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Abstract

Gentzen-type sequent calculi and their natural extensions (such as many-sided sequent

and hypersequent calculi) provide suitable proof-theoretic frameworks for a huge variety

of logics, starting from classical logic and intuitionistic logic, and including modal logics,

substructural logics, many-valued logics, fuzzy logics, and paraconsistent logics. In many

important cases they suggest an “algorithmic presentation” of a logic, which is particu-

larly useful in practical applications of it, as well as for studying its properties. Thus in

the last decades Gentzen-type calculi frequently arise for handling and introducing new

non-classical logics. Each such calculus requires a soundness and completeness theorem

with respect to its corresponding logic, and its proof-theoretic properties should be veri-

fied. Traditionally, this is done each time from scratch. In many cases the fundamental

theorem of cut-elimination is proved. This implies the redundancy of the well-known cut

rule, something which usually ensures the usefulness of the calculus. Another desirable

property of Gentzen calculi is analyticity, namely the fact that proofs may consist only

of syntactic material contained in the sequent to be proved. Often it is an immediate

corollary of cut-elimination, but in various cases cut-elimination fails, and the calculus

can still be shown to be analytic. This calls for an investigation of Gentzen-type calculi

as mathematical objects in their own right.

This thesis aims at such a systematic general investigation of a wide variety of sequent

and hypersequent calculi for many logics of different natures. Our main contribution is

a semantic analysis of several general families of propositional Gentzen-type sequent and

hypersequent calculi, that consists of the following:

1. We provide a uniform (possibly non-deterministic) semantic characterization for

each calculus in the families we study. This has the form of general and modular

soundness and completeness results that establish strong connections between the

syntactic ingredients of a given Gentzen calculus and semantic restrictions on the

corresponding set of models. The semantics provides a complementary view on

Gentzen calculi, and, as we show, for certain general families of calculi it is also

effective, naturally inducing a semantic decision procedure for the corresponding

calculi.

2. We apply this semantic presentation (refining and extending it, when needed) for

investigating crucial proof-theoretic properties of the calculi we study. This includes

general notions of cut-admissibility, analyticity, and axiom-expansion. Indeed, an
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illuminating contribution of a semantic study of proof systems is the ability to

provide semantic proofs (or refutations) of syntactic properties. Even when a tra-

ditional syntactic proof exists, in many cases the semantic proofs are much simpler

and easier to check. Thus we characterize these properties from a semantic point

of view, providing general tools that can be applied in semantic proofs of these

properties. In some of the families we study, this naturally leads to simple and

decidable exact criteria for important proof-theoretic properties.

In addition, to demonstrate the applicability of our ideas and methods beyond the

propositional level, we consider two particular hypersequent calculi for first-order and

second-order Gödel logic. By extending the semantic analysis of propositional hyperse-

quent calculi, we prove that these two calculi are indeed sound and complete for first-order

and second-order Gödel logic (respectively), and that they enjoy cut-admissibility. In the

case of the calculus for first-order Gödel logic this provides a semantic alternative account

for a known result (proven syntactically in other works). In contrast, to the best of our

knowledge cut-elimination was not proved before for the calculus for second-order Gödel

logic.



Contents

1 Introduction 1

2 Pure Sequent Calculi 10

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Pure Calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Proof-Theoretic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Analyticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Cut-Admissibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.3 Axiom-Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Semantics for Pure Sequent Calculi 24

3.1 The Semantic Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Partial Valuations and Semantic Analyticity . . . . . . . . . . . . 27

3.2 Semantics for Pure Sequent Calculi . . . . . . . . . . . . . . . . . . . . . 29

3.3 Characterization of Proof-Theoretic Properties . . . . . . . . . . . . . . . 36

3.3.1 Strong Analyticity . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.2 Strong Cut-Admissibility . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.3 Axiom-Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Soundness and Completeness Proofs . . . . . . . . . . . . . . . . . . . . . 43

4 Canonical Calculi 47

4.1 Canonical Calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Partial Non-deterministic Matrices . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 PNmatrices for Canonical Calculi . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Characterization of Proof-Theoretic Properties . . . . . . . . . . . . . . . 60

5 Quasi-canonical Calculi 64

5.1 Quasi-canonical Calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 From Quasi-canonical to Canonical Calculi . . . . . . . . . . . . . . . . . 66

iv



CONTENTS v

6 Non-pure Sequent Calculi 72

6.1 Basic Calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1.1 Proof-Theoretic Properties . . . . . . . . . . . . . . . . . . . . . . 78

6.2 Kripke-style Semantics for Basic Calculi . . . . . . . . . . . . . . . . . . 80

6.2.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3 Characterization of Proof-Theoretic Properties . . . . . . . . . . . . . . . 93

6.4 Soundness and Completeness Proofs . . . . . . . . . . . . . . . . . . . . . 100
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Chapter 1

Introduction

Ever since the introduction of sequent calculi for classical and intuitionistic logic by

Gentzen [56], sequent calculi have been widely applied in the fields of proof theory, math-

ematical logic, and automated deduction. These systems and their natural extensions

(such as many-sided sequent and hypersequent calculi) provide suitable proof-theoretic

frameworks for a huge variety of non-classical logics, including modal logics [96], substruc-

tural logics [55], many-valued logics [61], fuzzy logics [76], and paraconsistent logics [13].

In many important cases they suggest an “algorithmic presentation” of a logic, which is

particularly useful in practical applications of it, as well as for studying its properties,

such as decidability (for propositional logics), consistency, interpolation, the Herbrand

theorem (for first-order logics) and others. Thus in the last decades Gentzen-type calculi

frequently arise for handling and introducing new non-classical logics. Each such calculus

requires a soundness and completeness theorem with respect to its corresponding logic,

and its proof-theoretic properties should be verified. Traditionally, this is done each time

from scratch. In many cases the fundamental theorem of cut-elimination is proved. This

implies the redundancy of the well-known cut rule, something which usually ensures the

usefulness of the calculus. Another desirable property of Gentzen calculi is analyticity,

namely the fact that proofs may consist only of syntactic material contained in the se-

quent to be proved. Often it is an immediate corollary of cut-elimination, but in various

cases cut-elimination fails, and the calculus can still be shown to be analytic.

This thesis aims at a systematic investigation of Gentzen-type systems as mathemat-

ical objects in their own right. We study a wide variety of sequent and hypersequent

calculi for many logics of different natures. Our main contribution is a semantic anal-

ysis of several general families of propositional Gentzen-type sequent and hypersequent

calculi, that, generally speaking, consists of the following:

1. We provide a uniform and general semantic characterization for each system in the

1



2 Chapter 1. Introduction

families we study. Thus each calculus G corresponds to a certain set of semantic

structures VG; and the consequence relation induced by VG (using an appropriate

notion of when a semantic structure in VG is a model of a given sequent or hyper-

sequent) is shown to be identical to `G, the provability relation of G. For each

family of calculi, we present a general uniform method for extracting the set VG for

a given system G in this family. In many important cases the soundness and com-

pleteness of some known Gentzen-type system with respect to its usual semantics is

then obtained as a particular instance of the proposed general method. The seman-

tics provides a complementary view on Gentzen systems. In addition, we identify

certain families of systems for which the obtained semantics is also effective, i.e.

it naturally induces a semantic decision procedure for the calculi in that family.

Thus we derive new general decidability results for large families of propositional

Gentzen-type systems.

2. We apply this semantic presentation of calculi (and extend and refine it, when

needed) for investigating crucial proof-theoretic properties of the systems we study.

This includes general notions of cut-admissibility, analyticity, and axiom-expansion.

Indeed, an illuminating contribution of a semantic study of proof systems is the

ability to provide semantic proofs (or refutations) of syntactic properties. Even

when a traditional syntactic proof exists, in many cases the semantic proofs are

much simpler and easier to check. Thus we characterize these properties from a

semantic point of view, providing general tools that can be applied in semantic

proofs of these properties. In some of the families we study, these characterizations

naturally lead to simple and decidable exact criteria for the aforementioned proof-

theoretic properties.

Our investigation is carried out in the following five families of propositional fully-

structural Gentzen-type systems (i.e., systems that include all the usual structural rules:

exchange, contraction, and weakening):

Pure Sequent Calculi. These are sequent calculi, whose derivation rules do not enforce

any limitation on the context formulas. In addition to usual two-sided sequent

calculi, we include here also calculi that employ one-sided sequents or many-sided

ones. This family of calculi provides a suitable proof-theoretic framework for several

important propositional logics, including classical logic, many well-studied many-

valued logics, and various paraconsistent logics. In the definition of this family, we

do not assume any predefined set of cut rules or identity axioms, and thus handle

any possible combination of these rules.
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Canonical Calculi. This is a subfamily of pure sequent calculi, in which each logical

rule introduces exactly one logical connective, where all formulas in the premises

of a rule are immediate subformulas of the formula introduced in its conclusion.

Such “well-behaved” logical rules (called: canonical rules), have a philosophical

motivation: they naturally serve a guiding principle in the philosophy of logic, due

to Gentzen [56], according to which the meanings of the connectives are determined

by their derivation rules. Like in the more general case of pure sequent calculi,

we again include here many-sided sequent systems with arbitrary combinations of

cut rules and identity axioms. Since this family of calculi is a subfamily of pure

sequent calculi, all results concerning the semantics of pure sequent calculi and

the semantic characterizations of their proof-theoretic properties can be applied for

canonical calculi as well. However, we show that for this more restricted family

of calculi we are always able to obtain simple and effective semantics, as well as

decidable characterizations of their proof-theoretic properties.

Quasi-canonical Calculi. This is another subfamily of pure sequent calculi, that ex-

tends the family of canonical calculi. Here we allow also logical rules in which

unary connectives precede the connective to be introduced in conclusions of logi-

cal rules (allowing, e.g., the introduction of a formula of the form ¬(ϕ1 ∧ ϕ2)), as

well as the formulas in the premises. Calculi of this family are particularly useful

for many-valued logics (e.g. for the relevance logic of first degree entailment [1])

and paraconsistent logics (see, e.g., [13]). Our investigation of these calculi is not

direct: instead of studying the semantics of quasi-canonical calculi, we show how

to translate each quasi-canonical calculus to a canonical equivalent one, and then

exploit the results concerning canonical calculi.

Basic Calculi. These are multiple-conclusion two-sided sequent calculi whose derivation

rules may allow certain restrictions and manipulations on the context formulas (and

for that reason they are not pure sequent calculi). Various sequent calculi that seem

to have completely different natures belong to this family. Thus it includes all

standard sequent calculi for modal logics, as well as the usual multiple-conclusion

systems for intuitionistic logic, its dual, and bi-intuitionistic logic.

Canonical Hypersequent Calculi. We import the ideas behind canonical sequent cal-

culi to hypersequent calculi, and define a general structure of a canonical hyper-

sequential logical rule. Here there are many options concerning the additional

hypersequential structural rules. To demonstrate our methods, we choose to study

single-conclusion canonical hypersequent calculi that are based on the communica-

tion rule. The prototype example here is the hypersequent calculus for propositional
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Gödel logic (see [22]), and thus, we call the calculi of this family canonical Gödel

hypersequent calculi. In particular, it is possible to introduce in these calculi new

non-deterministic connectives and add them to Gödel logic. Note that hypersequent

calculi are now the main proof-theoretic framework for fuzzy logics [76], but Gödel

logic is the only fundamental fuzzy logic that has a fully-structural hypersequent

calculus (and thus falls in the scope of this work).

While the aforementioned families of calculi are all propositional, the ideas and meth-

ods for them are applicable for first-order and higher-order calculi as well. We demon-

strate this in two specific calculi: the hypersequent calculus HIF for standard first-order

Gödel logic [30], and its extension, that we call HIF2, for Henkin-style second-order

Gödel logic. In particular, by extending the semantic methods developed for the family

of (propositional) canonical Gödel hypersequent calculi, we are able to prove that the

cut rule is admissible in HIF and HIF2. In the case of HIF this provides a semantic

alternative account for the fact that HIF admits cut-elimination (proven syntactically

in [30, 22]). In contrast, to the best of our knowledge cut-elimination was not proved for

HIF2 before.

A crucial feature of a systematic procedure relating proof systems and semantics

should be its modularity – the correspondence between semantics and proof systems

should be based on local equivalences between semantic ingredients (requirements from

the semantic structures) and their syntactic counterparts (derivation rules). Such a

correspondence can allow, e.g., to predict the semantic impact of employing the same

rule in different proof systems, or to provide an appropriate rule for a given semantic

condition added to different logics. In particular, all semantic characterizations of cut-

admissibility in each of the families of calculi listed above are based on identifying the

semantic impact of the cut rule(s), and comparing the semantics of the calculi with and

without the cut rule(s). These tasks are of course impossible when the proof system

and its semantics are considered as a whole, and there is no possibility to separate

between the different semantic effects of each particular rule. The major key to have

this modularity, as well to provide semantics to every calculus in the families that we

study, is the use of non-deterministic semantics. Thus, following [17, 21], we relax the

principle of truth-functionality, and allow cases in which the truth value of a compound

formula is not uniquely determined by the truth values of its subformulas. By allowing

non truth-functional semantic structures, we are able to separately analyze the semantic

effect of each component of the syntactic machinery (each derivation rule, and in fact

also each ingredient of a rule). The full semantics of the calculus is then obtained by

joining the semantic effects of all of its components. For this matter, we develop several

frameworks of non-deterministic semantics:
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Many-Valued Systems. These provide a semantic framework for specifying sets of

valuations – functions assigning truth values to formulas of a given propositional

language. Each many-valued system includes a set of semantic conditions, that can

be easily read off the derivation rules of a pure sequent calculi, and used to restrict

its corresponding set of valuations (e.g. “If ϕ1 has some truth value u1, and ¬ϕ1

has some truth value u2, then ¬(ϕ1 ∧ ϕ1) should have the truth value u3”). This

framework generalizes the “bivaluation semantics” [34, 40], many-valued matrices

[93, 61], and non-deterministic many-valued matrices [17, 21], and is used here to

provide semantics for pure sequent calculi.

Partial Non-deterministic Matrices. These form a special case of many-valued sys-

tems that serve as a simpler semantic framework for canonical and quasi-canonical

calculi. Thus in partial non-deterministic matrices, the semantic conditions for

specifying restrictions on valuation functions can be arranged in generalized truth

tables. Usual logical matrices are particular instances, while non-determinism is in-

troduced as done in non-deterministic matrices (see [17, 21]), by possibly allowing

several options in some entries of the truth tables (thus the value of �(p1, ... , pn)

is restricted, but not uniquely determined, by the values of p1, ... , pn). However,

to handle arbitrary canonical and quasi-canonical calculi we had to slightly extend

the framework of non-deterministic matrices by allowing also the option of having

an empty set of options in the entries of the truth tables (which intuitively mean

that certain combinations of truth values are disallowed).

Non-deterministic Kripke Valuations. For basic sequent systems, we introduce a

generalization of Kripke-style semantics for modal and intuitionistic logic, that we

call Kripke valuations. As Kripke models, these semantic structures employ a set of

possible worlds and accessibility relations, and certain conditions connect the truth

value assigned to a formula in each world w with values assigned to other formulas

in the worlds accessible from w.

We show that Kripke valuations that are based on three or four truth values can

be used in semantic characterizaions of basic sequent systems with restricted cut

rule and/or identity axiom (as needed e.g for characterizing cut-admissibility).

Non-deterministic Gödel Valuations. For canonical Gödel hypersequent calculi, we

introduce Gödel valuations. These consist of some linearly ordered set of truth

values, and a function assigning a pair of truth values from this set to each formula

of a given propositional language. Intuitively, the first element in the pair of truth

values assigned to some formula ϕ is used for occurrences of ϕ on the left sides
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of sequents, while the second element in the pair is used for occurrences of ϕ

on the right sides. We show that the cut rule and the identity axiom “connect”

these two elements: if they are both available for some formula ϕ, then the two

elements in the pair of truth values of ϕ must be equal. In addition, the two

values assigned to each compound formula of the form �(ϕ1, ... , ϕn) must lie within

certain intervals whose edges are computed from the values assigned to ϕ1, ... , ϕn.

