) and

(F*X®) are concrete L2-formulas.

Fov[®], [®],, and cp[®] for a concrete L2-formula @, are defined as in first-order lan-
guages (Definition [8.1.3)), where concrete £2-formulas of the form (t£7") are also consid-
ered as atomic concrete formulas, whose complexity is 1. As for first-order language, £2-
formulas are defined as equivalence classes of concrete £2-formulas (see Definition ,
and Fv[p| and cp[p] for an L2-formula ¢ are defined exactly as for £'-formulas (using
representatives). Similarly, (7 ¢ p2) for L2-formulas o1, o and ¢ € {A,V, D}, as well as
(Q'zyp) for L2-formula ¢ and Q' € {V!, 3} are defined as in Definition[8.1.5 In addition,

we define the following:

Definition 9.1.4. For Q° € {V* 3%}, a set variable X of £2?, and an £3-formula ¢:
(Q°X ) = [(Q°XD)], for some & € ¢.

Proposition 9.1.5. Exactly one of the following holds for every £2-formula ¢:

e cp[p] =1 and exactly one of the following holds:

— ¢ = {p(t1, ..., t,)} for some n-ary predicate symbol p of £2 and first-order

L2-terms ty, ..., t,.
— ¢ = {(teT)} for some first-order £3-term ¢, and second-order £*-term T
—p={L}

e © = (p1 0 yy) for some ¢ € {A,V, D}, and unique L£3-formulas ¢; and o such that
cpler] < eplip] and cples] < cple].

e For every individual variable z &€ Fu[y], ¢ = (Q'z1) for some Q' € {V', 3}, and
unique L£2-formula v such that ep[t)] < eplep].

e For every set variable X & Fulp], ¢ = (Q*X 1) for some Q° € {V*,3°}, and unique
L2-formula v such that ep[¢] < ep[eg].

Substitution operations are defined as follows:
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Definition 9.1.6. Let ¢ be a first-order £2-term, and z an individual variable of £2.

Given an L2-formula ¢, o{t/z} is inductively defined by:

(Pttt} 0 = {p(tr, o )}
{(t{t/e}eT)} o = {(teT)}
g ¥ p={L}
Pl (p1{t/z} o pa{t/c}) © = (1 0 @2)
(Qiyip{t/s}) o = (Qyp) for y & Folt] U {x}
(@Y {)e}) o = QY1)

Definition 9.1.7. Let T be a second-order £2-term, and X a set variable of £2. Given
an L2-formula ¢, o{7/x} is inductively defined by:

(

@ © = {p(tr, ..., tn)}
© o ={(teT")} for T" # X
{(teT)} ¢ ={(teX)}
oAT/xr =S¢ p={1}
(pr{T/x} o p{T/x}) 0= (p10¢2)
(Qy{T/x}) ¢ = (Qy)
(@Y P{T/x}) = (Y1) for Y ¢ Fu[T]U {X}

Note that the above substitution operations are well-defined. In particular, the choice

of the variables y and Y is immaterial.

9.2 Henkin-style Second-Order Godel Logic

In this section we precisely define Henkin-style second-order Godel logic, via a semantic
presentation. These definitions naturally extend the usual definitions of Henkin-style
second-order classical logic, by replacing the usual two truth values True and False by
any bounded complete linearly ordered set of truth values. From a different angle, these
definitions naturally extend (standard) first-order Godel logic (presented in Chapter

by adding an additional collection of fuzzy sets, over which the set quantifiers range.
Definition 9.2.1. A domain D for a Godel set V consists of:

e A non-empty set, called individuals domain and denoted by D;.

e A non-empty collection of fuzzy subsets of D; over V (see Definition [8.2.3), called
sets domain and denoted by D;.
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Given a domain D, an (£? D)-interpretation I consists of:

e A function assigning an element in D; to every individual constant symbol of £2,

and a function in D;" — D; to every n-ary function symbol of £2. We call this

function individuals interpretation, and denote it by I;.

e A function assigning a fuzzy subset in Dy to every set constant symbol of £2. We

call this function sets interpretation, and denote it by I.

Note that D; is a (first-order) domain, and I; is an (£, D)-interpretation (see Defi-
nition [8.2.2)). Next, we define L2-structures exactly like we defined L'-structures (Defi-
nition [8.2.4)), based on the new notions of domain and interpretation.

Definition 9.2.2. An L2-structure is a triple W = (V, D, I, P), where:

1.
2.
3.
4.

V is a Godel set.

D is a domain for V.

I is an (L2, D)-interpretation.

P is a function assigning a fuzzy subset of DI over V to every n-ary predicate
symbol of £2.

Assignments are also defined as their first-order counterparts (Definition [8.2.5)):

Definition 9.2.3. Let D be a domain.

1.

An (L2 D)-assignment is a function assigning an element of D; to every individual

variable of £2, and an element of Dy to every set variable of £2.

Given an (L2, D)-interpretation I and an (£2, D)-assignment o, o/ is the function

assigning elements of D; and D, to L£2-terms, recursively defined by:

He] = ILc] for every individual constant symbol ¢ of £2.
[z] for every individual variable x of £2.
Hf(ty, .. tn)] = Lfl(a![t1], ..., ol[t,]) for every m-ary function symbol f of
£? and n first-order £2-terms ty, ..., t,.
ol[C] = I,]|C] for every set constant symbol C' of £2.
e o/[X] = o[X] for every set variable X of £2.

°

Q 9 9
—
B
Il
Q

Let o be an (£2, D)-assignment. Given an individual variable z of £2 and d € D;, we
denote by 0,.—q the (L2 D)-assignment that is identical to o except for o,._4[z] = d.
Similarly, given a set variable X of £2, and D € D,, we denote by ox.—p the (L2, D)-
assignment that is identical to o except for ox.—p[X]| = D. These notations are

naturally extended to several distinct variables (e.g. 0u,.—d; vp:=da,x1:=D)-
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Next, we generalize Definition for £2-structures.

Definition 9.2.4. Let W = (V, D, I, P) be an L2-structure. For every £2-formula ¢ and
(L2 D)-assignment o, Wy, o] is the element of V inductively defined as follows:

;

Ppllo’[ta], .., o [tn]] o =A{p(ts, ..., tn)}

o![T][e"[t]] p={(teT)}

0 ¢ ={L}

min{W|p1, 0], Wlps, ]} o = (1 A p2)
Wip.o] = max{W[p1, 0], Wlps,0]} = (p1V p2)

Wlp1,0] = Wlps, o] = (1D p2)

infgep, W[, 0p—d] ¢ = (V'ar)

SUPgep, WY, 0] p = (Far)

inf pep, W[V, 0x.=p] o = (VX))

| SUPDeD, W, 0x.—p] = (FXY)

Again, it can be verified that the choice of z and X in the last definition is immaterial.
Note that the last definition establishes the connection between the predicate symbol e,
and the (fuzzy) set inclusion. The truth value assigned to a formula of the form {(tc7T)}
with respect to an assignment ¢ is equal to the membership degree of o![t] in the fuzzy
subset ol [T].

The following usual lemma will be needed below (the proof is similar to the proof of

Lemma [8.2.8)).