The usual algebraic semantics of Gödel logic is a particular instance, in which all

of these pairs and intervals are degenerate, and thus the value of �(ϕ1, ... , ϕn) is

uniquely determined by the values of ϕ1, ... , ϕn. In turn, we provide a general

construction of the functions for computing these intervals for �-formulas given

some (canonical) rules for introducing each connective �.

Outline

The structure of this thesis is as follows. Chapter 2 is devoted to precise definitions of pure

sequent calculi and their proof-theoretic properties, as well as some basic consequences of

these properties. Chapter 3 introduces the semantic framework of many-valued systems,

and provides a method to obtain a many-valued system for any given pure sequent

calculus. Based on this semantics, in Section 3.3 we present necessary and sufficient

semantic conditions for analyticity, cut-admissibility and axiom-expansion in pure calculi.

Chapter 4 discusses canonical sequent calculi which are defined as pure sequent calculi

with additional restrictions on the structure of the logical introduction rules. In turn, in

Section 4.2 we present the corresponding (effective) semantic framework of partial non-

deterministic matrices, as a special restricted instance of many-valued systems. Based on

the results of Chapter 3, we then show that canonical sequent calculi can be character-

ized by partial non-deterministic matrices, and that the aforementioned proof-theoretic

properties can be easily checked using this alternative semantic presentation.

In Chapter 5 we introduce quasi-canonical sequent calculi, and show that each such

calculus can be translated into an equivalent canonical one. In certain important cases,

this translation may be used to obtain a characteristic partial non-deterministic matrix

for a given quasi-canonical calculus.

In Chapter 6 we go beyond the scope of pure sequent calculi by introducing basic

sequent calculi, in which derivation rules may include limitations on the context formulas

used in their applications. Then we show that each basic calculus induces a set of

generalized Kripke valuations for which it is strongly sound and complete. In Section 6.3

we derive characterization of proof-theoretic properties of basic calculi based on this

Kripke semantics. Their nature is similar to the corresponding characterizations from

Section 3.3. We demonstrate their applicability in various examples, including sequent
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calculi for modal logics and a sequent calculus for bi-intuitionistic logic.

In Chapter 7 we define and study hypersequent Gödel calculi from a similar angle.

The semantics in this chapter is based on Gödel valuations, that generalize the usual

many-valued semantics of propositional Gödel logic.

Chapters 8 and 9 are of a completely different nature, as each of them is devoted to one

particular calculus for one particular logic. Chapter 8 discusses the hypersequent calculus

HIF for first-order Gödel logic, and provides a semantic proof for cut-admissibility in

this calculus. Chapter 9 introduces an extension of HIF with usual rules for second-

order quantifiers, called HIF2. We show that HIF2 is sound and complete for second-

order Gödel logic, and that it enjoys cut-admissibility. Note that the fact that HIF

enjoys cut-admissibility actually follows from the fact that HIF2 does. Nevertheless, as

a preparation and for the convenience of the reader, we provide first a full account for

HIF, that is relatively easier to follow than the one for HIF2.

Finally, in Chapter 10 we conclude with a discussion of some directions for further

research.

Some Related Works

Usually, the study of Gentzen-type systems is tailored to a specific logic or family of

logics. Several notable exceptions include the following:

• [34] studies a general family of sequent systems, and shows that (possibly non-truth

functional) bivaluation semantics can be read off the sequent rules for any given

system in this family. This work is close to what we do in Chapter 3. However, the

sequent systems studied in [34] are just a particular subset of the pure sequent cal-

culi that we study here, as they all employ the usual cut rules and identity axioms.

In addition, [34] does not study at all the effectiveness of this semantic framework,

as well as semantic characterizations of syntactic properties of the studied calculi.

Therefore besides a new look on the sequent calculus, the semantics proposed in

[34] does not seem to have much practical or proof-theoretic applications.

• The introduction and first semantic investigation of canonical sequent calculi were

done in [17]. That work considered only two-sided sequent calculi with arbitrary

canonical rules and the usual cut rule and identity axiom. It was shown that each

such calculus can be characterized by a non-deterministic matrix (Nmatrix). That

Nmatrix can in turn be used to check whether the calculus is analytic and whether

it enjoys cut-admissibility. Later, in [19] that work was extended to many-sided

canonical sequent calculi (see also [21]). Our study of canonical calculi in Chapter 4

considers more general family of systems, with arbitrary set of “primitive rules”
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(these include the cut rules and the identity axioms). In fact, the main results

for previously studied canonical calculi (as the characterization of analyticity and

cut-admissibility) can be easily obtained from the more general theorems given in

Chapter 4.

• [26] studies from a semantic point of view another general family of sequent sys-

tems, which is a proper subfamily of our canonical sequent calculi. The semantic

framework employed there is truth-functional (based on usual logical many-valued

matrices), and thus many sequent calculi cannot be semantically characterized in

this framework. By allowing non-deterministic semantics we are able to cover much

more general family of calculi, and it can be shown that for the calculi studied in

[26] we practically obtain the same (deterministic) semantics.

• A variety of works studies the connection between syntax and semantics in sequent

and hypersequent substructural calculi, with a focus on developing semantic and

algebraic conditions for cut-admissibility in such systems (e.g. [44],[32],[91]). In

this thesis we only consider fully structural Gentzen-type calculi, but nevertheless,

some (obviously, not all) of the calculi in the families that we study fall in the scope

of these works, and their semantic criteria for cut-admissibility are applicable in

these cases. However, the semantic frameworks used in these works (particularly,

phase semantics) is significantly more abstract and complex than the semantic

frameworks that we employ.

At this point it should be noted that the idea of using non-deterministic semantics

for proving cut-admissibility of a sequent system has a very long history. Indeed, in

the quest to verify Takeuti’s conjecture [89] (that was open for several years) regarding

cut-admissibility in the calculus for second-order classical logic,1 Schütte developed a

three-valued non-deterministic semantics for the cut-free fragment of this calculus [85].

This provided a semantic equivalent to Takeuti’s conjecture, that was verified by Tait a

few years later [87], when it was shown that it is possible to extract a usual (two-valued)

counter-model from every three-valued non-deterministic Schütte’s counter-model. As a

simple consequence, one obtains that if there is no cut-free proof of a certain sequent,

then there is no proof at all (see also [58]). Basically, our semantic characterizations of

cut-admissibility, as well as the cut-admissibility proofs in Chapters 7 to 9, are based on

a similar (generalized) approach.

1More precisely, Takeuti’s conjecture concerned full type-theory, namely, the completeness of the
cut-free sequent calculus that includes rules for quantifiers of any finite arity. However, the proof for
second-order fragment was the main breakthrough. Note that the usual syntactic arguments to prove
cut-elimination dramatically fail when it comes to higher-order logic.
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Finally, besides the aforementioned works on canonical calculi, we are not aware of

any works aiming to study analyticity of general Gentzen-type systems, regardless of

cut-admissibility. In many cases our criteria of analyticity turn out to be much simpler

than those of cut-admissibility.

Publications Related to this Dissertation

Most of the contributions described in this thesis have first appeared in other publications.

They are roughly divided as follows:

• Chapters 4-5: [68], [70], [28], [29].

• Chapter 6: [15], [73].

• Chapter 7: [71], [69].

• Chapter 8: [16], [72].

The material in Chapters 2,3 and 9 was not published before.

More details about the connections between these publications and this thesis will be

given in the beginning of each chapter.



Chapter 2

Pure Sequent Calculi

In this chapter we introduce the family of pure sequent calculi. These will be the object of

a semantic investigation in the next chapter. Roughly speaking, pure sequent calculi are

propositional fully-structural sequent calculi (sequent calculi that include all the usual

structural rules: exchange, contraction, and weakening), whose derivation rules do not

enforce any limitation on the side formulas (following [5], the adjective pure stands for

this requirement). This family of calculi provides a suitable proof-theoretic framework for

several important propositional logics, including classical logic, important many-valued

logics, and various paraconsistent logics. Our scope is broader than what is usually

considered as a sequent system:

• We consider many-sided sequents, rather than just ordinary two-sided ones. This

allows us to naturally capture a large family of many-valued logics (see, e.g., [67]).

• We do not presuppose that all systems include identity axioms or cut rules of a

given form. This will play a major role in the semantic characterizations of proof-

theoretic properties of these systems (e.g., we will be able to compare the semantics

of a given system with cut, and the semantics of the same system without cut).

This chapter is organized as follows. We start by defining the notion of a propositional

logic in Section 2.1. Then, we precisely formulate the framework of pure sequent calculi,

and the logics they induce (Section 2.2). In Section 2.3 we introduce some fundamental

proof-theoretic properties of pure sequent calculi that we will study later from a semantic

perspective.

Publications Related to this Chapter

The material in this chapter was not published before.

10
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2.1 Preliminaries

Definition 2.1.1. A propositional language L consists of a countably infinite set of

variables atL = {p1, p2, ...} (whose elements are called atomic formulas), and a finite set

♦L of propositional connectives. Each � ∈ ♦L has a fixed finite arity ar(�) ≥ 0. The set

of all n-ary connectives of L (for n ≥ 0) is denoted by ♦nL.

Note that propositional constants are considered as nullary connectives.

Notation 2.1.2. We shall specify proportional languages by a set of connectives, and

indicate their arities in superscripts. For example, {¬1,∧2} denotes a language with two

connectives: a unary one denoted by ¬, and a binary one denoted by ∧.

Given a propositional language L, L-formulas are constructed as usual. We usually

use ϕ, ψ as metavariables for L-formulas, Γ,∆ for finite sets of L-formulas, and T ,F , C for

(possibly infinite) sets of L-formulas. Henceforth, L stands for an arbitrary propositional

language. We shall usually identify the set of L-formulas with L itself, e.g. when writing

“ϕ ∈ L” instead of “ϕ is an L-formula”.

Definition 2.1.3. An L-substitution is a function σ : atL → L. It is recursively extended

to L, by σ(�(ϕ1, ... , ϕar(�))) = �(σ(ϕ1), ... , σ(ϕar(�))) for every � ∈ ♦L.

We follow [21] in taking the following definitions of Tarskian consequence relations

and Tarskian propositional logics:

Definition 2.1.4. A relation 
 between sets of L-formulas and L-formulas is:1

Reflexive: if T 
 ϕ whenever ϕ ∈ T .

Monotone: if T ′ 
 ϕ whenever T 
 ϕ and T ⊆ T ′.
Transitive: if T , T ′ 
 ϕ whenever T 
 ψ and T ′, ψ 
 ϕ.

Structural: if σ(T ) 
 σ(ϕ) for every L-substitution σ whenever T 
 ϕ.

Definition 2.1.5. A relation between sets of L-formulas and L-formulas which is re-

flexive, monotone and transitive is called a Tarskian consequence relation (tcr) for L. A

(Tarskian propositional) logic is a pair 〈L,
〉, where L is a propositional language, and


 is a structural tcr for L.

Definition 2.1.6. A logic 〈L,
〉 is finitary if Γ 
 ϕ for some finite Γ ⊆ T whenever

T 
 ϕ.

The most important (and popular) propositional logic is of-course classical logic. Its

language is {¬1,∧2,∨2,⊃2}, and it is denoted below by Lcl. The well-known tcr of

classical logic will be denoted by 
cl (see Example 2.2.20).

1We use the symbol 
 to relate sets of formulas and formulas. The usual symbol ` will be used to
denote derivability of a sequent from a set of sequents.
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2.2 Pure Calculi

Usual sequent systems are two-sided, and sequents are often written as expressions of the

forms ϕ1, ... , ϕn ⇒ ψ1, ... , ψm. Dealing with many sided-sequents, we find it convenient

to use a (finite) set of labels, for specifying the position(s) inside the sequent in which a

certain formula occurs. Thus, in what follows £ denotes a finite non-empty set of labels.

We usually use x as a metavariable for a label in £, and X for sets of such labels. Sequents

are defined as follows:

Definition 2.2.1. An £-labelled L-formula is an ordered pair 〈x, ϕ〉, denoted by x:ϕ,

where x ∈ £ and ϕ ∈ L. An 〈L,£〉-sequent is a finite set of £-labelled L-formulas.

We usually use α, β as metavariables for labelled formulas, and s, c for sequents.

Substitutions are extended to labelled formulas, sequents, sets of sequents, etc. in the

obvious way. In particular, σ(∅) = ∅.

Notation 2.2.2. For X ⊆ £ and ϕ ∈ L, the expression (X:ϕ) denotes the sequent

{x:ϕ | x ∈ X}.

Notation 2.2.3. Usual two-sided sequents can be seen as 〈L,£2〉-sequents, where £2

denotes the set of labels {f, t}. The labels f, t denote the “left side” and the “right

side” respectively. The more usual notation ϕ1, ... , ϕn ⇒ ψ1, ... , ψm is interpreted as

{f:ϕ1, ... , f:ϕn, t:ψ1, ... , t:ψm}.

The use of f and t at this point is just a matter of tradition, as the labels should

not be confused with truth values! Only in certain specific (important) cases, the truth

values employed in the semantic characterization presented in Chapter 3 have one-to-one

correspondence with the set £ of labels.

Remark 2.2.4. For our purposes, we find it most convenient to define sequents using

sets. In particular, the 〈L,£2〉-sequents {f:p1, t:p2}, {t:p2, f:p1}, {f:p1, f:p1, t:p2} are

all the same object. This immediately entails that the exchange rule, the contraction

rule and the expansion rule (the converse of contraction) are all built-in in all sequent

calculi that we study. To have a fully-structural system, we should only further require

the presence of the weakening rules (one weakening rule for each label, as defined below).

Next, we define the form of derivation rules that are allowed in pure sequent systems.

Definition 2.2.5. A pure 〈L,£〉-rule is a pair of the form S/s, where S is a finite set

of 〈L,£〉-sequents, and s is a single 〈L,£〉-sequent. The elements of S are called the

premises of the rule, and s is called the conclusion of the rule. To improve readability, we
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usually drop the set braces of the set of premises. An application of a pure 〈L,£〉-rule

s1, ... , sn/s is any inference step of the following form:

σ(s1) ∪ c1 ... σ(sn) ∪ cn
σ(s) ∪ c1 ∪ ... ∪ cn

where σ is an L-substitution, and ci is an 〈L,£〉-sequent for every 1 ≤ i ≤ n. The

sequents σ(s1) ∪ c1, ... , σ(sn) ∪ cn are called the premises of the application, while the

sequent σ(s) ∪ c1 ∪ ... ∪ cn is called the conclusion of the application. In addition, the

sequents c1, ... , cn are called the context sequents (of the application).

Note that the propositional variables of the “object language” L are also employed

in the formulation of the rules. In particular, meta-variables (which are usually used

to represent derivation rules by schemes) are not used. Roughly speaking, applications

of some rule are obtained by applying a substitution on the premises s1, ... , sn and the

conclusion s of the rule, and freely adding context formulas.

Example 2.2.6. Suppose that L contains the binary “implication” connective ⊃. The

following pure 〈L,£2〉-rules are usually used for introducing this connective:

{t:p1}, {f:p2}/{f:p1 ⊃ p2} and {f:p1, t:p2}/{t:p1 ⊃ p2}.
Their applications have (respectively) the forms:

{t:ϕ1} ∪ c1 {f:ϕ2} ∪ c2

{f:ϕ1 ⊃ ϕ2} ∪ c1 ∪ c2

and
{f:ϕ1, t:ϕ2} ∪ c
{t:ϕ1 ⊃ ϕ2} ∪ c

In [62], a different implication connective is used, whose introduction rules can be easily

formulated as pure rules. The f-rule (whose conclusion is {f:p1 ⊃ p2}) is the same rule

as above, but the t-rule has the form: {t:p2}/{t:p1 ⊃ p2}. Its applications have the form:

{t:ϕ2} ∪ c
{t:ϕ1 ⊃ ϕ2} ∪ c

Example 2.2.7. Suppose that L contains the binary “implication” connective ⊃, and

let £3 = {f, i, t}. The following pure 〈L,£3〉-rules are used for introducing ⊃ in the

calculus for three-valued  Lukasiewicz’s logic presented in [97]:

{t:p1}, {f:p2}/{f:p1 ⊃ p2}
({i, t}:p1), {i:p1, i:p2}, {t:p1, f:p2}/{i:p1 ⊃ p2}

({f, i}:p1) ∪ {t:p2}, {f:p1} ∪ ({i, t}:p2)/{t:p1 ⊃ p2}

Example 2.2.8. The following rule scheme appears in a sequent system from [12] for da

Costa’s paraconsistent logic C1:

Γ⇒ ϕ,∆ Γ⇒ ¬ϕ,∆
Γ,¬(ϕ ∧ ¬ϕ)⇒ ∆
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This rule scheme can be formulated as the following pure 〈L,£2〉-rule (where ¬ ∈ ♦1
L

and ∧ ∈ ♦2
L):

{t:p1}, {t:¬p1}/{f:¬(p1 ∧ ¬p1)}.

Convention 2.2.9. Obviously the names of the variables in pure 〈L,£〉-rules are imma-

terial (e.g., {t:p2}/{t:p1 ⊃ p2} is completely equivalent to {t:p3}/{t:p5 ⊃ p3}). To avoid

further technical complications, we assume that a unique representative is chosen from

every equivalence class of rules in some reasonable way, and only these representatives

are considered as pure 〈L,£〉-rules. For example, when only one variable is involved in

a rule (as in Example 2.2.8), we may suppose that this variable is p1.

A special family of pure rules is the family of primitive rules. These rules are used

to perform simple manipulations on the labels, and they do not mention any specific

connective of the language L. Formally they are defined as follows:

Notation 2.2.10. Given an £-labelled L-formula α, we denote by frm[α] the L-formula

appearing in α. frm is extended to sets of £-labelled L-formulas, sets of sets of £-labelled

L-formulas, etc. in the obvious way.

Definition 2.2.11. A primitive £-rule is any pure 〈L,£〉-sequent rule S/s such that

frm[S ∪ {s}] = {p1}.

By definition, all primitive £-rules have the form (X1:p1), ... , (Xn:p1)/(X:p1) for some

X1, ... , Xn, X ⊆ £. An application of the primitive £-rule (X1:p1), ... , (Xn:p1)/(X:p1) is any

inference steps of the following form:

(X1:ϕ) ∪ c1 ... (Xn:ϕ) ∪ cn
(X:ϕ) ∪ c1 ∪ ... ∪ cn

where ϕ is an L-formula, and ci is a 〈L,£〉-sequent for every 1 ≤ i ≤ n.

Example 2.2.12. Let £ = {f, i, t}, and consider the primitive £-rule

{f:p1}, {i:p1}/({i, t}:p1).

This rule allows to infer ({i, t}:ϕ) ∪ c1 ∪ c2 from {f:ϕ} ∪ c1 and {i:ϕ} ∪ c2 for every two

〈L,£〉-sequents c1, c2 and L-formula ϕ.

The following primitive rules are usually present in Gentzen-type systems:

Weakening Rules For each x ∈ £, the weakening rule (x:weak) is the primitive £-rule

{∅}/{x:p1}. Its applications have the form:

c

{x:ϕ} ∪ c
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Cut Rules These are primitive £-rules of the form (X1:p1), ... , (Xn:p1)/∅ for non-empty

X1, ... , Xn. An application of a cut rule of this form has the form:

(X1:ϕ) ∪ c1 ... (Xn:ϕ) ∪ cn
c1 ∪ ... ∪ cn

ϕ is called the cut-formula of the application. Two-sided sequent systems usually

employ {f:p1}, {t:p1}/∅ as the only cut rule. We denote this rule by (cut).

Identity Axioms These are primitive £-rules of the form ∅/(X:p1) for non-empty X. An

application of an identity axiom of this form has the form:

(X:ϕ)

ϕ is called the id-formula of the application. Note that applications of identity

axioms do not include context formulas. However, when the weakening rules are

available for every x ∈ £, it is possible to derive (X:ϕ) ∪ c from (X:ϕ) for every

sequent c. Two-sided sequent systems usually employ ∅/{f:p1, t:p1} as the only

identity axiom. We denote this rule by (id).

Remark 2.2.13. Note that there are several useful options for cut rules and identity

axioms when |£| > 2. For example, the systems in [27] have a cut rule {x:p1}, {y:p1}/∅
for every x 6= y in £, and ∅/(£:p1) is their only identity axiom; while the systems in [24]

employ one cut rule of the form {{x:p1} | x ∈ £}/∅, and an identity axiom ∅/({x, y}:p1)

for every x 6= y in £. Other useful combinations arise when quasi-canonical systems are

translated into canonical ones (see Chapter 5).

Next, we define the family of pure sequent calculi. In addition to the structural rules

of contraction, exchange and expansion that are implicit in our calculi, we also require

that pure sequent calculi contain all weakening rules. Thus we refer to these systems as

fully-structural.

Definition 2.2.14. A pure 〈L,£〉-calculus consists of a finite set of pure 〈L,£〉-rules,

that includes (x:weak) for every x ∈ £. A proof in a pure 〈L,£〉-calculus G of an

〈L,£〉-sequent s from a set S of 〈L,£〉-sequents (called assumptions) is a finite list2 of

〈L,£〉-sequents ending with s, such that every sequent in the list is either an element of

S, or a conclusion of some application of some rule of G, provided that all premises of

this application appear before. We write S `G s to denote the existence of such a proof.

Convention 2.2.15. Henceforth, we assume that G does not include the (trivial) pure

〈L,£〉-rule ∅/∅.

2Similarly, one can use finite trees or DAGs.
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Notation 2.2.16. Given a pure 〈L,£〉-calculus, we denote by PG and RG the set of

primitive £-rules of G except for the weakening rules, and the set of non-primitive rules

of G (respectively).

The following simple observations will be useful in the sequel.

Proposition 2.2.17. Let G be a pure 〈L,£〉-calculus.

1. If S ∪ {s} `G s′, then S ∪ {s ∪ c} `G s′ ∪ c for every 〈L,£〉-sequent c.

2. If S `G s then σ(S) `G σ(s) for every L-substitution σ.

Recall that sequent calculi are a tool to characterize logics. As defined below, each

pure 〈L,£〉-calculus naturally induces 2|£| logics, each of which is based on some subset

of £.

Definition 2.2.18. Let G be a pure 〈L,£〉-calculus, and X ⊆ £ a set of labels. The

tcr induced by G and X, denoted by 
X
G, is the relation between sets of L-formulas and

L-formulas defined by: T 
X
G ϕ iff {(X:ψ) | ψ ∈ T } `G (X:ϕ).

It is easy to verify that for every G and X, 
X
G is indeed a tcr (see Definition 2.1.4).

In fact, we have the following:

Proposition 2.2.19. For every G and X as above, 〈L,
X
G〉 is a finitary logic.

Proof. The fact that 
X
G is structural directly follows from Proposition 2.2.17. The fact

that it is finitary follows from the definitions.

Example 2.2.20. The most important sequent calculus is the fundamental Gentzen’s

system LK for classical logic [56]. Its propositional fragment can be straightforwardly

presented as a pure 〈L,£2〉-calculus, which we denote by LK. The rules of LK are

presented in Figure 2.1. The consequence relation 
cl of propositional classical logic is

equal to 
{t}LK – the logic induced by LK and the set {t}.

Remark 2.2.21. In the case of LK, there is another natural way to define the induced

logic: T 
cl ϕ iff `LK {f:ψ | ψ ∈ Γ} ∪ {t:ϕ} for some finite Γ ⊆ T . It is easy to see that

in LK, and actually in every pure 〈L,£2〉-calculus G such that PG = {(cut), (id)}, we

have that T 
{t}G ϕ (according to Definition 2.2.18) iff `G {f:ψ | ψ ∈ Γ}∪{t:ϕ} for some

finite Γ ⊆ T . Therefore, the two alternatives to define 
cl are equivalent. However, the

formulation we gave in Definition 2.2.18 is more general, as it ensures that we obtain a

logic for every pure calculus with arbitrary primitive rules.
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(f:weak) {∅}/{f:p1} (t:weak) {∅}/{t:p1}
(cut) {f:p1}, {t:p1}/∅ (id) ∅/{f:p1, t:p1}
(f:¬) {t:p1}/{f:¬p1} (t:¬) {f:p1}/{t:¬p1}
(f:∧) {f:p1, f:p2}/{f:p1 ∧ p2} (t:∧) {t:p1}, {t:p2}/{t:p1 ∧ p2}
(f:∨) {f:p1}, {f:p2}/{f:p1 ∨ p2} (t:∨) {t:p1, t:p2}/{t:p1 ∨ p2}
(f: ⊃) {t:p1}, {f:p2}/{f:p1 ⊃ p2} (t: ⊃) {f:p1, t:p2}/{t:p1 ⊃ p2}

Figure 2.1: The pure 〈Lcl,£2〉-calculus LK

In addition to LK, the family of canonical calculi, that was defined and studied in

[17], falls under the definition of pure calculi. Many other previously studied useful

sequent calculi can be naturally presented as pure calculi. This includes all calculi for

paraconsistent logics from [12], all labelled calculi for finite valued logics from [26], and

the signed calculi from [20].

Example 2.2.22. In [12] a pure 〈Lcl,£2〉-calculus for da Costa’s historical paraconsistent

logic C1 was introduced.3 This calculus, denoted here by GC1 , is obtained from LK by

discarding the rule (f:¬) and adding the following rules:

(f:¬¬) {f:p1}/{f:¬¬p1}
(f:¬∧1) {t:p1}, {t:¬p1}/{f:¬(p1 ∧ ¬p1)}
(f:¬∧2) {f:¬p1}, {f:¬p2}/{f:¬(p1 ∧ p2)}
(f:¬∨1) {f:¬p1}, {f:p2, f:¬p2}/{f:¬(p1 ∨ p2)}
(f:¬∨2) {f:p1, f:¬p1}, {f:¬p2}/{f:¬(p1 ∨ p2)}
(f:¬ ⊃1) {f:p1}, {f:p2, f:¬p2}/{f:¬(p1 ⊃ p2)}
(f:¬ ⊃2) {f:p1, f:¬p1}, {f:¬p2}/{f:¬(p1 ⊃ p2)}

Remark 2.2.23. One can choose to define sequents using lists (as in the original work of

Gentzen) or multisets, and explicitly include contraction and exchange in the definition of

a pure sequent calculus. Obviously, this would not affect the derivability relation `G. In

fact, for all aspects of proof systems studied in this thesis (semantics, cut-admissibility,

analyticity, etc.) this choice is immaterial, since any result in one formulation trivially

holds in the other. Of course, this might not be the case when studying other properties

(like e.g. in [49]). Similarly, we formulated the applications of rules as multiplicative

(context-independent) rather than additive (context-sharing) applications (see [57],[92]).

Clearly, in the presence of all structural rules, the multiplicative version and the additive

one are interderivable. Again, this decision does not affect any property we discuss below.

3Here and henceforth, when we say that a two-sided calculus G is a calculus for a logic L, we mean

that 
{t}
G is equal to the consequence relation of the logic L.
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2.3 Proof-Theoretic Properties

In this section we define several important proof-theoretic properties of pure calculi. In

the next chapter we will provide a semantic counterpart for each of these properties.

2.3.1 Analyticity

Analyticity is a crucial property of fully-structural propositional proof systems, as it

usually implies its decidability and consistency (the fact that the empty sequent is not

derivable) . Roughly speaking, a sequent calculus is analytic if whenever a sequent s is

provable in it, then s can be proven using only the syntactic material available inside s.

Now, there is more than one way to precisely define the “material available within some

sequent”. Usually, it is taken to consist of all subformulas occurring in the sequent, and

then analyticity amounts to the global subformula property (i.e., if there exists a proof

of a sequent s, then there exists a proof of s using only its subformulas). However, it is

also possible (and sometimes necessary, see, e.g., Example 3.3.4) to consider analyticity

properties that are based on different relations defining the “material available within

sequents”. While these substitutes might be weaker than the global subformula property,

they still suffice to imply the consistency and the decidability of a proof system. Next

we define a generalized analyticity property, based on an arbitrary safe partial order.

Definition 2.3.1. Let ≤ be a partial order on L. For every formula ϕ, we denote by

↓≤ [ϕ] the set {ψ ∈ L | ψ ≤ ϕ}. This notation is extended to sets of formulas, sequents,

and sets of sequents in the natural way: ↓≤ [T ] =
⋃
ϕ∈T ↓≤ [ϕ] for a set T of formulas;

↓≤ [s] = ↓≤ [frm[s]] for a sequent s; and ↓≤ [S] =
⋃
s∈S ↓≤ [s] for a set S of sequents. ≤ is

called safe if ↓≤ [ϕ] is finite for every ϕ ∈ L, and λϕ ∈ L.↓≤ [ϕ] is computable.

Henceforth, ≤ denotes an arbitrary safe partial order on L. A particularly important

one is the subformula relation (here we mean the reflexive-transitive closure of the direct

subformula relation). For this relation we employ the following notation:

Notation 2.3.2. We denote by sub the subformula relation between formulas. In the

case of sub, we simply write sub[ · ] instead of ↓sub[ · ].

Definition 2.3.3. Given a set F of L-formulas, a formula ϕ is called an F-formula if

ϕ ∈ F . In turn, an £-labelled F-formula is an £-labelled L-formula x:ϕ with ϕ ∈ F ;

and an 〈F ,£〉-sequent is an 〈L,£〉-sequent consisting only of £-labelled F -formulas.

Notation 2.3.4. For a pure 〈L,£〉-calculus G, we write S `FG s if there is a proof in G

of s from S consisting only of 〈F ,£〉-sequents.
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Definition 2.3.5. A pure 〈L,£〉-calculus G is ≤-analytic if for every 〈L,£〉-sequent s:

`G s implies that `↓
≤[s]

G s.

The above notion of analyticity considers only proof from empty set of assumptions

(speaking only about the theorems of the system). A strong version is defined as follows:

Definition 2.3.6. A pure 〈L,£〉-calculus G is strongly ≤-analytic if for every set S of

〈L,£〉-sequents and 〈L,£〉-sequent s: S `G s implies that S `↓
≤[S∪{s}]

G s.

In the next chapters we focus only on strong ≤-analyticity. Obviously, ≤-analyticity

follows from strong ≤-analyticity (take S = ∅). Next, we show that in the simple (and

most common) case of two-sided calculi that include (cut) and (id) these two properties

are actually equivalent. The main idea of this proof appeared already [6], where it was

proved that cut-admissibility implies strong cut-admissibility (see definition below) for

the specific case of LK.

Theorem 2.3.7. Let G be a pure 〈L,£2〉-calculus, that includes (cut) and (id). If G is

≤-analytic then it is strongly ≤-analytic.

Proof. Suppose that G is ≤-analytic. We show that S `G s implies S `↓
≤[S∪{s}]

G s.

Clearly, it suffices to prove this for finite S (otherwise, take a finite subset S∗ of S
such that S∗ `G s). We use induction on the number of 〈L,£2〉-sequents in S. The

case that S is empty follows from our assumption. Suppose the claim holds when

the number of sequents in S is n, and let S ′ = {s0, ... , sn} be a set of n + 1 〈L,£2〉-
sequents, such that S ′ `G s. Proposition 2.2.17 implies that {s0 ∪ c, s1, ... , sn} `G s ∪ c,
for every 〈L,£2〉-sequent c. In particular, for every £2-labelled L-formula x:ϕ ∈ s0,

{s0 ∪ {x:ϕ}, s1, ... , sn} `G s ∪ {x:ϕ}, where f = t and t = f. Now, for every x:ϕ ∈ s0,

the sequent s0 ∪ {x:ϕ} is derivable in G using only (id) and weakenings, and there-

fore we have {s1, ... , sn} `G s ∪ {x:ϕ}. By the induction hypothesis we obtain that

{s1, ... , sn} `↓
≤[S∪{s}]

G s ∪ {x:ϕ} for every £2-labelled L-formula x:ϕ ∈ s0. The sequent

s can then be inferred from these sequents and s0 by |s0| applications of (cut) without

introducing any formulas outside ↓≤ [S ∪ {s}].

The following are three major consequences of (strong) ≤-analyticity.

Proposition 2.3.8 (Consistency). Let G be pure 〈L,£〉-calculus, which is ≤-analytic

for some safe partial order ≤. Then, 6`G ∅.