Lemma 9.2.5. Let W = (V,D, I, P) be an L-structure.

1. Let x be an individual variable of £2? and d an element of D;. For every £2-formula
¢ such that = € Fu[yp], and (L2, D)-assignment o: Wp, 0,.—q] = W|p, o).

2. Let X be a set variable of £2 and D an element of D,. For every L2-formula ¢
such that X ¢ Fulp], and (L2, D)-assignment o: W(p, ox.—p] = W]y, o].

Next, we define Henkin-style second-order Godel logic. This amounts to the set of
tautologies induced by the structures defined above with the additional restriction of
comprehension. Thus, as done in Henkin-style classical second-order logic, we require
that all (fuzzy) subsets of the universe that can be captured by some formula, are indeed
included in the domain of (fuzzy) subsets. Structures satisfying this property (namely,

admit the comprehension axiom) are called comprehensive.

Definition 9.2.6. Let W = (V, D, I, P) be an L2-structure. Given an £?-formula ¢, an

individual variable z of £2, and an (£? D)-assignment o, we denote by W]y, o, x] the
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fuzzy subset of D; over V defined by Ad € D; W[y, 04.—q]. W is called comprehensive if
Wlp, 0, x] € D; for every ¢, z, and o.

Definition 9.2.7. For an L2formula ¢, we write IF6%22 ¢ if W[p, 0] = 1 for every
comprehensive L2-structure W = (V, D, I, P) and (L2 D)-assignment 0. G0z is the

logic consisting of all formulas ¢ such that IFG3z2 .

Example 9.2.8. It is easy to see that the comprehension axiom scheme is valid in GOz,
ie.

IFE2e (X (Va((p D {(zeX)}) A ({(22X)} D ¢))))
for every L2-formula ¢, set variable X ¢ Fu[y], and individual variable z. Indeed, let

W = (V,D, I, P) be a comprehensive L2-structure, and o be an (L2 D)-assignment. By
definition, W]p, o, 2| € D,. Thus
WIFX (V' ((p D {(zeX)}) A ({(2eX)} D 9)))), 0] >
WI(V'2(( D {(zeX)}) A ({(2eX)} D 9))), 0x:=Wip.o,a1)-
By definition, for every d € D; we have:
WH(zeX)}), ox—wipoala=a] = Wle, 0, z][d] = W, 0z.—d].
Since X & Fv[y],
W[(QO D) {(ZL’&TX)}), O'X::W[cp,a,x},a:::d] = W[‘P; Ur::d] — W[907 Um::d] - ]-7
and similarly,
W[({(Z’EX)} ) ()0)7 O'X::W[ap,o,x],z::d] =1
It follows that

WI((¢ D {(zeX)}) A ({(zeX)} D ¥)), oxmwipoala=d] = min{l, 1} = 1.
Since this holds for every d € D;, we have:

Inf WI((¢ 5 {(weX)}) A ({(2eX)} D 9)); ox:owipoalamd] = 1.

Consequently,
WIFX(V'z((p D {(zeX)}) A ({(zeX)} D ¢)))). 0] = 1.

9.3 The Hypersequent Calculus HIF?

In this section we present a hypersequent calculus HIF? for G6,.. HIF? is obtained
by augmenting the hypersequent calculus HIF for standard first-order Godel logic (pre-
sented in Section with rules for second-order quantifiers. These are the hypersequent
versions of the sequent rules used for classical logic (see the calculus L2K in [58]). They
have the same structure of the rules for individual quantifiers, where instead of using first-

order terms in (£:V) and (t:3), one uses abstraction terms (abstracts for short). Abstracts



164 CHAPTER 9. CALCULUS FOR SECOND-ORDER GODEL LocIC

are syntactic objects of the form 4z | ¢p that intuitively represent sets of individuals.
Note that abstracts are just a syntactic tool for formulating the rules of the set quanti-
fiers. Derivations in the calculus still consists solely of hypersequents, and no abstracts
are mentioned in them. As we did for formulas, we first define concrete abstracts, and

abstracts are defined as alpha-equivalence classes of concrete ones.

Definition 9.3.1. A concrete L2-abstract is an expression of the form ¢z | ®, where z
is an individual variable of £2, and ® is a concrete £2-formula. Alpha-equivalence be-
tween concrete L2-abstracts is defined as usual (where z is considered bound in ¢z | ®$),
and [§z | PP, is standing for the set of all concrete L2-abstracts which are alpha-
equivalent to §x | ®p. An L2-abstract is an equivalence class of concrete L£2-abstracts
under alpha-equivalence. We mainly use 7 as a metavariable for £2-abstracts. The set

of free variables of an L2-abstract is defined using representatives, i.e. for an £2-abstract
7, Fo[t] = Fu[dx | | for some §z | P € 7.

Definition 9.3.2. Given an individual variable z of £? and an £2-formula ¢, §x | v} is
the L£2-abstract [§x | )|, for some P € .

Proposition 9.3.3. For every L2-abstract 7 and individual variable x ¢ Fu[r], there

exists a unique £?-formula ¢, such that 7 =4z | $.

Definition 9.3.4. Let 7 be an L2%-abstract, and ¢ a first-order £?-term. 7[t] is defined

to be the £2-formula @{t/z} for some individual variable x and £2-formula ¢, such that

T =4z | pp
It is easy to see that 7[t] is well-defined, as it does not depend on the choice of x.

Definition 9.3.5. Let 7 be an £?-abstract and X a set variable of £2. Given an £?*-
formula ¢, ¢{7/x} is inductively defined by:

(

@ o ={p(tr, ... ta)}, o = {(teT)} for T # X, p = {L}
ultd e ={(teX)}
e{7/xy = q (er{7/x} o pa{T/x}) 0 = (p10¢a)
(Qyp{7/x}) p = (Q'yy) for y & Fo[r]
(@Y Y{7/x}) p=(QYy) for Y & Fo[r]U {X}

Note that the this substitution operation is well-defined. In particular, the choice of

the variables y and Y is immaterial.

Example 9.3.6. For p = (Vi1 ({(r1ex1)} D (Fxe{(r1ex2)}))), and 7 =4uy | {p(v2, v2) }},
we have {7/} = (Vui({p(v1,11)} O (Fxa{(nexa)}))).



9.3. THE HYPERSEQUENT CALcuULuUS HIF? 165

The following lemmas will be useful in the sequel.

Notation 9.3.7. For a second-order £2-term T, the L£2-abstract vy | {(v1€T)}$ is de-
noted by Tps.

Lemma 9.3.8. Let T be a second-order £2-term. For every £2-formula ¢ and set variable
X of £2, p{Ters/x} = o{T/x}.

Proof. By usual induction on the complexity of ¢. n

Lemma 9.3.9. Let 7 be an L£%-abstract, t,t first-order £2-terms, and z an individual
variable such that z ¢ Fu[r]. Then, 7[t'|{t/=} = 7[t'{t/z}].

Proof. Tt is straightforward to prove that p{t/y}{/z} = @{t'{"/}/y} for every L2-formula
o, first-order L£2-terms ¢ and ¢, and individual variables x and y, such that x & Fv[p].

The claim then easily follows from our definitions. O]

Using abstracts, the rule schemes for the second-order quantifiers in HIF? are given
by:

H|T,of E H|T
(£) | Tso{7/x} = (6:%) IT=¢
H|T,("*X¢)=E H|T = (VXp)
H|T E H|T v
(£:3) T.o= (6:3°) | T = of/x}
HI|T,(FXy) = E H|T = (FXy)

where X must not be a free variable in the lower hypersequent in applications of the
rules (t:V*) and (f:3°).

Below, we write Fgrp2 H to denote that an £2-hypersequent H is provable in HIF?,
and l—;{IFQ H to denote that H is provable in HIF? without applying (cut).

Since formulas are equivalence classes, the rules (t:V*), and (£:3°) could be written
as well as:
HIToplfx) o HITe{)x) > F
HI|T = (V"Xp) HI|T,(FXp)=> E
where Y must not be a free variable in the lower hypersequent.

(t:V*)

Remark 9.3.10. Note that rules given by the schemes

HI|T,p{Tfx}=E  H|T = p{Tjx}

HI|T,(V*Xyp)=E H|T = (FXp) '
where T is a second-order £?-term, are particular instances of (£:V*) and (t:3°%), obtained
by choosing 7 = T, (see Lemma [0.3.8)).
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9.4 Soundness

In this section we prove the soundness of HIF? for G6,:. Definition (defining when

a L-structure is a model of an L'-hypersequent etc.) is adopted for £2-structures as is.

Theorem 9.4.1. Let H be an £2-hypersequent. If Fyppe H, then every comprehensive

L2-structure is a model of H.

Soundness for GOz is an obvious corollary (see Corollary [8.4.3)):
Corollary 9.4.2. For every £2-formula ¢, if Fyrpe {{t:p}}, then G022 .

Theorem [9.4.1]is proved in the usual way, by induction on the length of the derivation

in HIF?. We use the following technical lemmas:

Lemma 9.4.3. Let W = (V, D, I, P) be an L?structure, t a first-order £2-term, and z

an individual variable of £2. For every £-formula ¢, and (£? D)-assignment o:

W[QO, U:c::al[t}] = W[(p{t/x}7 U]'

Proof. The claim is proved by induction on the complexity of ¢, similarly to the proof
of Lemma for the first-order case. We do here the case ¢ = {(t'eT")}. Let o be an
(L2, D)-assignment. Then p{t/z} = {(t'{t/x}eT)}. Thus W[p{t/s}, o] = o![T][c![t'{t/s}]].
By Lemma m (adapted to second-order languages), o [t'{!/z}] = 0,._o1py[t']. Now
olT) = Uizzg[t] [T], and so ol [T)[c![t'{t/x}]] = O’izza[t] [T [cri:zam [t']]. By definition, this is

equal to W[y, 04.—[g]- O

Lemma 9.4.4. Let W = (V, D, I, P) be an L2-structure, 7 an L?-abstract, x € Fo[r]| an
individual variable, and X a set variable. For every £2-formula ¢ and (L2, D)-assignment
o: if W[r[z], 0, 2] € Dy then W[p{7/x}, 0] = W@, 0 x.owiria)o.0])-

Proof. It X & Fulp], then ¢{7/x} = ¢ and in this case the claim follows by Lemma[9.2.5]
Suppose otherwise. We prove the claim by induction on the complexity of . Suppose
that cplp] = 1. Let o be an (L2 D)-assignment, and let Dy = W]r[z],0,2]. Sup-
pose that Dy € Ds. Since X € Fulp], ¢ = {(teX)} for some first-order L£>-term
t. In this case, p{7/x} = 7[f]. By Lemma [9.3.9 7[t] = 7[z{t/x}] = 7[2]{!/z}. Thus
Wle{"/x}, 0] = W(r[z]{!/s},0]. By Lemma Wir[z|{!/z}, 0] = WIr[a], 04.—01py]-
By definition, W[r|z], 0,.or1g] = Dolo? [t]] = W], 0x.=p,)-

Next, suppose that cp[p] > 1, and that the claim holds for L£2-formulas of lower
complexity. Let o be an (£2, D)-assignment, and again let Dy = W|r[z], o, z]. Suppose
that Dy € D,. Exactly one of the following holds:
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e 0 = (p1 0 ) for some o € {A,V,D}, and L2-formulas ¢; and @, such that
cpler] < eplip] and eplps] < eplg]. By definition, o{7/x} = (p1{7/x} o pa{7/x}).
We continue with ¢ =D (the proof is similar for A and V). Thus,

Wip{7/x}, 0] = Wlpi{7/x}, 0] = [e2{7/x}, 0.
By the induction hypothesis (and the case in which X ¢ Fv[p]), we have both
Wipi{7/x}, 0] = W1, ox.=p,] and W[pa{7/x}, 0] = W]ps, 0x.=p,]. By definition,
Wlp1, 0x:=po] = Wlpa, 0x.=p,| = W, 0x:=p,]-

e v = (Q'yy) for some Q' € {V', 3}, individual variable y & {x} U Fv[r] of £, and
L2-formula 1 such that cp[t)] < cp[p]. By definition, o{7/x} = (Q'y{7/x}). We
continue with Q" = V* (the proof is similar for 3%). Thus,

WIp{r/x}, 0] = jnf WES{7/x}, 0y
Now, using Lemma [9.2.5, we have Dy = W(r[z], 0,.=q4, 2] for every d € D; (since

y & Fu[r[z]]). Therefore, infsep, Wp{7/x}, 0ya] = infaep, W[, 0y.—a.x.=D,] by
the induction hypothesis. By definition, infsep, W[, 0y.—a.x.=D,] = W|[p, 0x:=D, |-

e ¢ = (Q°Y) for some Q° € {V* 3%}, set variable Y ¢ {X} U Fu[r] of £?, and
L2-formula v such that ep[t)] < eplp]. By definition, o{7/x} = (Q*Y¥{7/x}). We
continue with @® = V* (the proof is similar for 3%). Thus,

WIe(r/x}.0] = inf Wb{7/x}. vl
Now, using Lemma [9.2.5, we have Dy = W|r[z], oy.—p, x] for every D € D (since
Y & Fu[r[z]]). Therefore, infpep, W[Y{7/x},0y.—p| = infpep, W[, 0y.—p x.=D,]
by the induction hypothesis (note that Y # X). By definition,

inf W[, oy.—p x.—p,] = W[e,0x.=p,]- O

DeD,

Proof of Theorem[9.4.1. Let W = (V,D, I, P) be an L2-structure, where V = (V, <). It
suffices to prove soundness of each possible application of a rule of HIF2. For the rules
of HIF, this is done as in the proof of Theorem We prove here the soundness of
(£:¥*), and leave the other three new rules to the reader:

Suppose that H = H' | s U {£:(V*X )} is derived from H' | s U {£:{7/x}} using (£:V*).
Assume that W,o £ H for some (L2 D)-assignment o. Hence, W, o [~ s for ev-
ery s € H', and W,o [~ sU{f:(V*X¢)}. Let u = WF*[s,0]. The assumption that
W, ot sU{£:(V*X )} entails that WE[s, o] > u, and W[(V*X¢), o] > u. By definition,
WI(V*Xp),0] = infpep, W[p,ox.=p]. Thus W]p,ox.—p] > u for every D € D;. Let x
be an individual variable such that x ¢ Fu[r|, and let Dy = W[r[z], 0, z]. Since W is
comprehensive, Dy € D, and in particular, W[, ox.—p,] > u. Lemma[9.4.4)implies that
Wle{7/x},0] > u. It follows that W, o [~ s U {f:p{7/x}}. Consequently, W is not a
model of H' | s U {f:p{7/x}}. O
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9.5 Complete Non-deterministic Semantics

In this section we present a non-deterministic semantics for which the cut-free fragment
of HIF? is complete. As for HIF in the previous chapter, this semantics will be used in
the next section, where we show that ordinary counter-models can be extracted out of

non-deterministic ones.
Definition 9.5.1. A quasi-domain D consists of:

e A non-empty set, called individuals domain and denoted by D;.

e A non-empty set, called sets domain and denoted by D,.
Given a quasi-domain D, an (L2, D)-interpretation I consists of:

e A function assigning an element in D; to every individual constant symbol of £2,
and a function in D;" — D; to every n-ary function symbol of £2. We call this
function ndividuals interpretation, and denote it by I;.

e A function assigning an element of D, to every set constant symbol of £2. We call

this function sets interpretation, and denote it by I.

(L2 D)-assignments are defined for quasi-domains exactly as for domains (see Defi-
nition . Note that the elements of D, in quasi-domains may not be fuzzy subsets.
This allows us to compose Dy out of abstracts (as done in the completeness proof). In-
stead, as defined below, the interpretation function P of a quasi-L£2-structure assigns a

(quasi) fuzzy subset of D; over V to every element of D;.
Definition 9.5.2. A quasi-L?-structure is a tuple @ = (V, D, I, P,v), where:

1. V is a Godel set.

2. D is a quasi-domain.

3. I is an (L£? D)-interpretation.

4. P is a function assigning a quasi fuzzy subset of D}’ over V to every n-ary predicate
symbol of £2, and a quasi fuzzy subset of D; over V to every element of Dy (see
Definition [8.5.1).

5. v is a function assigning a pair in {(uf,u*) € V x V| vf < u*} to every ordered
pair of the form (yp, o), where ¢ is an L2-formula and o is an (£?, D)-assignment,
such that the following hold:

(a) For every two individual variables z,y such that y & Fv[p], and every d € D;:

U[QD, Jffi:d] = U[So{y/w}a Uy::d]~
(b) For every two set variables XY such that Y ¢ Fu[y|, and every D € D:

U[% UX::D] = U[Q{Y/X}v OYIZD]'
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Next, we define which quasi-L£2-structures are considered legal.

Definition 9.5.3. Let Q@ = (V, D, I, P,v) be a quasi-L2-structure. For every £2-formula

¢ and (L2 D)-assignment o, v,|p, o] is the pair defined as follows:
(

Ppllo’[ta], ..., o [ta]] o = {p(t1, ..., tn)}

Plo"[T]][o"[1]] o ={(teT)}

(0,0) p={Ll}

(min{v®[i1, o], v*[pa, o]}, min{v*[p1, 0], v% @2, 0]}) @ = (1 Ap2)
volpro] = (max{v*[p1, 0], v* |02, o]}, max{v®[p1, 0], v%[p2, 0]}) @ = (01 V @)

(v*[ip1, 0] = V[, 0], v 1, 0] = v*[ip2, o)) ¢ = (p1 D ¢p2)

(infgep, v [1), Opiza], infaep, V[0, Opizal) p = (V)

<SUPdeD v, 0zl SUPgep,; V Y, 00.=a) p = (Fzy)

(inf pep, v [¢), ox.=p], inf pep, V*[1), ox.=p]) = (V" X9)

( p=(FX

)

L SUPpep, U W 0Xx: D] SUPpep, V WJaO'X::DD

Conditions (a) and (b) in Definition ensure that Q is well-defined, namely that
the choice of x and X is immaterial. It is straightforward to verify that v§[p, o] < vg[e, o]
for every L2-formula ¢ and (L2 D)-assignment o.

Definition 9.5.4. A quasi-L2-structure Q = (V, D, [, P,v) is called legal if we have
volyp, o] C vlp, o] for every L3-formula ¢ and (L2, D)-assignment o.

We adapt the definition of comprehensive structures to quasi-structures, keeping in

mind that the function P interprets the elements of D, as quasi fuzzy sets.

Definition 9.5.5. A quasi-L2-structure @ = (V, D, I, P,v) is called comprehensive if for
every L2-formula ¢, individual variable x, and (L2, D)-assignment o, there exist some
D € Dy such that P[D] = Ad € D;.v[p, 04.—q).

The notion of model for quasi-L£2-structures is defined exactly as in the first-order

case (Definition [8.5.8). In turn, the main completeness theorem is given by:

Theorem 9.5.6. Suppose that V;{IFQ H,, for some L2-hypersequent Hy. Then there

exists a legal comprehensive quasi-L£2-structure which is not a model of Hj.

The rest of this section is devoted to prove this theorem.
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The Herbrand Quasi-Domain

A main ingredient in the completeness proof below is the Herbrand quasi-domain. It is

defined as follows:

Definition 9.5.7. The Herbrand quasi-domain for £2, denoted by DZ’, is the quasi-
domain whose individuals domain DX consists of all first-order £>terms, and sets domain
DE consists of all £2-abstracts. The Herbrand interpretation for £, denoted by I2, is
the (£2, DX)-interpretation defined by: I;[c] = ¢ for every individual constant symbol
cof L2, L;[f] = My, ..., t,, € D;.f(t1, ..., t,) for every n-ary function symbol f of £2, and
L[C] = Cups =41 | {(112C)}$ for every set constant symbol C' of L.

Below, given an (£2, D’ )-assignment ¢ and a first-order (second-order) £2-term ¢ (T)),
we write oft] (o[T]) instead of o’c2[t] (¢’2[T]). In addition, (£? D**)-assignments are
extended to apply on L-formulas. Roughly speaking, every occurrence of a free variable
x or X in a formula ¢ is replaced in o[p] by o[z] or o[X]. Formally, this is defined as

follows.

Definition 9.5.8. Let ¢ be an £2-formula, and o an (£2, D%’ )-assignment. The set of
free variables of the pair (p, o) (denoted by F'v[{p, o)]) consists of the variables of o[z] for

every individual variable x € Fv[yp], and the free variables of o[X] for every set variable
X € Fulyp].

Definition 9.5.9. (£? D£2>—assignments are extended to L£2-formulas, according to the

following inductive definition:

{p(alta], ..., olta])} o ={p(tr, ..., tn)}

o[T][o]t]] p ={(teT)}

{1} p={Ll}

(oler] o alea]) p = (P10 p2)

(Q'z03:=s[¥]) p = (Qzy) for x & Fu[(p, )]
(@ Xox—x,,.[0]) = (QX) for X & Fuv[{p,0)]

Note that the choice of z and X in the last definition is immaterial, and thus o] is

\
well-defined. The following properties of the Herbrand quasi-domain are needed in the
completeness proof.