Proof. Assume that `G ∅. Since G is ≤-analytic, there exists a proof of the empty

sequent using no formulas at all. The only way to have this is using the rule ∅/∅, which

was disallowed in pure systems (Convention 2.2.15).
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Proposition 2.3.9 (Conservativity). Let L1 and L2 be two propositional languages,

such that L2 is an extension of L1 by some set of connectives. Let G1 and G2 be a pure

〈L1,£〉-calculus and a pure 〈L2,£〉-calculus (respectively). Assume that G2 is obtained

from G1 by adding to the latter rules involving connectives in L2 \ L1 (i.e., at least one

connective in L2 \ L1 appears in each rule in G2 \G1). Let ≤ be a safe partial order

on L2, such that L1 is closed under ≤ (i.e., ↓≤ [L1] = L1). If G2 is strongly ≤-analytic,

then G2 is a conservative extension of G1 (i.e., if frm[S ∪ {s}] ⊆ L1 then S `G1 s iff

S `G2 s).

Proof. Obviously, S `G1 s implies S `G2 s. For the converse, assume that S `G2 s.

Since G2 is strongly ≤-analytic, there exists a proof in G2 of s from S consisting of

↓≤ [S ∪ {s}]-formulas only. Since frm[S ∪ {s}] ⊆ L1, and L1 is closed under ≤, this is

also a proof in G1, and so S `G1 s.

Proposition 2.3.10 (Decidability). Let G be a pure 〈L,£〉-calculus. Suppose that

G is strongly ≤-analytic for some safe partial order ≤. Then, given a finite set S of

〈L,£〉-sequents and an 〈L,£〉-sequent s, it is decidable whether S `G s or not.

Proof. Exhaustive proof-search is possible. Since G is strongly ≤-analytic, S `G s iff

there exists a proof in G of s from S consisting of ↓≤ [S ∪ {s}]-sequents only. Since ≤ is

safe, one can construct the (finite) set S ′ of all ↓≤ [S ∪ {s}]-sequents. Clearly, S `G s iff

there exists a proof in G of s from S of length less than or equal to |S ′|, consisting only

of sequents from S ′. Thus one can construct all possible candidates. By definition G is

finite, and hence it is possible to check whether a certain candidate is indeed a proof in

G of s from S.

2.3.2 Cut-Admissibility

Usual two-sided sequent calculi include the rule (cut), which is very problematic from a

proof-search perspective. The admissibility of (cut) (i.e. the fact that for every sequent

s, `G s implies that there is a cut-free proof in G of s) is then desirable. However,

forbidding all applications of cut rules seems to be too strong while dealing with arbitrary

pure 〈L,£〉-calculi. Indeed, consider applications of a cut rule in which the cut-formula

occurs inside the context sequents (i.e. inferring a sequent of the form c1 ∪ ... ∪ cn from

the sequents (X1:ϕ) ∪ c1, ... , (Xn:ϕ) ∪ cn, where ϕ ∈ frm[c1 ∪ ... ∪ cn]). Such applications

are not harmful for proof-search, as every formula in the conclusion of the application

also occurs (as is) in one of its premises. These considerations lead to the following

formulation of cut admissibility in pure calculi:
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Definition 2.3.11. A pure 〈L,£〉-calculus G enjoys cut-admissibility if for every 〈L,£〉-
sequent s: `G s implies that there exists proof P of s in G such that the cut-formula

of every application of a cut rule in P occurs in one of the context sequents of that

application.

As for analyticity, this notion of cut-admissibility refers only to proofs without as-

sumptions (i.e., proofs from ∅). Obviously, we cannot expect full cut-admissibility when

the set of assumptions is not empty (in usual calculi, the only way to derive the empty

sequent from {f:p1} and {t:p1} is using (cut)). Thus we consider the property called

strong cut-admissibility in [6], which is formulated as follows in our framework:

Definition 2.3.12. A pure calculus G enjoys strong cut-admissibility if S `G s implies

that there exists a proof P of s from S in G such that the cut-formula of every application

of a cut rule in P occurs either in one of the context sequents of that application or in

frm[S].

Obviously, cut-admissibility follows from strong cut-admissibility (take S = ∅).

Equivalent definition of cut-admissibility and strong cut-admissibility are obtained

by considering an enrichment of G with non-cut rules, so that all applications of the cut

rules in which the cut-formula occurs in the context can be replaced by applications of

the new rules. This is done as follows:

Definition 2.3.13. Let G be a pure 〈L,£〉-calculus. s(G) denotes the pure 〈L,£〉-
calculus obtained by augmenting G with the primitive £-rules (X1:p1), ... , (Xn:p1)/{x:p1}
for every cut rule (X1:p1), ... , (Xn:p1)/∅ of G and x ∈ £ such that {x} 6∈ {X1, ... , Xn}.

Example 2.3.14. Let £ = {f, i, t} and suppose that is {f:p1}, {i:p1}/∅ is the only cut

rule of G. s(G) is obtained by adding to G the primitive rule {f:p1}, {i:p1}/{t:p1}.

Note that for a pure 〈L,£2〉-calculus G whose only cut rule is (cut), we have that

s(G) = G.

Proposition 2.3.15. `s(G)=`G for every pure 〈L,£〉-calculus G.

Proof. All applications of the new rules in s(G) can be simulated in G by applications

of the corresponding cut rule, followed by an application of a weakening rule.

Notation 2.3.16. Given a pure 〈L,£〉-calculus G, we denote by Gcf the calculus ob-

tained from G by discarding all cut rules of G. In particular, s(G)cf is the calculus

obtained from G by replacing every cut rule of the form (X1:p1), ... , (Xn:p1)/∅ with all

rules of the form (X1:p1), ... , (Xn:p1)/{x:p1} such that x ∈ £ and {x} 6∈ {X1, ... , Xn}.
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Notation 2.3.17. Given a set C ⊆ L, a pure 〈L,£〉-calculus G, a set S of 〈L,£〉-
sequents, and an 〈L,£〉-sequent s, we write S `cuts:CG s if there exists a proof in G of s

from S in which the cut-formula of every application of a cut rule is an element of C.

Proposition 2.3.18. Let G be a pure 〈L,£〉-calculus.

1. G enjoys cut-admissibility iff `s(G)cf s whenever `s(G) s.

2. G enjoys strong cut-admissibility iff S `cuts:frm[S]
s(G) s whenever S `s(G) s.

Proof. Note that every application of a cut rule in G in which the cut-formula occurs

in the context sequents can be simulated in s(G)cf (by using its new primitive rules

or weakening). Similarly, every application of a new primitive £-rule in s(G)cf can be

simulated in G by applying weakening and the corresponding cut rule where the cut-

formula occurs in the context sequents. The claims then follow from the definitions.

It follows that a pure 〈L,£2〉-calculus G whose only cut rule is (cut) (and thus

s(G) = G) enjoys cut-admissibility iff `G⊆`Gcf
. Such a calculus enjoys strong cut-

admissibility iff S `G s implies that there exists a proof of s from S in G such that

the cut-formula of every application of a cut rule is an element of frm[S]. Hence Def-

inition 2.3.11 and Definition 2.3.12 indeed generalize the known notions for ordinary

two-sided sequent calculi. In addition, in ordinary two-sided calculi that include (cut)

and (id) cut-admissibility is equivalent to strong cut-admissibility (like in the case of

analyticity, see Theorem 2.3.7).

Theorem 2.3.19. Let G be a pure 〈L,£2〉-calculus, that includes (cut) and (id). If G

enjoys cut-admissibility then G enjoys strong cut-admissibility.

Proof. Similar to the proof of Theorem 2.3.7.

2.3.3 Axiom-Expansion

Another property which is often studied in two-sided sequent calculi (that include (id)) is

the property of axiom-expansion [44]. This property means that non-atomic applications

of (id) (deriving sequents of the form {f:ϕ, t:ϕ} where ϕ is not atomic) are redundant.4

In our broader context it can be formulated as follows:

Notation 2.3.20. Given a pure 〈L,£〉-calculus G, Gif denotes the pure 〈L,£〉-calculus

obtained from G by discarding all identity axioms of G.

4The term “axiom-expansion” is commonly used, but it is somewhat unfortunate. In fact, this
property concerns the reducibility of arbitrary axioms to atomic ones.
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Definition 2.3.21. A pure 〈L,£〉-calculus G enjoys axiom-expansion if

{(X:p) | ∅/(X:p1) ∈ PG, p ∈ atL} `Gif
(Y:ϕ)

for every ∅/(Y:p1) ∈ PG and ϕ ∈ L.

It is easy to see that we have the following:

Proposition 2.3.22. A pure 〈L,£〉-calculus G enjoys axiom-expansion if

{(X:pi) | ∅/(X:p1) ∈ PG, 1 ≤ i ≤ ar(�)} `Gif
(Y: � (p1, ... , par(�)))

for every ∅/(Y:p1) ∈ PG and � ∈ ♦L.

Proof. A simple inductive argument (using Proposition 2.2.17) suffices.

Thus, following [44], we define this property for a given connective as follows:

Definition 2.3.23. A connective � ∈ ♦L admits axiom-expansion in a pure 〈L,£〉-
calculus G if {(X:pi) | ∅/(X:p1) ∈ PG, 1 ≤ i ≤ ar(�)} `Gif

(Y: � (p1, ... , par(�))) for every

∅/(Y:p1) ∈ PG.

Remark 2.3.24. Unlike [44], we do not require that there exists a cut-free proof of

(Y: � (p1, ... , par(�))).

Note that a pure 〈L,£〉-calculus G enjoys axiom-expansion iff each connective of L
admits axiom-expansion in G.

Example 2.3.25. It is easy to see that each connective of Lcl admits axiom-expansion

in LK, and thus LK enjoys axiom-expansion.



Chapter 3

Semantics for Pure Sequent Calculi

In this chapter we introduce a method for providing (possibly non-deterministic) many-

valued semantics for any given pure calculus. The semantics is then used to characterize

the proof-theoretic properties of pure calculi that were introduced in the previous chap-

ter. It should be noted that while dealing with the general framework of pure calculi,

one cannot expect to obtain effective semantics in all cases. Indeed, the proposed se-

mantics is quite close to the input proof system. However, it provides a complementary

presentation of pure calculi, sheds light on their syntactic properties, reveals deep useful

connections between semantics and proof theory, and turns out to be useful for proving

these properties in particular examples. In addition, applying the tools of this chapter

for narrower families of pure calculi (as done in the next chapter for canonical calculi)

leads to effective semantics and decidable criteria for proof-theoretic properties.1

Publications Related to this Chapter

The material in this chapter was not published before.

3.1 The Semantic Framework

The proposed semantic framework is a denotational semantics, based on valuations, which

are simply functions whose domain is L:

1This inherent limitation of an investigation of such general frameworks was summarized by J.Y.
Béziau in [34] as follows:

“What is involved in this paper is mainly general abstract nonsense. The main dif-
ficulty of our results is rather conceptual. But what we show is that when this general
abstract nonsense is rightly organized we can get meaningful results with a lot of powerful
applications.”

24



3.1. The Semantic Framework 25

Definition 3.1.1. An L-valuation is a function v from L to some set U of truth values.

We denote by Imv the image of v.

Note that we do not specify what are truth values, and in fact anything can serve as a

truth value. To define restrictions on L-valuations we introduce L-semantic conditions.

Definition 3.1.2. Let U be some set of truth values.

1. An L-semantic disjunction over U is a finite set of pairs 〈ϕ, u〉, denoted by ϕ + u,

where u ∈ U and ϕ ∈ L. L-substitutions are naturally extended to L-semantic

disjunctions by σ(I) = {σ(ϕ) + u | ϕ + u ∈ I}.
2. An L-semantic condition over U is a pair 〈I, I〉, denoted by I ⇒ I, where I is a

finite set of L-semantic disjunctions over U , and I is a single L-semantic disjunction

over U .

3. An L-valuation v with Imv ⊆ U satisfies:

(a) an L-semantic disjunction I over U if ϕ + v(ϕ) ∈ I for some ϕ ∈ L.

(b) an L-semantic condition I ⇒ I over U if for every L-substitution σ, v satisfies

σ(I) whenever it satisfies σ(I ′) for every I ′ ∈ I.

(c) a set Λ of L-semantic conditions over U if it satisfies every I ⇒ I ∈ Λ.

We write v |= X to denote that v satisfies X, where X is either an L-semantic disjunction,

an L-semantic condition, or a set of L-semantic conditions.2

Example 3.1.3. Suppose that �, . ∈ ♦2
L, and let U = {u1, u2}. Consider the semantic

disjunctions: I1 = {p1 + u1, p2 + u2}, and I2 = {p1 � p2 + u1, p2 . p1 + u1}. Let v be

an L-valuation with Imv ⊆ U . Then, v |= I1 iff v(p1) = u1 or v(p2) = u2. v |= I2 iff

v(p1 � p2) = u1 or v(p2 . p1) = u1. v satisfies the L-semantic condition {I1} ⇒ I2 iff for

every ϕ1, ϕ2 ∈ L: if v(ϕ1) = u1 or v(ϕ2) = u2, then v(ϕ1 � ϕ2) = u1 or v(ϕ2 . ϕ1) = u1.

Example 3.1.4. Obviously, restrictions arising from “truth tables” can be represented

as semantic conditions. For example, to capture the classical truth table of implica-

tion, we use the following conditions over {f, t}: {{p1 + t}, {p2 + f}} ⇒ {p1 ⊃ p2 + f}
and {{p1 + f, p2 + t}} ⇒ {p1 ⊃ p2 + t}. An L-valuation satisfies these two L-semantic

conditions iff it respects the usual truth table of ⊃.

To obtain semantic characterizations of logics we introduce a class of structures called

many-valued systems, that generalizes the usual notion of a many-values matrix (see, e.g.,

[93]), by allowing arbitrary semantic conditions.

2Note that v |= ∅ is ambiguous: it holds for the empty set of L-semantic conditions, and does not
hold for the empty L-semantic disjunction.
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Definition 3.1.5. A many-valued system M for L consists of:

1. A set VM of truth values.

2. A subset UM ⊆ VM of legal truth values.

3. A subset DM ⊆ VM of designated truth values.

4. A set ΛM of L-semantic conditions over VM.

M is called finite if so are VM and ΛM.

Definition 3.1.6. Let M be a many-valued system for L.

1. An L-valuation v is called M-legal if Imv ⊆ UM and v |= ΛM.

2. An L-valuation v is said to be a model (with respect to M) of:

(a) an L-formula ϕ, written v |=M ϕ, if v(ϕ) ∈ DM.

(b) a set T of L-formulas, written v |=M T , if v |=M ϕ for every ϕ ∈ T .

3. An L-formula ϕ follows from a set T of L-formulas with respect to M (denoted by:

T 
M ϕ) if for every M-legal L-valuation v: v |=M ϕ whenever v |=M T .

Proposition 3.1.7. For every many-valued system M for L, 〈L,
M〉 is a logic.

Proof. Easily follows from the definitions. To prove that 
M is structural, note that if v

is an M-legal L-valuation, then so is v ◦ σ for every L-substitution σ.

Example 3.1.8. Classical logic 〈Lcl,
cl〉 is obtained by taking a many-valued system

Mcl with VMcl
= UMcl

= {f, t}, DMcl
= {t}, and ΛMcl

consist of the semantic conditions

over {f, t} that correspond to the classical truth tables (e.g. as in Example 3.1.4).

Example 3.1.9. Many-valued systems generalize the notion of a logical many-valued

matrix [93, 61]. Thus any many-valued logic that is defined by such a matrix is captured

in this general framework. In addition, non-deterministic many-valued matrices [17, 21]

can be easily presented as particular cases of many-valued systems. This will be discussed

in Chapter 4.

Example 3.1.10. The framework of bivaluations [34, 40] corresponds to two-valued

systems (that is, many-valued systems with |VM| = |UM| = 2 and |DM| = 1. In addition,

the dyadic semantics of [39] is also a subclass of two-valued many-valued systems.

In many cases in the sequel, we need a many-valued system M just to specify a set

of (M-legal) valuations, rather than to define a logic. The set DM of designated truth

values is redundant in these cases, and can be discarded. The obtained structures will

be called many-valued pre-systems:
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Definition 3.1.11. A many-valued pre-system M for L is defined exactly like a many-

valued system (Definition 3.1.5), except that we exclude the set DM of designated truth

values.

Remark 3.1.12. Evidently, it suffices to consider many-valued systems with UM = VM.

Indeed, given a many-valued system M, we can always define a many-valued system M′

by VM′ = UM′ = UM, DM′ = DM ∩ UM, and ΛM′ is obtained from ΛM by discarding all

occurrences of pairs ϕ + u with u 6∈ UM from the semantic conditions. Clearly, M-legal

L-valuations are exactly M′-legal L-valuations, and we also have 
M=
M′ . However,

we find the distinction between UM and VM technically convenient, as it allows us to

change the set of legal truth values in many-valued (pre-) systems, without changing any

of its other components. This is mainly beneficial for the modularity of the constructions

below.

3.1.1 Partial Valuations and Semantic Analyticity

An important attractive property that we would like a semantic framework to have is

effectiveness, namely the fact that it can be used to provide a semantic decision procedure

for the logics it induces. The framework of many-valued systems is too wide to have

this property in general. In this section we identify a sufficient condition for the the

effectiveness of a many-valued system. This condition will also play a main role below

for characterizing ≤-analyticity in pure sequent calculi.

Generally speaking, the naive approach to check whether Γ 
M ϕ for a many-valued

system M (given a finite set of formulas Γ and a formula ϕ) would be to consider one by

one all possible M-legal L-valuations, and return “true” iff none of them is a counter-

model – a model of Γ but not of ϕ (with respect to M). Obviously, this cannot serve as

a decision procedure since there are infinitely many L-valuations to check, and each of

them is infinite. Thus, as is usually done in decision procedures based on denotational

semantic frameworks, one has to consider partial valuations defined only on the syntactic

material included in Γ and ϕ. This, however, requires that the existence of a counter-

model in the form of a partial valuation always indicates the existence of an (infinite) full

counter-model. Obviously, this requirement holds when every partial valuation can be

extended to a full one. Next, we define partial valuations, and precisely formulate these

observations.

Definition 3.1.13. A partial L-valuation is a function v from some set Domv ⊆ L to

some set U of truth values. We denote by Imv the image of v.

The previous notions for L-valuations are adapted to partial L-valuations as follows:
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Definition 3.1.14. A partial L-valuation v satisfies:

1. an L-semantic disjunction I if ϕ + v(ϕ) ∈ I for some ϕ ∈ Domv.

2. an L-semantic condition I ⇒ I if for every L-substitution σ such that σ(ϕ) ∈ Domv

and for every ϕ that occurs in I ⇒ I, v satisfies σ(I) whenever it satisfies σ(I ′) for

every I ′ ∈ I.

3. a set Λ of L-semantic conditions if it satisfies every I ⇒ I ∈ Λ.

We write v |= X to denote that v satisfies X, where X is either an L-semantic disjunction,

an L-semantic condition, or a set of L-semantic conditions.

Given a many-valued pre-system M for L, M-legal partial L-valuations are defined

exactly as M-legal (full) L-valuations (i.e. Imv ⊆ UM and v |= ΛM). Note that Def-

initions 3.1.13 and 3.1.14 generalize the corresponding notions defined above for (full)

L-valuations. Indeed, by taking Domv = L, we obtain exactly the definitions for L-

valuations.

Definition 3.1.15. Let v and v′ be two partial L-valuations. We say that v′ extends v

if Domv ⊆ Domv′ and v′(ϕ) = v(ϕ) for every ϕ ∈ Domv.

Definition 3.1.16. Let ≤ be a partial order on L. A many-valued (pre-) system M is

called ≤-analytic if any M-legal partial L-valuation whose domain is finite and closed

under ≤ can be extended to an M-legal (full) L-valuation.

Example 3.1.17. Revisiting the many-valued system Mcl from Example 3.1.8 for classi-

cal logic, we note that this system is sub-analytic. Indeed, Mcl-legal partial Lcl-valuation,

whose domain is finite and closed under ≤, are usual classical partial valuations which

can be obviously extended to full classical valuations (i.e. Mcl-legal Lcl-valuations).

Note that we use the same term “≤-analytic” in two different contexts. When referring

to many-valued (pre-) systems as ≤-analytic we mean the semantic extension property

defined above (the term “analyticity” was used to describe a similar property in previous

works, see e.g. [21]). On the other hand, we call a pure sequent system ≤-analytic if

it satisfies the syntactic property given in Definition 2.3.5. In Theorem 3.3.3 below we

establish a correspondence between these two notions of analyticity.

Next, we prove that ≤-analyticity (for a safe relation ≤) suffices for the effectiveness

of a given many-valued system.

Theorem 3.1.18. Let M be a finite many-valued system for L. Suppose that M is

≤-analytic for some safe partial order ≤ on L. Given a finite set Γ of L-formulas and an

L-formula ϕ, it is decidable whether Γ 
M ϕ or not.
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Proof. Since ≤ is safe, ↓≤ [Γ ∪ {ϕ}] is finite. Thus, to decide whether Γ 
M ϕ one

can enumerate all partial L-valuations v with Domv = ↓≤ [Γ ∪ {ϕ}] and Imv = UM, and

check if one of them satisfies the following three conditions: (1) v is M-legal; (2) v |=M Γ;

and (3) v 6|=M ϕ. Each of these conditions is obviously decidable for a given v. We claim

that Γ 
M ϕ iff such a function is not found. To see this, note that if Γ 1M ϕ, then by

definition there exists an M-legal L-valuation v′ such that v′ |=M Γ but v′ 6|=M ϕ. Its

restriction to ↓≤ [Γ ∪ {ϕ}] is a function v : ↓≤ [Γ ∪ {ϕ}]→ UM satisfying the conditions

above. On the other hand, if there exists such a function v, then since M is ≤-analytic,

v can be extended to an M-legal (full) L-valuation v′. Clearly, v′ |=M Γ but v′ 6|=M ϕ.

Consequently, Γ 1M ϕ in this case.

Examining the proof above, we are able to provide a slightly weaker requirement:

Theorem 3.1.19. Let M be a finite many-valued system for L, and ≤ a safe partial

order on L. Suppose that given an M-legal partial L-valuation v, whose domain is finite

and closed under ≤, it is decidable whether v can be extended to an M-legal (full) L-

valuation or not. Then, given a finite set Γ of L-formulas and an L-formula ϕ, it is

decidable whether Γ 
M ϕ or not.

Proof. The proof goes as the proof of Theorem 3.1.18, with the addition of a forth

condition: (4) v can be extended to an M-legal L-valuation.

In Chapters 4 and 5 we will use this theorem to prove the decidability of a large

family of logics induced by many-valued systems of a certain restricted form (of which

many-valued matrices and their non-deterministic counterparts are particular instances).

The decidability of important subfamilies of pure sequent calculi will be obtained as a

consequence.

Remark 3.1.20. In the literature of non-deterministic matrices (see, e.g., [9]) effective-

ness is usually identified with (semantic) analyticity. However, the observations above

show that this property is not a necessary condition for decidability. To guarantee the

latter, instead of requiring that all partial valuations are extendable, it is sufficient to

have an algorithm that establishes which of them are.

3.2 Semantics for Pure Sequent Calculi

In this section we show that the logics induced by pure calculi can be semantically

characterised by finite many-valued systems. Thus, our goal is to construct a finite

many-valued system MX
G for a given pure 〈L,£〉-calculus G and a set of labels X ⊆ £,

for which we would have 
X
G=
MX

G
. To obtain this, we begin with a construction of a
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many-valued pre-system MG for a given pure 〈L,£〉-calculus G, together with a definition

of when an MG-legal L-valuation v is a model of an 〈L,£〉-sequent s. Then we show

that MG induces the same consequence relation between sequents that is induced by

the calculus G. Our construction is modular: each syntactic ingredient corresponds to

a certain semantic component, and the semantics of the whole calculus is obtained by

joining all semantic components. We start with precise definitions of each component.

Truth Values Intuitively, the truth value assigned to an L-formula ϕ should carry

enough information to determine for which labels x ∈ £ the £-labelled L-formula x:ϕ is

“true”. In general, there can be 2|£| options for that. Thus we take the truth values in

the many-valued system for a given pure 〈L,£〉-calculus G to be the subsets of £ (that

is, VMG
= 2£), and use the following definition:

Definition 3.2.1. An L-valuation v with Imv ⊆ 2£ is said to be a model of an £-labelled

L-formula x:ϕ, written v |= x:ϕ, if x ∈ v(ϕ).

Note that the last definition concerns an L-valuation v with Imv ⊆ 2£ regard-

less of a many-valued system. Clearly, given such an L-valuation v and a formula ϕ,

v(ϕ) = {x ∈ £ | v |= x:ϕ}. Thus if we have a many-valued system M for L with

VM = 2£, then v |=M ϕ (according to Definition 3.1.6) iff the set {x ∈ £ | v |= x:ϕ} is in

DM. In turn, sequents are intuitively interpreted as disjunctions of labelled formulas, and

sets of sequents (that constitute the sets of assumptions) are conjunctions of sequents.

Definition 3.2.2. An L-valuation v with Imv ⊆ 2£ is said to be a model of:

1. an 〈L,£〉-sequent s, written v |= s, if v |= α for some α ∈ s.
2. a set S of 〈L,£〉-sequents, written v |= S, if v |= s for every s ∈ S.

These notions naturally lead to the following definition of the consequence relation

between sequents induced by a many-valued (pre-) system with VM = 2£:

Definition 3.2.3. Let M be a many-valued (pre-) system for L with VM = 2£. An

〈L,£〉-sequent s follows from a set S of 〈L,£〉-sequents with respect to M (denoted by:

S `M s) if every M-legal L-valuation which is a model of S is also a model of s.

Remark 3.2.4. The general framework of many-valued (pre-) systems presented above

allows anything to serve as a truth value. However, a semantic consequence relation `M
between sequents is defined here only for many-valued (pre-) systems whose truth values

consist of sets of labels (VM = 2£).

The soundness of the weakening rules directly follows from the definitions:

Proposition 3.2.5. {s} `M s ∪ {α} for every many-valued (pre-) system M for L with

VM = 2£, 〈L,£〉-sequent s, and £-labelled L-formulas α.
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Legal Truth Values While VMG
is taken to be all subsets of £, the set UMG

of

legal truth values (those that are actually allowed to be used in MG-legal valuations) is

determined according to the primitive rules of G. Indeed, each primitive rule of G forbid

some of the 2|£| options. For example, say that f, i ∈ £, and consider the primitive rule

{f:p1}/{i:p1}. Semantically, this rule means that an £-labelled L-formula of the form

i:ϕ should be “true” whenever f:ϕ is “true”. This semantic requirement can be easily

reflected by disallowing truth values that include the label f but not i. We will denote

by £(r) the set of subsets of £ that are not forbidden by the primitive rule r. Formally,

£(r) is defined as follows:

Definition 3.2.6. Let r = (X1:p1), ... , (Xn:p1)/(X:p1) be a primitive £-rule. Then:

£(r) = {Y ⊆ £ | Xi ∩ Y = ∅ for some 1 ≤ i ≤ n or X ∩ Y 6= ∅}.
This definition is naturally extended to setsR of primitive £-rules by: £(R) =

⋂
r∈R £(r).

Example 3.2.7. Let £ = {f, i, t}. For a primitive £-rule r = ({f, t}:p1), {i:p1}/{t:p1},
£(r) consists of all subsets of £ except for {f, i}.

Example 3.2.8. For a cut rule r = (X1:p1), ... , (Xn:p1)/∅,
£(r) = {Y ⊆ £ | Xi ∩ Y = ∅ for some 1 ≤ i ≤ n}.

For an identity axiom r = ∅/(X:p1),

£(r) = {Y ⊆ £ | X ∩ Y 6= ∅}.
In particular, £(∅/(£:p1)) = 2£ \ {∅}. Note that if a pure 〈L,£〉-calculus G has at least

one cut rule then £ 6∈ £(PG), and similarly, if G has at least one identity axiom then

∅ 6∈ £(PG).

For a given pure 〈L,£〉-calculus G, we will take UMG
= £(PG) (recall that PG denotes

the set of primitive rules of G).

Example 3.2.9. For a pure 〈L,£2〉-calculus G with PG ⊆ {(cut), (id)} we have:

£(PG) =


{{f}, {t}} PG = {(cut), (id)}

{∅, {f}, {t}} PG = {(cut)}

{{f}, {t}, {f, t}} PG = {(id)}

{∅, {f}, {t}, {f, t}} PG = ∅
Thus for an ordinary pure 〈L,£2〉-calculus with PG = {(cut), (id)} we get a two-valued

semantics; for pure 〈L,£2〉-calculus with PG = {(id)} or PG = {(cut)} we get a three-

valued semantics; and if PG = ∅ we obtain a four-valued semantics.

Semantic Conditions The semantic conditions in ΛMG
are straightforwardly derived

from the rules in RG according to the next definitions (recall that RG denotes the set of

non-primitive rules of G):
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Definition 3.2.10. I(·), the L-semantic disjunction over 2£ induced by:

1. an £-labelled L-formula x:ϕ, is defined by I(x:ϕ) = {ϕ + X | {x} ⊆ X ⊆ £}.

2. an 〈L,£〉-sequent s, is defined by I(s) =
⋃
α∈s I(α).

Definition 3.2.11. The L-semantic condition over 2£ induced by a pure 〈L,£〉-rule

S/s, denoted by Sem(S/s), is defined by:

Sem(S/s) = {I(s′) | s′ ∈ S} ⇒ I(s).

This definition is extended to sets R of pure 〈L,£〉-rules in the obvious way:

Sem(R) = {Sem(r) | r ∈ R}.

Example 3.2.12. Suppose that ⊃∈ ♦2
L, and consider the usual 〈L,£2〉-rules for ⊃:

(f: ⊃) = {t:p1}, {f:p2}/{f:p1 ⊃ p2} and (t: ⊃) = {f:p1, t:p2}/{t:p1 ⊃ p2} (see Exam-

ple 2.2.6). Then:

Sem((f: ⊃)) = {{p1 + {t}, p1 + {f, t}}, {p2 + {f}, p2 + {f, t}}} ⇒
{p1 ⊃ p2 + {f}, p1 ⊃ p2 + {f, t}}.

Sem((t: ⊃)) = {{p1 + {f}, p1 + {f, t}, p2 + {t}, p2 + {f, t}}} ⇒
{p1 ⊃ p2 + {t}, p1 ⊃ p2 + {f, t}}.

Note that an L-valuation v (with Imv ⊆ 2£) satisfies these two semantic L-conditions

iff for every ϕ1, ϕ2 ∈ L: (1) if t ∈ v(ϕ1) and f ∈ v(ϕ2), then f ∈ v(ϕ1 ⊃ ϕ2); and (2) if

f ∈ v(ϕ1) or t ∈ v(ϕ2), then t ∈ v(ϕ1 ⊃ ϕ2).

Example 3.2.13. Suppose that ∧ ∈ ♦2
L and ¬ ∈ ♦1

L. For the 〈L,£2〉-rule from Exam-

ple 2.2.8, r = {t:p1}, {t:¬p1}/{f:¬(p1 ∧ ¬p1)}, Sem(r) is

{{p1 + {t}, p1 + {f, t}}, {¬p1 + {t},¬p1 + {f, t}}} ⇒
{¬(p1 ∧ ¬p1) + {f},¬(p1 ∧ ¬p1) + {f, t}}.

Note that an L-valuation v (with Imv ⊆ 2£) satisfies this semantic L-conditios iff for

every ϕ ∈ L: if t ∈ v(ϕ) and t ∈ v(¬ϕ), then f ∈ v¬(ϕ ∧ ¬ϕ)).

To conclude, MG is defined as follows:

Definition 3.2.14. Let G be a pure 〈L,£〉-calculus. The many-valued pre-system MG

is defined by: VMG
= 2£, UMG

= £(PG), and ΛMG
= Sem(RG).

The following theorem establishes the connection between pure calculi and their cor-

responding many-valued pre-systems. Its proof is given in Section 3.4.