Lemma 9.5.10. Let ¢ be a first-order £2-term and 7 an £2-abstract.

1. For every £2-formula ¢, (L2, D£2>—assignment o, and individual variables z,y such
that y & Folg], oamie[@] = oymi0{¥/e}].
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2. For every L3-formula ¢, (L2, D£2>—assignment o, and set variables X,Y such that
Y € FU[‘PL UX::T[‘P] = O—Y::T[SO{Y/X}]-

Proof. First, as in Lemma [8.5.10] it is straightforward to show that for every first-
order £*terms t' and t, (£, D*)-assignment o, and individual variables x,y such that
y & Folt'], own[t] = oym[t'{¥/2}].

Next, we prove the first claim in the lemma by induction on the complexity of ¢. We
include here only the cases that are special for second-order language (the other cases
are handled as in the proof of Lemma [8.5.16). Let ¢ be an (£2, D*)-assignment, and
x,y individual variables such that y ¢ Fv[p|. Consider the following cases:

e o = {(t'eT)} for some first-order £2-term ¢', and second-order £-term 7. Then,
Opiet[@] = 0pct|T)[02:=e[t']]. Since y ¢ Folt'], this equals 0y [T][oy.—[t'{v/2}]].
Since x and y does not occur in 7', this is equal to o,.—¢[T|[oy,.—[t'{¥/z}]]. By
definition, this formula is equal to o, [{(t'{¥/=}eT")}|, which is oy [{(t'eT) }{v/=}].

o v = (Q*X) for QF € {v*,3°}, L2-formula ¢ such that cp[t)] < eplg], and set
variable X & Fv[o[p]]. Then, 0,.-[¢] = (Q*X 04—t x.=x,,.[¢]). By the induction
hypothesis, this £2-formula is equal to (Q*Xoy.— x.=x,,.[V{¥/x}]). And this is (by
definition) equal to oy.—[(Q*X¢{¥/z})], which in turn equals oy.—¢[(@{¥/z}].

Next, we prove the second claim in the lemma. Suppose that X € Fuv[yp| (otherwise,
we have ox._.[¢] = ol¢] = oy.—-[p{¥/x}]). We use induction on the complexity of ¢.
First, suppose that cp[p] = 1. Let ¢ be an (£2, D’ )-assignment, and X,V set variables
such that Y ¢ Fu[p]. Assume that X € Fv[p]. Thus we have ¢ = {(teX)} for some
first-order £2-term ¢. Then, ox.—.[p] = T[ox.—-[t]]. Since X and Y do not occur in
t, this is equal to 7[oy.—.[t]], which in turn equals oy._,[p{¥/x}]. Next, suppose that
cple] > 1, and that the claim holds for £2-formulas of lower complexity. Let o be an
(£, D*)-assignment, and X,Y set variables such that Y ¢ Fu[p]. Exactly one of the
following holds:

o p = (p1oyy) for o € {A,V, D} and L2-formulas ¢; and ¢y such that cp[p1] < cpl]
and cplps] < eple]. Then, ox.—.[¢] = (0x.=r[¢1] © ox.=r[p2]). By the induc-
tion hypothesis (and the case in which X ¢ Fuv[yp]), this £2-formula is equal to
(oy.—r[p1{Y/x}|ooy.—[p2{¥Y/x}]). And, by definition, this is equal to oy.—, [p{Y/x }].

o o= (Q'zv) for Q' € {V',3'}, L2-formula ¢ such that cp[t)] < eplp], and individual
variable x & Fv[r] U Fu[o[p]]. Then, ox.—.[p] = (Q"20x.—rz.—z[¥]). By the induc-
tion hypothesis, this £>-formula is equal to (Q'zoy.—r z.mp[{Y/x}]). And this is
(by definition) equal to oy.—.[@{¥/x}].

e v = (Q°ZY) for Q° € {Vv*,3F°}, L2formula ¢ such that cp[t)] < cplp], and set
variable Z ¢ Fu[t|U{X,Y }UFv[o|g]]. Then, ox.—.[¢| = (Q*Zox.—7 7.2, [¢]). By
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the induction hypothesis, this £2-formula is equal to (Q*Zoy.—r z.—z,.[V{Y/x}]).
And this is (by definition) equal to oy.—,[p{Y/x}]. O

Lemma 9.5.11. Let ¢ be a first-order £?-term and 7 an L?-abstract.

1. For every £L2-formula ¢, (£?, D£2>—assignment o, and individual variables x, z such

that 2 & Fvlolg]], ou:=:[@l{!/z} = ouilg].
2. For every L2-formula ¢, (£? DX )-assignment o, and set variable X & Fuv[o[y]],

Ox:=Xe [PHT/X} = Ox.=[0)]-

Proof. First, as in Lemma [8.5.17] it is straightforward to show that for every first-
order £?-terms ¢’ and ¢, (L2, D£2>—assignment o, and individual variables x, z such that
z & Fulolt']], ou=:[t{!/z} = oue[t].

Next, we prove the first claim in the lemma by induction on the complexity of ¢. We
include here only the cases that are special for second-order language (the other cases
are handled as in the proof of Lemma [8.5.17). Let ¢ be an (£2, D**)-assignment, and

x, z individual variables such that z ¢ Fv[o[p]]. Consider the following cases:

e o = {(t'eT)} for some first-order £2-term ¢', and second-order £2-term T. Then,
Onme[P{/z} = Onmse[Tows[1{*/=} = o[Tow=:[t']]{"/z}. By Lemma[0.3.9} since
z & Fulo[T]], this formula equals o[T][o.—.[t'|{!/-}]. Since z ¢ Fuvlo[t']], the proof
above for terms entails that this formula equals o[T)[o,.—¢[t']]. Since x does not
occur in 7', this is equal to 0,.—[T][0..—¢[t']], which is, by definition, o,._[¢].

e v = (Q°X0) for Q° € {V* 3}, L2-formula ¢ such that cp[t)] < ep[p], and set
variable X & Fv[o[y]]. Then,

Oumz[PH{H/e} = (Q° X Ouims xim o, [V} = (Q' X 0wz Xz, [WIH{Y/2))-
By the induction hypothesis, this £2-formula is equal to (Q'yo,.— x.—x,,.[¢]). And
this is (by definition) equal to o,.—[¢].