Theorem 3.2.15. Let G be a pure 〈L,£〉-calculus. Then `G=`MG
. In other words:

there exists a proof in G of an 〈L,£〉-sequent s from a set S of 〈L,£〉-sequents, iff every

MG-legal L-valuation which is a model of S is also a model of s.
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Corollary 3.2.16. Let G be a pure 〈L,£〉-calculus. and ≤ a safe partial order on L.

Suppose that given an MG-legal partial L-valuation v, whose domain is finite and closed

under ≤, it is decidable whether v can be extended to an MG-legal (full) L-valuation

or not. Then, given a finite set S of 〈L,£〉-sequents and a single 〈L,£〉-sequent s, it is

decidable whether S `G s or not.

Proof. Construct MG according to the definitions above. Then, enumerate all partial L-

valuations v : ↓≤ [S ∪ {s}]→ UMG
, and check if one of them is MG-legal, can be extended

to an MG-legal (full) L-valuation, and is model of S but not of s. As in Theorem 3.1.19,

we have that S `MG
s iff such a partial L-valuation is not found.

Now, to obtain a many-valued system for the logic induced by G and a set X of labels,

one should take the designated truth values to be subsets of £ that contain at least one

label from X:

Definition 3.2.17. Let G be a pure 〈L,£〉-calculus, and let X ⊆ £. The many-

valued system MX
G is obtained by augmenting the many-valued pre-system MG with

DMX
G

= {X′ ⊆ £ | X′ ∩ X 6= ∅}.

Corollary 3.2.18. Let G be a pure 〈L,£〉-calculus, and X ⊆ £ a set of labels. Then


X
G=
MX

G
.

Proof. Note that an MG-legal valuation v is a model of a sequent of the form (X:ϕ) iff it

is a model of ϕ with respect to MX
G. Therefore, the claim is an immediate corollary of

Theorem 3.2.15. For the convenience of the reader, we prove one direction with all details:

Suppose that T 
X
G ϕ. Then, by Definition 2.2.18, {(X:ψ) | ψ ∈ T } `G (X:ϕ). By Theo-

rem 3.2.15, we have that every MG-legal L-valuation which is a model of {(X:ψ) | ψ ∈ T },
is also a model of (X:ϕ). We prove that T 
MX

G
ϕ. Thus, by Definition 3.1.6, we should

show that for every MX
G-legal L-valuation v: v |=MX

G ϕ whenever v |=MX
G T . Let v be

an MX
G-legal L-valuation such that v |=MX

G T . By definition, v(ψ) ∈ DMX
G

for every

ψ ∈ T . Now, the definition of DMX
G

entails that v(ψ)∩X 6= ∅ for every ψ ∈ T . It follows,

according to Definitions 3.2.1 and 3.2.2, that v |= (X:ψ) for every ψ ∈ T . Consequently,

v |= {(X:ψ) | ψ ∈ T }, and so v |= (X:ϕ). Thus v(ϕ) ∩ X 6= ∅, and so v(ϕ) ∈ DMX
G

. It

follows that v |=MX
G ϕ.

Example 3.2.19. As a particular instance we obtain the soundness and completeness

of LK and {t} for classical logic. Indeed, consider the pure 〈Lcl,£2〉-calculus LK from

Example 2.2.20. By Corollary 3.2.18, we have 
{t}LK=

M
{t}
LK

. It is straightforward to

verify that MLK-legal valuations are practically classical two-valued valuations. Indeed,

since LK includes both (cut) and (id), we have UMLK
= {{f}, {t}}. The semantic Lcl-

conditions arising from the non-primitive rules of LK provide the usual definition of truth
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values of compound formulas in classical logic (the rules for each connective enforce its

usual truth table, see, e.g., Example 3.2.12).

Example 3.2.20. By applying Corollary 3.2.18 to the pure 〈Lcl,£2〉-calculus GC1 from

Example 2.2.22 and X = {t}, we obtain effective semantics for da Costa’s paraconsistent

logic C1. The many-valued system M = M
{t}
GC1

is given by: VM = {∅, {f}, {t}, {f, t}};
UM = {{f}, {t}}; DM = {{t}}; and ΛM consists of one Lcl-semantic condition over

VM for each non-primitive rule of GC1 . For example, for the rule (f:¬∧1) we have the

semantic condition given in Example 3.2.13. Similarly, (f:¬¬) and (f:¬∧2) yield the

following Lcl-semantic conditions:

Sem((f:¬¬)) = {{p1 + {f}, p1 + {f, t}}} ⇒ {¬¬p1 + {f},¬¬p1 + {f, t}}

Sem((f:¬∧2)) = {{¬p1 + {f},¬p1 + {f, t}}, {¬p2 + {f},¬p2 + {f, t}}} ⇒
{¬(p1 ∧ p2) + {f},¬(p1 ∧ p2) + {f, t}}

It is easy to see that the conditions in ΛM (including the ones mentioned above) dictate

the following requirements from M-legal Lcl-valuations v for every formula ψ:3

(t:¬) If ψ = ¬ϕ and f ∈ v(ϕ), then t ∈ v(ψ).

(f:∧) If ψ = ϕ1 ∧ ϕ2 and (f ∈ v(ϕ1) or f ∈ v(ϕ2)), then f ∈ v(ψ).

(t:∧) If ψ = ϕ1 ∧ ϕ2, t ∈ v(ϕ1) and t ∈ v(ϕ2), then t ∈ v(ψ).

(f:∨) If ψ = ϕ1 ∨ ϕ2, f ∈ v(ϕ1) and f ∈ v(ϕ2), then f ∈ v(ψ).

(t:∨) If ψ = ϕ1 ∨ ϕ2 and (t ∈ v(ϕ1) or t ∈ v(ϕ2)), then t ∈ v(ψ).

(f: ⊃) If ψ = ϕ1 ⊃ ϕ2, t ∈ v(ϕ1) and f ∈ v(ϕ2), then f ∈ v(ψ).

(t: ⊃) If ψ = ϕ1 ⊃ ϕ2 and (f ∈ v(ϕ1) or t ∈ v(ϕ2)), then t ∈ v(ψ).

(f:¬¬) If ψ = ¬¬ϕ and f ∈ v(ϕ), then f ∈ v(ψ).

(f:¬∧1) If ψ = ¬(ϕ ∧ ¬ϕ), t ∈ v(ϕ) and t ∈ v(¬ϕ), then f ∈ v(ψ).

(f:¬∧2) If ψ = ¬(ϕ1 ∧ ϕ2), f ∈ v(¬ϕ1) and f ∈ v(¬ϕ2), then f ∈ v(ψ).

(f:¬∨1) If ψ = ¬(ϕ1 ∨ ϕ2), f ∈ v(¬ϕ1) and (f ∈ v(ϕ2) or f ∈ v(¬ϕ2)), then f ∈ v(ψ).

(f:¬∨2) If ψ = ¬(ϕ1 ∨ ϕ2), (f ∈ v(ϕ1) or f ∈ v(¬ϕ1)) and f ∈ v(¬ϕ2), then f ∈ v(ψ).

(f:¬ ⊃1) If ψ = ¬(ϕ1 ⊃ ϕ2), f ∈ v(ϕ1) and (f ∈ v(ϕ2) or f ∈ v(¬ϕ2)), then f ∈ v(ψ).

(f:¬ ⊃2) If ψ = ¬(ϕ1 ⊃ ϕ2), (f ∈ v(ϕ1) or f ∈ v(¬ϕ1)) and f ∈ v(¬ϕ2), then f ∈ v(ψ).

It is easy to verify that these requirements correspond exactly to the conditions on C1-

bivaluations described in [34].

Now, M is not sub-analytic (see Definition 3.1.16). Indeed, consider the partial Lcl-
valuation v with Domv = {p1, p2,¬p1,¬p2,¬¬p1,¬p1 ∧ ¬p2,¬(¬p1 ∧ ¬p2)}, and:

3Note that since UM = {{f}, {t}}, we can write v(ϕ) = {x} instead of x ∈ v(ϕ) (for x ∈ {f, t}). We
prefer the latter since we will reuse this list of conditions in Example 3.3.10 where {f, t} is also included
in UM.
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• v(p1) = v(p2) = v(¬¬p1) = {f},
• v(¬p1) = v(¬p2) = v(¬p1 ∧ ¬p2) = v(¬(¬p1 ∧ ¬p2)) = {t}.

Domv is finite and closed under subformulas, and v is M-legal. Now, assume for a

contradiction that there is an M-legal (full) L-valuation v′ that extends v. (f:¬¬) enforces

that v′(¬¬p2) = {f}. On the other hand, if v′(¬¬p2) = {f}, then (f:¬∧2) enforces that

v′(¬(¬p1 ∧ ¬p2)) = {f}. But, v′(¬(¬p1 ∧ ¬p2)) = v(¬(¬p1 ∧ ¬p2)) = {t}.
Nevertheless, it can be shown that M is nsub-analytic, where nsub denotes the tran-

sitive closure of sub∪{〈¬ϕi,¬(ϕ1 � ϕ2)〉 | ϕ1, ϕ2 ∈ L, � ∈ {∧,∨,⊃}, i = 1, 2}. Indeed, let

v be an M-legal partial Lcl-valuation, whose domain is finite and closed under nsub. We

construct an M-legal (full) Lcl-valuation v′ that extends v. Let ψ1, ψ2, ... be an enu-

meration of all Lcl formulas such that: i ≤ j whenever 〈ψi, ψj〉 ∈ nsub. We recursively

construct v′. Let i ≥ 1, and suppose that v′(ψj) was defined for every j < i. v′(ψi) is

defined as follows. First, if ψi ∈ Domv then v′(ψi) = v(ψi). Otherwise, if ψi is an atomic

formula v′(ψi) = {f} (say). Otherwise, ψi is a compound formula and then v′(ψi) is set

to be either {f} or {t} based on “classical logic reasoning” using the subformulas of ψi

(for example, if ψi = ¬ψj then v′(ψi) = {f} if v′(ψj) = {t}, and otherwise v′(ψi) = {t}).
Obviously, v′ extends v. It remains to show that v′ is M-legal. For that we prove by

induction on i that all the properties above hold for v′ and ψ = ψi. Suppose they hold

for ψj for every j < i. We do here several cases (the others are similar):

(t:¬) Suppose that ψ = ¬ϕ and v′(ϕ) = {f}. If ψ ∈ Domv, then ϕ ∈ Domv as well, and

v′(ψ) = {t} follows since v is M-legal. Otherwise, v′(ψ) = {t} as well, but this

time because of the classical truth tables.

(f:¬¬) Suppose that ψ = ¬¬ϕ and v′(ϕ) = {f}. If ψ ∈ Domv, then ϕ ∈ Domv as

well, and v′(ψ) = {f} follows since v is M-legal. Otherwise, v′(¬ϕ) = {t} (by the

induction hypothesis since ¬ϕ = ψj for some j < i, and the condition (t:¬)), and

thus v′(ψ) = {f} according to the classical truth tables.

(f:¬∧1) Suppose that ψ = ¬(ϕ ∧ ¬ϕ), v′(ϕ) = {t} and v′(¬ϕ) = {t}. If ψ ∈ Domv,

then ϕ,¬ϕ ∈ Domv as well, and v′(ψ) = {f} follows since v is M-legal. Otherwise,

v′(ϕ ∧ ¬ϕ) = {t} (by the induction hypothesis since ϕ ∧ ¬ϕ = ψj for some j < i,

and the condition (t:∧)), and so v′(ψ) = {f} according to the classical truth tables.

(f:¬∧2) Suppose that ψ = ¬(ϕ1 ∧ ϕ2), v′(¬ϕ1) = {f} and v′(¬ϕ2) = {f}. If ψ ∈ Domv,

then ¬ϕ1,¬ϕ2 ∈ Domv as well, and v′(ψ) = {f} follows since v is M-legal. Other-

wise, v′(ϕ1) = v′(ϕ2) = {t} according to the classical truth tables (by the induction

hypothesis since ¬ϕ1 = ψj1 and ¬ϕ2 = ψj2 for some j1, j2 < i, and the condition

(t:¬)). Thus v′(ϕ1 ∧ϕ2) = {t} (by the induction hypothesis since ϕ1 ∧ϕ2 = ψj for

some j < i, and the condition (t:∧)), and so v′(ψ) = {f} according to the classical

truth tables.
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Note that nsub is safe, and thus it follows that M provides an effective semantics for

the logic da Costa’s paraconsistent logic C1. We note that a semantic decision for this

logic was included in [47]. While its formulation is completely different than ours, the

procedure in [47] is based on similar ideas. In particular, a notion equivalent to nsub-

analyticity plays a major role there as well.

3.3 Characterization of Proof-Theoretic Properties

In this section we use the above general soundness and completeness theorem (and pro-

vide some extensions of it) for deriving semantic characterizations of the proof-theoretic

properties of pure calculi discussed in Section 2.3.

3.3.1 Strong Analyticity

Analyticity for a given calculus is traditionally obtained as a corollary of cut-admissibility

(this was the case in the seminal work of Gentzen [56]). Indeed, if all rules in a pure calcu-

lus system (except for (cut)) admit the local subformula property (i.e., the premises of each

rule consist only of subformulas of the formulas its conclusion), then cut-admissibility

implies sub-analyticity.4 However, there are many cases in which a calculus does not

enjoy cut-admissibility, and it is analytic nevertheless. Thus we provide a semantic char-

acterization of strong analyticity which is independent of cut-admissibility. To do so, we

need to identify semantics for proofs in which only some formulas may appear. This can

be easily done by considering partial valuations (see Definition 3.1.13), whose domain

consists of all formulas that may be used in proofs.

First, Definitions 3.2.1 and 3.2.2 are adapted to partial L-valuations as follows:

Definition 3.3.1. A partial L-valuation v with Imv ⊆ 2£ is said to be a model of:

1. an £-labelled L-formula x:ϕ if ϕ ∈ Domv and x ∈ v(ϕ).

2. an 〈L,£〉-sequent s if s is a 〈Domv,£〉-sequent and v is a model of some α ∈ s.
3. a set S of 〈L,£〉-sequents if v is a model of every 〈Domv,£〉-sequent s ∈ S.

We write v |= X to denote that v is a model of X, where X is either an £-labelled

L-formula, an 〈L,£〉-sequent, or a set of 〈L,£〉-sequents.

4 Quoting Ono [79]:

“The most important proof-theoretic property is the subformula property, and the most
convenient way of showing the subformula property is to show the cut elimination theorem.”

Generally, we agree with the first observation (though, we believe that other notions of analyticity based
on different relation than “subformula” have similar importance). However, we aim to show that in
many cases cut elimination is not necessarily “the most convenient” technique.
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Obviously, Definitions 3.2.1 and 3.2.2 are obtained from Definition 3.3.1 by taking

Domv = L. Note also that in Item 2 a partial L-valuation v can only be a model of

sequents consisting solely of formulas in Domv. Nevertheless, it can be a model of a set of

sequents containing formulas which are not in Domv, because only 〈Domv,£〉-sequents

are considered in Item 3.

Now, the following theorem strengthens Theorem 3.2.15, by showing that proofs that

consist only of formulas from a set F precisely correspond to the semantics given by

partial valuations whose domain is F .

Theorem 3.3.2. Let G be a pure 〈L,£〉-calculus, F a set of L-formulas, S a set of

〈L,£〉-sequents, and s an 〈F ,£〉-sequent. Then, S `FG s (i.e. there exists a proof in G

of s from S consisting only of 〈F ,£〉-sequents, see Notation 2.3.4) iff for every MG-legal

partial L-valuation v with Domv = F : if v is a model of S then it is also a model of s.

The proof is given in Section 3.4. We can now establish the connection between

the (syntactic) strong ≤-analyticity of G and the (semantic) ≤-analyticity of MG (see

Definition 3.1.16).

Theorem 3.3.3. A pure 〈L,£〉-calculus G is strongly ≤-analytic iff MG is ≤-analytic.