Next, we prove the second claim in the lemma. First, if we have X ¢ Fuv[y], then
Ox=x,.l¢] = olg] = ox.—-[p]. Since X & Fulo[y]], we also have a[p]{7/x} = oly] as
well. Suppose now that X € Fv[p]. We use induction on the complexity of . First,
suppose that cp[p] = 1. Let o be an (£2, D )-assignment, and let X ¢ Folo[y]]. Since
X € Folp], we must have ¢ = {(teX)} for some first-order £2-term ¢. Then,

0xi=Xaps [PHT/X} = Xaslo[t]{7/x} = {(o[tle X)H{7/x} = 7lo[t] = ox.=r[]-
Next, suppose that cp[p] > 1, and that the claim holds for L£2-formulas of lower

complexity. Let o be an (£2, D" )-assignment, and let X ¢ Fu[o|]]. Exactly one of the
following holds:
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o = (p10pg) for o € {A,V, D} and L2-formulas ¢1, 2 such that cp[e;] < ep[e] and
lpa] < cPlol. Then, oy [PH/x} = (@xema [o11{7/x} 0 Txmx . [l (/5D)
By the induction hypothesis (and the case in which X & Fuv[p]), this £L2-formula is
equal to (ox.—-[p1] © ox.=-[¢2]). And, by definition, this is equal to ox.—,[¢].

o o= (Q'zv) for Q' € {V',3'}, L2-formula 9 such that cp[i)] < ep[p], and individual
variable x & Fv[r| U Fv[o[¢]]. Then,

=X [PHT/x} = (Q@0x Xy aima[WD{T/5} = (Q'20x =X o wma[WH{T/5 )

By the induction hypothesis, this £2-formula is equal to (Q'x0x.—r 4.=z[¢]). And
this is (by definition) equal to ox.—-[¢].

e v = (YY) for Q° € {V*, 3}, L2formula ¢ such that cp[t)] < cplp], and set
variable Y ¢ Fu[r] U{X} U Fu[o[g]]. Then,
=X [PHT/x} = (QY 01X vimv, [WD{T/x} = (QY 0 x vy [WH{T/XD).
By the induction hypothesis, this £2-formula is equal to (QY ox.—ry.—v,,.[¢]). And
this is (by definition) equal to ox.—[¢]. O

Proof of Theorem [9.5.6

Suppose that V;{IFZ Hy. The availability of external and internal weakenings ensures
that Hy is unprovable. As in Lemma [8.5.12] it is possible to extend Hj to a maximal
extended L£2-hypersequent Q* such that Hy C Q*H We use Q* to construct a counter-
model for Hy in the form of a quasi-£L2-structure Q = (V, D, I, P,v). First, the notations
L[], R[g], ¥*[¢] are defined exactly in the completeness proof for HIF (Theorem [8.5.9)).
Similarly, the bounded linearly ordered set 1, the Godel set V are constructed using 2*
exactly as in the first-order proof. Now, let D = DX be the Herbrand quasi-domain for
£2, I = I** the Herbrand interpretation for £2, and define P and v as follows:

e For every n-ary predicate symbol p of L2, Plp] = Ay, ..., t, € D;.Q* [{p(t1, ..., ta) }H.
e For every L2-abstract T € Dy, P[r] = At € D;.Q*[7[t]].

e For every L?-formula ¢ and (£2, D)-assignment o, v[p, o] = Q*[o[p]].

It is easy to verify, using Lemma [0.5.10} that conditions (a) and (b) from Definition[0.5.2)
hold.

LA maximal extended £2-hypersequent is defined just like a maximal extended £!-hypersequent, with
the following natural additional requirements in “the witness property”:
For every £2-formula ¢ and set variable X of £2:

1. If (V¥ X ) € p, then t:p{Y/x} € u for some set variable Y of £2.
2. If £:(3* X p) € p, then £:0{Y/x} € p for some set variable Y of £2.
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We show that Q is not a model of Hy. Consider the (£2, D)-assignment 0,4 defined by
0i4[z] = x for every individual variable x of £2, and 0;4[X] = X, for every set variable
X of L2 Let s € Hy. Since Hy C QF, there exists some p € Q*, such that s C pu. We
claim that pu € v¥[p, 0;4] whenever £:¢ € s, and u & v*[p, 0i4] whenever t:p € s. To see
this, it suffices to note that ;4[] = ¢ for every L2-formula . This fact follows from the
definition of o;4[p]. Consequently, v¥[p, ;4] € v*[p, 0:4], and so Q, gy = s.

It remains to prove that Q is legal and comprehensive. We first show that it is legal,
namely that v,[p, 0] C v]p,o] for every L>-formula ¢ and (L£? D)-assignment o. Let
¢ be an L%-formula, and o an (L2 D)-assignment. If ¢ is a first-order formula (£!-
formula) the proof proceeds as in the proof of Theorem . We consider here only the

new possible cases:

o ¢ = {(teT)} for some first-order £2-term ¢, and second-order £2-term T'. Then
volp; 0] = Plo[T][o[t]] = Q*[o[T][o[t]]] = [olp]] = vlp,a].

o = (V*X1¢) for some set variable X ¢ Fu[o[y]] and £?-formula 1. Then:
_ /s t : £
QQ[@) U] - <7-1€n’1£3 v W, OX::T]7 Tlenpfs v W, JX::T])-

We first prove that v[p, o] Cinf,cp, v¥[t), 0x.—;]. Thus we show that for every
7 € D, we have v'[p, 0] C v, 0x.—]. Suppose that u & v[), ox.—,] for some
7 € D,. By definition, we have fiox._.[¢] ¢ p. By Lemma [9.5.11] we have
ox.—-[¥] = ox.=x,,. [®]{7/x}. The maximality of Q* ensures that there exist an
L2-hypersequent H C Q*, and L£2-sequents s1, ..., s, C u, such that

e H | 51U {E:000m0,, [0H{7/x 1) || 80 U {E:0x,, 7/ 3 )
By n consecutive applications of (£:V*), we obtain that

Fiee H | 51 U{E:(V X oxox, [WD)} -] 80 U {E:(V X oo, [0])}-
Since Q* is unprovable, we must have f:(V*Xox._x,, [¢]) € u. By definition,
(V*Xox.—x,,.[¢]) = olg]. Tt follows that p & v [p, o).
Next, we prove that inf.cp, v*[), 0x.—-] C v*[p, o]. Suppose that pu & v*[p, o]. Thus
t:ofp] € p. By definition, of¢| = (V*Xox.—x,,.[¢0]). Since Q* admits the witness
property, there exists a set variable Y of £2, such that t:ox.—x , [V]{¥/x} € u.

By Lemma 9.3.8, ox.—x,, [V[{Y/x} = ox.—x,,.[]{¥«s/x}. By Lemma [9.5.11] we

have ox.—x,, [V][{Yes/x} = ox.—v,,.[¢]. Thus, tiox.—v, [¢] € p. It follows that
p & VY, 0x.], for T = Yo, € Dy, and therefore p & [ cp V[, 0x.=].

e The case ¢ = (F*X¢) is handled similarly.

Finally, we show that Q is comprehensive. Let ¢ be an L2-formula, r an indi-

vidual variable, and o an (L£? D)-assignment. Let y & Fu[p] U Fu[o[g]] be an in-
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dividual variable, and let 7 = dy | oy—y[p{¥/z}|$. Then 7 € Ds;. We show that
Plr] = Mt € D;.v[p, 04.—]. Let t € D;. Then, P[7][t] = Q*[7[t]] = Q*[oy.—y[p{¥/=}]{!/v}].

By Lemma Oymyle{¥/e}] = 0p=yl@]. By Lemma [0.5.11] 0p.—y[0{!/u} = ouimi[e].
Thus, Pr][t] = Q*[0ai[@]] = V[0, 0. =

9.6 Completeness for the Ordinary Semantics

In this section we use the complete semantics of quasi-structures to prove the complete-
ness of HIF? for the (ordinary) structures of Henkin-style second-order Godel logic. To
do so, we show that from every legal quasi-structure which is a counter-model of some
hypersequent H, it is possible to extract an (ordinary) structure, which is also not a

model of H, without losing comprehension.