Proof. (⇒) Suppose that MG is not≤-analytic. Let v be an MG-legal partial L-valuation

whose domain is finite and closed under ≤, but there does not exist an MG-legal L-

valuation that extends v. Let S and s be the set of 〈L,£〉-sequents and the 〈L,£〉-sequent

defined by:

S = {{x:ϕ} | ϕ ∈ Domv, x ∈ v(ϕ)}, s = {x:ϕ | ϕ ∈ Domv, x 6∈ v(ϕ)}.
Then, by definition v |= S and v 6|= s. By Theorem 3.3.2 we have S 6`Domv

G s. We

show that S `G s. Since Domv is closed under ≤, ↓≤ [S ∪ {s}] = Domv, and it would

follow that G is not strongly ≤-analytic. Let v′ be an MG-legal L-valuation. Our

assumption entails that v′ does not extend v. Therefore there is some ϕ ∈ Domv such

that v′(ϕ) 6= v(ϕ). Thus, at least one of the following holds: (i) there is some x ∈ £, such

that x ∈ v′(ϕ) and x 6∈ v(ϕ); (ii) there is some x ∈ £, such that x ∈ v(ϕ) and x 6∈ v′(ϕ).

If (i) holds, then v′ |= s. If (ii) holds, then v′ 6|= {x:ϕ}, and thus v′ 6|= S. It follows that

v′ is either a model of s, or not a model of S. Consequently, every MG-legal L-valuation

which is a model of S is also a model of s. Hence Theorem 3.2.15 implies that S `G s.

(⇐) Suppose that MG is ≤-analytic. We show that G is strongly ≤-analytic. Let

S ∪ {s} be a set of 〈L,£〉-sequents. Suppose that S 6`FG s for F = ↓≤ [S ∪ {s}]. We

show that S 6`G s. It suffices to show that for every finite subset S ′ ⊆ S, S ′ 6`G s. Let

S ′ ⊆ S be a finite subset. Obviously, S ′ 6`F ′G s for F ′ = ↓≤ [S ′ ∪ {s}]. By Theorem 3.3.2

(note that s is an 〈F ′,£〉-sequent), there is some MG-legal partial L-valuation v with
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Domv = F ′, which is a model of S ′ but not of s. F ′ is finite and closed under ≤, and

thus our assumption entails that there exists an MG-legal L-valuation v′ that extends v.

By definition, v′ is a model of some 〈Domv,£〉-sequent s′ iff v is a model of s′. It follows

that v′ is a model of S ′ but not of s. Hence Theorem 3.2.15 implies that S ′ 6`G s.

Example 3.3.4. Consider again the pure 〈Lcl,£2〉-calculus GC1 from Example 2.2.22.

Following Example 3.2.20, the many-valued pre-system MGC1
is not sub-analytic. Thus,

by Theorem 3.3.3, GC1 is not strongly sub-analytic. However, in the same example

we showed that MGC1
is nsub-analytic for the (safe) partial order nsub defined there.

Therefore Theorem 3.3.3 implies that GC1 is strongly nsub-analytic. Note that we prove

below that GC1 enjoys strong cut-admissibility (using another semantic characterization,

see Example 3.3.10). The fact that it is strongly nsub-analytic follows from this proof

too since all rules of GC1 except for (cut) are closed under nsub (that is, for each formula

ϕ in a premise of a rule, there is some ψ in its conclusion such that 〈ϕ, ψ〉 ∈ nsub).

Example 3.3.5. Suppose that L consists of one binary connective ∧∨. Let G be a pure

〈L,£2〉-calculus, with PG = {(cut), (id)}, and the following pure 〈L,£2〉-rules:

(f:∧∨) {f:p1}, {f:p2}/{f:p1∧∨p2} (t:∧∨) {t:p1}, {t:p2}/{t:p1∧∨p2}
(sym) ∅/{f:p1∧∨p2, t:p2∧∨p1}

Then partial L-valuations (whose domain is closed under subformulas) are MG-legal iff

they satisfy the following conditions:

• v(ϕ) ∈ {{f}, {t}} for every ϕ ∈ Domv.

• If ϕ1∧∨ϕ2 ∈ Domv for some ϕ1, ϕ2 ∈ L, then:

– If v(ϕ1) = v(ϕ2) = {f} then v(ϕ1∧∨ϕ2) = {f}.
– If v(ϕ1) = v(ϕ2) = {t} then v(ϕ1∧∨ϕ2) = {t}.
– If ϕ2∧∨ϕ1 ∈ Domv then v(ϕ1∧∨ϕ2) = v(ϕ2∧∨ϕ1).

To see the reason for the last condition, note that

Sem((sym)) = ∅ ⇒ {p1∧∨p2 + {f}, p1∧∨p2 + {f, t}, p2∧∨p1 + {t}, p2∧∨p1 + {f, t}}.
A partial L-valuation v with Imv ⊆ {{f}, {t}} satisfies Sem((sym)) if for every L-

substitution σ such that {σ(p1∧∨p2), σ(p2∧∨p1)} ⊆ Domv, we have that f ∈ v(σ(p1∧∨p2)) or

t ∈ v(σ(p2∧∨p1)). Equivalently, v satisfies Sem((sym)) if for every L-formulas ϕ1 and ϕ2

such that {ϕ1∧∨ϕ2, ϕ2∧∨ϕ1} ⊆ Domv, we have that v(ϕ1∧∨ϕ2) = {f} or v(ϕ2∧∨ϕ1) = {t}.
By “switching the roles of ϕ1 and ϕ2”, we obtain that v satisfies Sem((sym)) if for every

L-formulas ϕ1 and ϕ2 such that {ϕ1∧∨ϕ2, ϕ2∧∨ϕ1} ⊆ Domv, we have that (v(ϕ1∧∨ϕ2) = {f}
or v(ϕ2∧∨ϕ1) = {t}) and (v(ϕ2∧∨ϕ1) = {f} or v(ϕ1∧∨ϕ2) = {t}). The last condition above

is equivalent to this requirement.
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Using Theorem 3.3.3, it easily follows that G is strongly sub-analytic. Roughly speak-

ing, given an MG-legal partial L-valuation v (whose domain is closed under subformu-

las), we can recursively extend v to an L-valuation by setting v(ϕ1∧∨ϕ2) = v(ϕ1) if

v(ϕ1) = v(ϕ2); otherwise v(ϕ1∧∨ϕ2) = v(ϕ2∧∨ϕ1) if v(ϕ2∧∨ϕ1) was defined before; and

v(ϕ1∧∨ϕ2) = {f} (say) otherwise.

3.3.2 Strong Cut-Admissibility

To obtain a simple semantic characterization of strong cut-admissibility, we slightly ex-

tended Theorem 3.2.15 by: (a) considering “extended sequents” that may be infinite;

and (b) restricting the truth values of certain formulas (those on which cut is allowed) to

a certain subset of VM.

Definition 3.3.6. An extended 〈L,£〉-sequent is a (possibly infinite) set of £-labelled

L-formulas. An L-valuation v with Imv ⊆ 2£ is said to be a model of an extended

〈L,£〉-sequent µ, written v |= µ, if v |= α for some α ∈ µ.

Definition 3.3.7. Let M be a many-valued pre-system for L, U ⊆ VM a set of truth

values, and C a set of L-formulas. An M-legal L-valuation v is called 〈U , C〉-restricted

v(ϕ) ∈ U for every ϕ ∈ C.

Theorem 3.3.8. The following are equivalent for every pure 〈L,£〉-calculus G, set C of

L-formulas, set S of 〈L,£〉-sequents, and extended 〈L,£〉-sequent µ:

• S `cuts:CG s for some 〈L,£〉-sequent s ⊆ µ (recall that S `cuts:CG s denotes that there

exists a proof in G of s from S in which the cut-formula of every application of a

cut rule is an element of C).
• Every 〈UMG

, C〉-restricted MGcf
-legal L-valuation which is a model of S is also a

model of µ (recall that Gcf is the calculus obtained from G by discarding all cut

rules).

The proof is given in Section 3.4. Using this soundness and completeness theorem, we

obtain the following semantic characterization of strong cut-admissibility in pure calculi.

Theorem 3.3.9. A pure 〈L,£〉-calculus G enjoys strong cut-admissibility iff for every

Ms(G)cf -legal L-valuation v, there exists an Ms(G)cf -legal L-valuation v′ such that for

every ϕ ∈ L: v′(ϕ) = v(ϕ) iff v(ϕ) 6= £.5

5Recall that for a pure 〈L,£2〉-calculus G whose only cut rule is (cut), we have that s(G) = G (see
Definition 2.3.13). In this case Ms(G)cf can be replaced by MGcf

.
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Before proving this theorem, we demonstrate its usefulness in the particular case of

GC1 .

Example 3.3.10. Consider again the pure 〈Lcl,£2〉-calculus GC1 from Examples 2.2.22

and 3.3.4. In [12] it was shown that GC1 enjoys cut-admissibility (and thus, by The-

orem 2.3.19 it enjoys strong cut-admissibility as well). We use Theorem 3.3.9 to show

that this fact can be obtained by our semantic criterion above. The only cut rule of

GC1 is (cut), and thus s(GC1) = GC1 . The many-valued pre-system M = MGC1cf

has UM = {{f}, {t}, {f, t}}. The conditions in ΛM = Sem(RGC1
) are those described

in Example 3.2.20. Now, let v be an M-legal Lcl-valuation. We construct an M-legal

Lcl-valuation v′ that satisfies the condition in Theorem 3.3.9. Let ψ1, ψ2, ... be an enumer-

ation of all Lcl formulas such that i ≤ j whenever 〈ψi, ψj〉 ∈ nsub (see Example 3.2.20 for

the definition of nsub). We recursively construct v′. Let i ≥ 1, and suppose that v′(ψj)

was defined for every j < i. v′(ψi) is defined as follows. First, if v(ψi) 6= {f, t}, then

v′(ψi) = v(ψi). Otherwise, if ψi is an atomic formula v′(ψi) = {f} (say). Otherwise, ψi

is a compound formula and then v′(ψi) is set to be either {f} or {t} based on “classical

logic reasoning” using the subformulas of ψi (for example, if ψi = ¬ψj then v′(ψi) = {f}
if v′(ψj) = {t}, and otherwise v′(ψi) = {t}). Obviously, v′(ϕ) = v(ϕ) iff v(ϕ) 6= {f, t}.
It remains to show that v′ is M-legal. For that we prove by induction on i that all the

requirements of ΛM (listed in Example 3.2.20) hold for v′ and ψ = ψi. Suppose they hold

for ψj for every j < i.

(t:¬) Suppose that ψ = ¬ϕ and f ∈ v′(ϕ) (i.e. v′(ϕ) = {f}). Then f ∈ v(ϕ),

and since v is M-legal, v(ψ) is either {t} or {f, t}. In the first, case we have

v′(ψ) = v(ψ) = {t}. In the latter, v′(ψ) = {t} as well, but this time because of

the classical truth tables.

(f:¬¬) Suppose that ψ = ¬¬ϕ and f ∈ v′(ϕ) (i.e. v′(ϕ) = {f}). Then f ∈ v(ϕ),

and since v is M-legal, v(ψ) is either {f} or {f, t}. In the first, case we have

v′(ψ) = v(ψ) = {f}. In the latter, we have v′(¬ϕ) = {t} (by the induction

hypothesis since ¬ϕ = ψj for some j < i, and the condition (t:¬)), and thus

v′(ψ) = {f} according to the classical truth tables.

(f:¬∧1) Suppose that ψ = ¬(ϕ ∧ ¬ϕ), t ∈ v′(ϕ) and t ∈ v′(¬ϕ) (i.e. v′(ϕ) = {t}
and v′(¬ϕ) = {t}). Then t ∈ v(ϕ) and t ∈ v(¬ϕ). Since v is M-legal, v(ψ) is

either {f} or {f, t}. In the first, case we have v′(ψ) = v(ψ) = {f}. In the latter,

v′(ϕ ∧ ¬ϕ) = {t} (by the induction hypothesis since ϕ ∧ ¬ϕ = ψj for some j < i,

and the condition (t:∧)), and so v′(ψ) = {f} according to the classical truth tables.

(f:¬∧2) Suppose that ψ = ¬(ϕ1 ∧ ϕ2), f ∈ v′(¬ϕ1) and f ∈ v′(¬ϕ2) (i.e. v′(¬ϕ1) = {f}
and v′(¬ϕ2) = {f}). Then f ∈ v(¬ϕ1) and f ∈ v(¬ϕ2). Since v is M-legal, v(ψ)
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is either {f} or {f, t}. In the first, case we have v′(ψ) = v(ψ) = {f}. In the

latter, v′(ϕ1) = {t} and v′(ϕ2) = {t} according to the classical truth tables (by

the induction hypothesis since ¬ϕ1 = ψj1 and ¬ϕ2 = ψj2 for some j1, j2 < i, and

the condition (t:¬)). Thus v′(ϕ1 ∧ ϕ2) = {t} (by the induction hypothesis since

ϕ1∧ϕ2 = ψj for some j < i, and the condition (t:∧)), and so v′(ψ) = {f} according

to the classical truth tables.

(f:¬∨1) Suppose that ψ = ¬(ϕ1 ∨ ϕ2), f ∈ v′(¬ϕ1) (i.e. v′(¬ϕ1) = {f}) and (f ∈ v′(ϕ2)

or f ∈ v′(¬ϕ2)). Then f ∈ v(¬ϕ1) and (f ∈ v(ϕ2) or f ∈ v(¬ϕ2)). Since v is M-

legal, v(ψ) is either {f} or {f, t}. In the first, case we have v′(ψ) = v(ψ) = {f}. In

the latter, v′(ϕ1) = {t} (by the induction hypothesis since ¬ϕ1 = ψj for some j < i,

and the condition (t:¬)). Thus v′(ϕ1∨ϕ2) = {t} (by the induction hypothesis since

ϕ1∨ϕ2 = ψj for some j < i, and the condition (t:∨)), and so v′(ψ) = {f} according

to the classical truth tables.

The other cases are similar. It follows that GC1 enjoys strong cut-admissibility.

To prove Theorem 3.3.9, we use the following lemma.

Lemma 3.3.11. Let G be a pure 〈L,£〉-calculus.

1. UMs(G)cf
= UMs(G)

∪ {£}.
2. An L-valuation v is Ms(G)-legal iff it is Ms(G)cf -legal and v′(ϕ) 6= £ for every

ϕ ∈ L.

Proof. 2 directly follows from 1 since the only difference between Ms(G) and Ms(G)cf is

in the set of legal truth values. We prove 1. Since Ps(G)cf ⊆ Ps(G), we obviously have

UMs(G)
⊆ UMs(G)cf

. In addition, since there are no cut rules in s(G)cf , £ ∈ £(r) for every

r ∈ Ps(G)cf , and thus £ ∈ UMs(G)cf
. Now, let X ∈ UMs(G)cf

, and suppose that X 6∈ UMs(G)
.

We show that X = £. By definition, X ⊆ £. To show that £ ⊆ X, let x ∈ £. Since

X 6∈ UMs(G)
, X 6∈ £(r) for some r ∈ Ps(G). The fact that X ∈ UMs(G)cf

entails that r must

be a cut rule, namely r = (X1:p1), ... , (Xn:p1)/∅ for some X1, ... , Xn ⊆ £. Since X 6∈ UMs(G)
,

we have Xi ∩ X 6= ∅ for every 1 ≤ i ≤ n. Now, if {x} ∈ {X1, ... , Xn}, then we have that

x ∈ X and we are done. Otherwise, by definition, s(G)cf includes the primitive £-rule

rx = (X1:p1), ... , (Xn:p1)/{x:p1}. The fact that X ∈ UMs(G)cf
then entails that X ∈ £(rx).

It follows that {x} ∩ X 6= ∅, and thus x ∈ X.