Definition 9.6.1. Let D be a quasi-domain, and D’ a domain for £2, such that D; = Di.
Let 6 be a function from D to 2P+ \ {#}. A pair (o, 0’) of an (L2, D)-assignment and an
(L2 D')-assignment (respectively) is called a d-pair if (i) o[z] = o’[z] for every individual

variable; and (ii) o’[X] € d[o[X]] for every set variable.

Theorem 9.6.2. Let Q = (V, D, I, P,v) be alegal and comprehensive quasi-L?-structure.
Then there exists a comprehensive £2-structure W = (V, D', I’ P'), where D} = D; and
I' = I, and a function § : Dy — 2P\ {#}, such that Wp,o'] € v[p,0] for every

L2-formula ¢ and d-pair (o, 0’) (of an (L2, D)-assignment and an (L2, D')-assignment).

Proof. First, we define D.. For every D € Dy, denote by Fp the set of fuzzy subsets D’
of D; over V (i.e. D' :D; — V), such that D’[d] € P[D][d] for every d € D;. Note that
for every D € D;, Fp is non-empty, since P[D][d] is non-empty for every d € D;. Define
D; to be Upep, Fp- Next, I{ and P are defined as follows:

e For every set constant symbol C of L2, I'[C] is an arbitrary element in Fy ¢
£

e For every predicate symbol p of L2 P'[p] = P[pl*.

Let § : Dy — 2P+ \ {0} be defined by § = AD € D,.Fp. We prove that W and § satisfy
the requirement in the theorem: Wp,o'| € v]p, o] for every L>-formula ¢ and d-pair
(0,0"). Let V = (V,<). We use induction on the complexity of ¢. Note that since Q is
legal, it suffices to show that Wy, 0’| € vglp, o] for every d-pair (o, o’).

First, suppose that ¢p[¢] = 1, and let (o, 0”) be a §-pair of an (L2, D)-assignment and
an (L2, D')-assignment. Exactly one of the following holds:

e v = {p(ty,...,t,)} or ¢ = {L}. These cases are handled as in the proof of Theo-
rem [8.6.1]
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e o = {(teT)} for some first-order L£2-term ¢, and second-order L2-term T. By
definition, Wp, o'] = ¢'"'[T][¢’"[t]]. Clearly, we have ¢’ [t] = o![t]. In addition,
o'l'[T) € F,1iry (in case T is a variable, this holds since (o, 0") is a d-pair, and if T'
is a constant then it holds by definition). Therefore,

o' [T)[o" [t]) = o [Tl [t)] € Plo’[TN[o[t] = vole, o].

Next, suppose that cp[p] > 1, and that the claim holds for £2-formulas of lower com-
plexity. Let (o,0’) be a §-pair. Exactly one of the following holds:

e © = (p1oyy) for o € {A,V, D} and L2-formulas ¢; and ¢y such that cpp1] < cpl]
and cp|ps] < cpp]. This case is handled as in the proof of Theorem

o » = (Q'a1)) for some Q' € {V!, 3}, individual variable x of £2, and L2-formula
Y such that cp[t)] < cplp]. We continue with Q° = V' (the proof is similar for
3%). Clearly, for every d € D;, (04.—4,0%,._,;) is a §-pair. Thus by the induction
hypothesis, for every d € D;, W[, 0! _,] € v[t), 0,.—4). Hence,

no__ / . f . t o
Wip,o'] = ;ggiw[w,am;:d] € <;glpfiv [w,am::dhdgiv [, 00.=a]) = volep, o).

o p = (Q*X) for some Q* € {V', 3}, set variable X of £2, and L2-formula ¢ such
that ep[y)] < eplp]. We continue with Q° = V* (the proof is similar for 3°). In this

case, we should prove that:

. / . f . t
Dlzrelgg WW}7 UX::D’] S <D122£5 v [Qba O-XZ:D]v Dlélgs v [77Z)7 UX::D]>'

First, we show that infpep, v*[¢), ox.=p] < infprep, Wb, ox._ 1], by showing that
infpep, V[, 0x.2p] < W[, 0%._p] for every D' € D.. Let D' € D., and let
D be an arbitrary element in D, such that D' € Fp. Then (ox.—p,0._p)
is a 0-pair. By the induction hypothesis, vf[i),0x.-p] < W[, 0%._p]. Thus,
inf pep, v Y, ox.—p] < W, o'y._p/].

Next, we show that infpep W[, 0. /| < infpep, v*[1), ox.=p], by proving that
inf prepy W[, 0s._pi] < v*[), 0x.=p] for every D € D,. Let D € D,. Take some
D' € Fp. Then D' € D, and (0x.—p,0’._p) is a d-pair. By the induction hypoth-
esis, W[, o'v._p/] < v*[9),0x.=p]. Thus, infpep W[, 0'y._p| < v, 0x.=p].

Finally, we show that W is comprehensive. Let ¢ be an L£2-formula, x an indi-
vidual variable, and ¢’ an (L2 D')-assignment. We show that W[y, o', x] € D.. De-
fine an (L2 D)-assignment o as follows: (i) olx] = o'[x] for every individual vari-
able z; and (ii) for every set variable X, o[X] is an (arbitrary) element of Dy such
that o'[X] € F,x). Since Q is comprehensive, there exists some D € D, such that
P[D] = M € D;.v[p, 04.—q). We claim that W[y, o’,z] € Fp (and so, W]p, o', x] € D).
By definition, we should show that W]y, o', z|[d] € P[D][d] for every d € D;. Let
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d € D;. Obviously, (0,.—q4,0,._,) is a -pair, and thus by the claim proved above, we have
Wip, o', z][d] = W, 0,._4] € v, 0a:=a] = P[D][d]. O

Corollary 9.6.3. If gle H, then there exists a comprehensive £2-structure which is

not a model of H.

Proof. Suppose that b‘gmz H. Then, by Theorem , there exists a legal and com-
prehensive quasi-L2-structure @ = (V, D, P,v), which is not a model of H. This implies
that there exists an (£2, D)-assignment o, such that Q,0 [~ s for every s € H. Let
W= (V,D',P') be a comprehensive L2-structure and § a function, satisfying the re-
quirement in Theorem [0.6.2] Let ¢’ be an (L2, D')-assignment such that (o,0’) is a
d-pair (there exists such an assignment since the range of § does not include the empty
set). We show that W, o' |= H. Let s € H. Since Q, 0 [~ s, we have Qf[s, o] > QF[s, o].
The fact that W[y, o'] € v]p, o] for every ¢ entails that W¥[s, o’] > W*[s,0’], and so
W, o' £ s. O

Just like in the first-order case, we immediately obtain the following:
Corollary 9.6.4. For every L£2-formula ¢, if [F9%22 ¢ then Fgyp: {{t:¢}}.

Corollary 9.6.5. If an £2-hypersequent is provable in HIF?, then it is provable in HIF?
without applying (cut).

Remark 9.6.6. Note that cut-admissibility for HIF (the original system for first-order
Godel logic) is obtained as a corollary, for the reason that second-order quantifiers cannot

be involved in a cut-free proof of a first-order formula.



Chapter 10

Summary and Further Work

In this thesis, we studied Gentzen-type calculi from a semantic point of view. This study
encompassed several general abstract families of sequent calculi: pure calculi, canonical
calculi, quasi-canonical calculi, and basic calculi, as well as the family of canonical Godel
hypersequent calculi. For each of these families, a corresponding denotational semantic
framework was identified, based on certain (possibly non-deterministic) semantic struc-
tures: many-valued valuations for pure calculi (including canonical and quasi-canonical
ones); Kripke valuations for basic calculi; and Godel valuations for canonical Godel cal-
culi. It was shown that each calculus in these families induces a set of semantic structures
for which it is sound and complete. Moreover, we provided general, modular and uniform
methods to obtain such a set for a given calculus, of which many important soundness
and completeness theorems for known calculi are particular instances. In the case of
canonical calculi (both canonical sequent calculi, and canonical Godel hypersequent cal-
culi), the resulting semantics was proven to be effective, leading to a semantic decision
procedure for each such calculus. In addition, for each of the families of proof systems
mentioned above, we derived semantic characterizations of analyticity, cut-admissibility
and axiom-expansion. This provides a “semantic toolbox”, intended to complement the
usual proof-theoretic methods. Indeed, as was demonstrated in many examples, the
proofs (or refutations) of these properties based on the semantic characterizations is
straightforward in many cases, and less tedious and error-prone than the usual inductive
syntactic arguments.

Finally, we demonstrated these methods on HIF and HIF?, two hypersequent calculi
for first-order and second-order languages. Based on the ideas from the semantic analysis
of canonical Godel propositional calculi in Chapter [7], we showed that these calculi are
sound and (cut-free) complete for standard first-order Godel logic, and Henkin-style
second-order Godel logic (respectively). To the best of our knowledge, HIF? is the first

(cut-free) proof system introduced for Henkin-style second-order Godel logic.
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We believe that the semantic approach in the analysis of proof systems has demon-
strated its potential in this thesis, as a useful methodology, that may be applied whenever
a new Gentzen-type system (of one of the families mentioned above) is encountered. Ev-
idently, this methodology is still in its early stages of its development, and there are
various open questions, and possible promising extensions. The main directions for fur-

ther research include the following:

Substructural Calculi All sequent and hypersequent calculi studied in this thesis are
fully-structural, as they include (both internal and external, in the case of hyper-
sequent calculi) the exchange rules, weakening rules, contraction rules, and ex-
pansion rules (recall that we defined sequents and hypersequents as sets). How-
ever, many important logics have only substructural sequent systems (in particular,
contraction-free or weakening-free calculi), that cannot be treated in our frame-
work. Extending some of the results above for families of substructural systems
is an important future goal. This will require the development of new frameworks
of non-deterministic semantics. In particular, an interesting question arises as to
whether the semantic proof technique of cut-admissibility is applicable for sub-
structural calculi. Two particularly important cases are the (sub-structural) hy-
persequent systems for the fundamental propositional fuzzy logics — Lukasiewicz’s
logic, and product logic (see [76]). In addition, the current work deals only with
multiple-conclusion systems, while it can be useful to derive similar results for
single-conclusion ones. For two-sided canonical single-conclusion systems, this was
done in [14].

First-Order and Higher-Order Calculi All general families of sequent and hyperse-
quent calculi studied above handle only propositionallogics. Extending the methods
and results of this thesis to languages that include quantifiers is evidently an im-
portant future goal. We believe that such an extension should be possible. Indeed,
the original three-valued non-deterministic semantics for the (cut)-free fragment
of LK applies also to the first-order quantifiers [58], as well as the three-valued
non-deterministic semantics for its (id)-fragment [64]. Our results for HIF? in
Chapter [9] demonstrate that similar ideas can be applied in different higher-order
calculi. Note that families of canonical sequent calculi with first-order quantifiers
were studied in [18] 98].

Extending the Realm of PNmatrices In Chapters 4] and [5| the semantic framework
of finite PNmatrices has shown to be adequate for canonical sequent calculi and
quasi-canonical ones. Besides the fact that this framework provides intuitive seman-

tics, its main attractive property is its effectiveness. Thus every calculus that has
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a sound and complete PNmatrix is decidable. A natural question is whether this
semantic framework suffices for more than canonical and quasi-canonical calculi.
In particular, consider the following schemes:

= —lp A F'=p,A T'=s ¢ A

[0 = A L= A—p)= A
The first one is an example of a family of rules used in proof systems that combine

classical and paraconsistent negations [66], and the second is taken from [12] for
handling certain paraconsistent logics. Note that both schemes (for i > 1 in the
first one) cannot be presented as canonical or quasi-canonical rules, and thus our
semantic methods do not apply to them. Nevertheless, we believe that the ideas
in Chapter |5/ can be extended to handle also rules as the first one above, in which
more than one unary connective may precede the formulas in the premises and
the conclusion. For the second rule above, [12] suggests an infinite-valued non-
deterministic matrix, and it remains open whether other systems with rules of this
kind can be characterized by non-deterministic matrices, and in what cases this

infinite-valued semantics is effective.

General Canonical Hypersequent Calculi. In Chapter [7] we studied a family of

canonical hypersequent calculi that are based on the communication rule. It is
interesting to study canonical hypersequent calculi that employ other structural
hypersequential rules. For example, we believe that a similar methodology, using
Kripke semantics of directed frames, should work for canonical calculi based on the
hypersequent rule (Ig). This rule is used in systems for logics of weak excluded
middle [42]. Developing a general theory of structural hypersequential rules in

canonical hypersequent calculi is another interesting direction for a future work.

Different Proof-Theoretic Formalisms In this thesis we investigated sequent and

hypersequent systems. It is interesting to pursue similar investigations in other
proof-theoretic frameworks, that handle different families of non-classical logics.
This includes: semantic and prefixed tableaux systems [52], display calculi [33],
nested sequents calculi [53, 60, [36], labelled calculi as in [54) [77], and sequents of
relations [23].

Second-Order Godel Logic In [72], we proved that HIF (a calculus for first-order

Godel logic) enjoys cut-admissibility. In fact, for HIF we proved slightly stronger
properties than those shown in this paper for HIF2. Obtaining these stronger

results for HIF? seems to be straightforward. This includes:

e In [72] we considered also derivations from non-empty sets of hypersequents,



181

and proved strong cut-admaissibility.
e For applications, it is sometimes useful to enrich Godel logic with a globaliza-
tion connective (also known as Baaz Delta connective, see [22]). [72] studies

the extension of HIF with rules for this connective, and the same can be done
for HIF?.

In addition, the following extensions of the current result are left for a future work:

e [t is interesting to consider equality, both between first-order terms and second-
order ones. In this case, rules for extensionality should be added.

e Extending the calculus for richer second order signatures and also for full type
theory seem to be possible. In the case of classical logic, cut-free completeness
for the extended system was proved shortly after Tait’s proof for the second-
order one by Takahashi and Prawitz, [88, [82]. This extension is necessary in
order to obtain a proof system for (the Godel fragment) of fuzzy set theory
(see [37]).
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