Proof of Theorem 3.3.9. (⇒) Suppose that v is an Ms(G)cf -legal L-valuation, and there

does not exist an Ms(G)cf -legal L-valuation v′ such that for every ϕ ∈ L: v′(ϕ) = v(ϕ)

iff v(ϕ) 6= £. Let S and µ be the set of 〈L,£〉-sequents and the extended 〈L,£〉-sequent

defined by:

S = {{x:ϕ} | ϕ ∈ L, v(ϕ) 6= £, x ∈ v(ϕ)} and µ = {x:ϕ | ϕ ∈ L, x 6∈ v(ϕ)}.
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Then, by definition v |= S and v 6|= µ. Now, frm[S] ⊆ {ϕ ∈ L | v(ϕ) 6= £}, and

thus v is 〈UMs(G)
, frm[S]〉-restricted (using Lemma 3.3.11). By Theorem 3.3.8 we have

S 6`cuts:frm[S]
s(G) s for every 〈L,£〉-sequent s ⊆ µ. We show that S `s(G) s for some 〈L,£〉-

sequent s ⊆ µ. By Proposition 2.3.18, it would then follow that G does not enjoy

cut-admissibility. Let v′ be an Ms(G)-legal L-valuation. By Lemma 3.3.11, it is Ms(G)cf -

legal and v′(ϕ) 6= £ for every ϕ ∈ L. Thus our assumption entails that there is some

ϕ ∈ L such that v′(ϕ) 6= v(ϕ) and v(ϕ) 6= £. Thus, at least one of the following holds:

(i) there is some x ∈ £, such that x ∈ v′(ϕ) and x 6∈ v(ϕ); (ii) there is some x ∈ £, such

that x ∈ v(ϕ) and x 6∈ v′(ϕ). If (i) holds, then v′ |= µ. If (ii) holds, then v′ 6|= {x:ϕ}, and

thus v′ 6|= S. It follows that v′ is either a model of µ, or not a model of S. Consequently,

every Ms(G)-legal L-valuation which is a model of S is also a model of µ. Theorem 3.3.8

implies that S `s(G) s for some 〈L,£〉-sequent s ⊆ µ.

(⇐) If G does not have any cut rule, then the claim is trivially true. Assume other-

wise. Suppose that for every Ms(G)cf -legal L-valuation v, there exists an Ms(G)cf -legal

L-valuation v′ such that for every ϕ ∈ L: v′(ϕ) = v(ϕ) iff v(ϕ) 6= £. We prove that for

every set S of 〈L,£〉-sequents and 〈L,£〉-sequent s, S `cuts:frm[S]
s(G) s whenever S `s(G) s.

By Proposition 2.3.18 it would follow that G enjoys strong cut-admissibility. Suppose

that S 6`cuts:frm[S]
s(G) s. Let C = frm[S]. By Theorem 3.3.8, there is a 〈UMs(G)

, C〉-restricted

Ms(G)cf -legal L-valuation v which is a model of S, but not of s. Our assumption entails

that there exists an Ms(G)cf -legal L-valuation v′ such that for every ϕ ∈ L: v′(ϕ) = v(ϕ)

iff v(ϕ) 6= £. Note that in particular, we must have v′(ϕ) 6= £ for every ϕ ∈ L, and thus,

by Lemma 3.3.11, v′ is Ms(G)-legal. Now, since G has at least one cut rule, £ 6∈ UMs(G)
.

Since v is 〈UMs(G)
, C〉-restricted, v(ϕ) 6= £ for every ϕ ∈ frm[S]. Thus v′(ϕ) = v(ϕ) for

every ϕ ∈ frm[S], and so v′ |= S as well. Since v′(ϕ) ⊆ v(ϕ) for every ϕ ∈ L, we have

v′ 6|= s. By Theorem 3.2.15, S 6`s(G) s.

3.3.3 Axiom-Expansion

Using the soundness and completeness theorem above (Theorem 3.2.15), we automatically

obtain a semantic characterization of axiom-expansion for a given connective in a given

pure calculus.

Corollary 3.3.12. A connective � ∈ ♦L admits axiom-expansion in a pure 〈L,£〉-
calculus G iff for every MGif

-legal L-valuation v: if X ∩ v(pi) 6= ∅ for every X ⊆ £ such

that ∅/(X:p1) ∈ PG and 1 ≤ i ≤ ar(�), then X ∩ v(�(p1, ... , par(�))) 6= ∅ for every X ⊆ £

such that ∅/(X:p1) ∈ PG.

Proof. By definition, � admits axiom-expansion in G iff for every ∅/(Y:p1) ∈ PG, we have

{(X:pi) | ∅/(X:p1) ∈ PG, 1 ≤ i ≤ ar(�)} `Gif
(Y: � (p1, ... , par(�))). The given condition is
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equivalent by Theorem 3.2.15.

For ordinary pure 〈L,£2〉-calculi in which the only identity axiom is (id) we obtain

that a connective � ∈ ♦L admits axiom-expansion in G iff for every MGif
-legal L-

valuation v: if v(pi) 6= ∅ for every 1 ≤ i ≤ ar(�) then v(�(p1, ... , par(�))) 6= ∅.

3.4 Soundness and Completeness Proofs

In this section we provide proofs of the three soundness and completeness theorems above

(Theorems 3.2.15, 3.3.2 and 3.3.8). To avoid repetitions, we will prove one more general

result, from which these theorems directly follow. We consider 〈U , C〉-restricted MG-

legal partial L-valuations. These are defined as MG-legal partial L-valuations with the

additional requirement that v(ϕ) ∈ U for every ϕ ∈ C∩Domv. In addition, we say that a

〈U , C〉-restricted MG-legal partial L-valuation v is a model of an extended 〈L,£〉-sequent

µ if µ is an extended 〈Domv,£〉-sequent (that is, all L-formulas that occur in µ are in

Domv), and v |= α for some α ∈ µ. The general soundness and completeness theorem is

given by:

Theorem 3.4.1. Let G be a pure 〈L,£〉-calculus, F , C sets of L-formulas, S a set of

〈L,£〉-sequents, and µ an extended 〈F ,£〉-sequent. Then the following are equivalent:

1. There exists a proof P in G of some 〈L,£〉-sequent s ⊆ µ from S, that consists

only of 〈F ,£〉-sequents, and the cut-formula of every application of a cut rule in

P is an element of C.
2. For every 〈UMG

, C〉-restricted MGcf
-legal partial L-valuation v with Domv = F , it

holds that if v is a model of S then it is also a model of µ.

Note that the availability of the weakening rules ensures that when µ is finite (forming

a usual 〈F ,£〉-sequent), then 1 can be equivalently written as: there exists a proof P

in G of µ from S that consists only of 〈F ,£〉-sequents and the cut-formula of every

application of a cut rule in P is an element of C. Therefore:

• Theorem 3.3.2 follows by taking C = L (since 〈UMG
,L〉-restricted MGcf

-legal par-

tial L-valuations are exactly MG-legal partial L-valuations).

• Theorem 3.2.15 follows by taking F = C = L (since 〈UMG
,L〉-restricted MGcf

-legal

partial L-valuations with Domv = L are exactly MG-legal L-valuations).

In addition, Theorem 3.3.8 follows by taking F = L (since 〈UMG
, C〉-restricted MGcf

-

legal partial L-valuations with Domv = L are exactly 〈UMG
, C〉-restricted MGcf

-legal

L-valuations).

The following simple proposition will be useful in the proof below:
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Proposition 3.4.2. Let v be a partial L-valuation with Imv ⊆ 2£, s an 〈L,£〉-sequent,

and σ an L-substitution such that σ(s) is a 〈Domv,£〉-sequent. Then, v |= σ(I(s)) iff

v |= σ(s) (see Definition 3.2.10).

Proof. Directly follows from the definitions (note that σ(I(s)) = I(σ(s))).

Next, we prove Theorem 3.4.1.

Soundness

Assume that 1 holds. Let v be an 〈UMG
, C〉-restricted MGcf

-legal partial L-valuation

with Domv = F . Suppose that v |= S. Using induction on the length of P , we show

that v |= s for every sequent s occurring in P . It follows that v |= µ. This trivially holds

for the sequents of S (note that only 〈Domv,£〉-sequents in S can appear in P ). We

show that this property is also preserved by applications of the rules of G. Suppose that

s = σ(s′) ∪ c1 ∪ ... ∪ cn is derived from σ(s1) ∪ c1, ... , σ(sn) ∪ cn using a pure 〈L,£〉-rule

r = s1, ... , sn/s
′ of G. Assume that v |= σ(si) ∪ ci for every 1 ≤ i ≤ n. We show that

v |= s. Since s occurs in P , s is a 〈Domv,£〉-sequent. Thus, by definition it suffices to

show that v |= α for some α ∈ s. If v |= α for some α ∈ c1 ∪ ... ∪ cn, then we are done.

Assume otherwise. Then our assumption entails that v |= σ(si) for every 1 ≤ i ≤ n. We

show that v |= σ(s′). Distinguish between two cases:

• Suppose that r is a primitive £-rule. Then, σ(si) = (Xi:ϕ) for 1 ≤ i ≤ n and

σ(s′) = (X:ϕ) for some X1, ... , Xn, X ⊆ £ and ϕ ∈ L. For every 1 ≤ i ≤ n, since

v |= σ(si), there exists some x ∈ Xi such that x ∈ v(ϕ). In other words, for every

1 ≤ i ≤ n, Xi ∩ v(ϕ) 6= ∅. Now, note that r cannot be a weakening rule. Indeed,

if r were a weakening rule then n = 1 and X1 = ∅, and this contradicts the fact

that X1 ∩ v(ϕ) 6= ∅. In addition, r cannot be a cut rule (i.e. we must have X 6= ∅).
Indeed, if r were a cut rule, then since the cut-formula of every application of a

cut rule in P is an element of C, we would have that ϕ ∈ C. In this case, since v

is 〈UMG
, C〉-restricted, v(ϕ) ∈ UMG

, and in particular v(ϕ) ∈ £(r). It would then

follow that X ∩ v(ϕ) 6= ∅, but this is not possible when X = ∅. Therefore, we have

that r ∈ PGcf
. Since v is MGcf

-legal, v(ϕ) ∈ UMGcf
. In particular, v(ϕ) ∈ £(r),

and we obtain that X ∩ v(ϕ) 6= ∅. Thus x:ϕ ∈ σ(s′) for some x ∈ v(ϕ). It follows

that v |= σ(s′).

• Suppose that r is not a primitive £-rule. For every 1 ≤ i ≤ n, since v |= σ(si),

we have that v |= σ(I(si)) (using Proposition 3.4.2). Since v is MGcf
-legal, v

satisfies Sem(r) = {I(si) | 1 ≤ i ≤ n} ⇒ I(s′). Since σ(ϕ) ∈ Domv for every ϕ

that occurs in Sem(r) (since σ(si) for 1 ≤ i ≤ n and σ(s′) occur in the proof P ),
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and v |= σ(I(si)) for every 1 ≤ i ≤ n, we have that v |= σ(I(s′)) as well. By

Proposition 3.4.2, v |= σ(s′).

Completeness

We prove that 2 implies 1. For this proof, call an extended 〈L,£〉-sequent µ′ provable

if there is a proof P in G of some 〈L,£〉-sequent s′ ⊆ µ′ from S, that consists only of

〈F ,£〉-sequents, and the cut-formula of every application of a cut rule in P is an element

of C. Otherwise, say that µ′ is unprovable. Suppose that µ is unprovable. We construct

an 〈UMG
, C〉-restricted MGcf

-legal partial L-valuation v with Domv = F , that is a model

of S, but not of µ. Call an extended 〈L,£〉-sequent µ∗ maximal if it satisfies the following

conditions:

1. frm[µ∗] ⊆ F .

2. µ∗ is unprovable.

3. For every £-labelled F -formula α 6∈ µ∗, {α} ∪ µ∗ is provable.

We first construct a maximal extended 〈L,£〉-sequent µ∗, such that µ ⊆ µ∗. Let α1, α2, ...

be an enumeration of all £-labelled F -formulas. Recursively define an (infinite) sequence

of extended 〈L,£〉-sequents µ0, µ1, ..., as follows. Let µ0 = µ. For k ≥ 1, let µk = µk−1

iff {αk} ∪ µk−1 is provable. Otherwise, let µk = {αk} ∪ µk−1. Finally, let µ∗ =
⋃
k≥0 µk.

It is easy to verify that µ∗ has all required properties.

Now, define a partial L-valuation v by Domv = F and v(ϕ) = {x ∈ £ | x:ϕ 6∈ µ∗} for

every ϕ ∈ F . Note that the following property holds:

(a) For every 〈F ,£〉-sequent s, v |= s iff s∪c is provable for some 〈F ,£〉-sequent c ⊆ µ∗.

Proof. Let s be an 〈F ,£〉-sequent. Suppose that there exists an 〈F ,£〉-sequent

c ⊆ µ such that s ∪ c is provable. The maximality of µ∗ entails that s′ 6⊆ µ∗. Thus

x:ϕ 6∈ µ∗ for some x:ϕ ∈ s′. The definition of v entails that x ∈ v(ϕ), and so v |= s′.

For the converse, assume that v |= s′. Hence there exists some x:ϕ ∈ s′ such that

x ∈ v(ϕ). By definition, x:ϕ 6∈ µ∗. The maximality of µ∗ entails that there exists a

sequent c ⊆ µ∗ such that {x:ϕ} ∪ c is provable. The availability of the weakening

rules entails that s′ ∪ c is provable as well.

Next, we show that v is MGcf
-legal. We first prove that v(ϕ) ∈ UMGcf

for every

ϕ ∈ F . Thus we prove that for every ϕ ∈ F , v(ϕ) ∈ £(r) for every r ∈ PGcf
. Let

ϕ ∈ F , and let r = (X1:p1), ... , (Xn:p1)/(X:p1) be a primitive £-rule in PGcf
. To see that

v(ϕ) ∈ £(r), we show that if Xi ∩ v(ϕ) 6= ∅ for every 1 ≤ i ≤ n, then X ∩ v(ϕ) 6= ∅.
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Suppose that Xi ∩ v(ϕ) 6= ∅ for every 1 ≤ i ≤ n. Hence v |= (Xi:ϕ). (a) entails that

for every 1 ≤ i ≤ n, there exists some 〈F ,£〉-sequent ci ⊆ µ∗ such that (Xi:ϕ) ∪ ci is

provable. Using the rule r, we obtain that (X:ϕ) ∪ c1 ∪ ... ∪ cn is provable. (a) again

entails that v |= (X:ϕ), and so X ∩ v(ϕ) 6= ∅.
Now, we prove that v |= ΛMGcf

, that is: v |= Sem(r) for every r ∈ RG (by

definition, RG = RGcf
). Let r = s1, ... , sn/s be a pure 〈L,£〉-rule in RG. By defi-

nition, Sem(r) = {I(si) | 1 ≤ i ≤ n} ⇒ I(s). Let σ be an L-substitution, such that

σ(ϕ) ∈ Domv = F for every ϕ that occurs in Sem(r). Suppose that v |= σ(I(si)) for

every 1 ≤ i ≤ n. Thus v |= σ(si) (Proposition 3.4.2) for every 1 ≤ i ≤ n. (a) entails that

for every 1 ≤ i ≤ n there exists some 〈F ,£〉-sequent ci ⊆ µ∗ such that σ(si)∪ ci is prov-

able. Now, using these proofs for 1 ≤ i ≤ n and the rule r we obtain that σ(s)∪c1∪...∪cn
is provable. (a) entails that v |= σ(s). By Proposition 3.4.2, v |= σ(I(s)).

Next, we show that v is 〈UMG
, C〉-restricted. Let ϕ ∈ C∩F . To see that v(ϕ) ∈ UMG

it

suffices to show that v(ϕ) ∈ £(r) for every cut rule r ∈ PG (we already have v(ϕ) ∈ £(r)

for every other primitive rule r of G). Let (X1:p1), ... , (Xn:p1)/∅ be a cut rule in PG.

To see that v(ϕ) ∈ £(r), we show that Xi ∩ v(ϕ) = ∅ for some 1 ≤ i ≤ n. Suppose

otherwise. Then for every 1 ≤ i ≤ n v |= (Xi:ϕ), and (a) entails that there exists some

〈F ,£〉-sequent ci ⊆ µ∗ such that (Xi:ϕ)∪ ci is provable. Applying the rule r (with ϕ ∈ C
as the cut-formula), we obtain that c1 ∪ ... ∪ cn is provable. But since c1 ∪ ... ∪ cn ⊆ µ∗,

this contradicts the properties of µ∗.

Finally, we show that v |= S but v 6|= µ. Let s ∈ S be an 〈F ,£〉-sequent. Obviously,

s is provable, and by (a), v |= s. To see that v 6|= µ, note that since µ ⊆ µ∗, x 6∈ v(ϕ) for

every x:ϕ ∈ µ.



Chapter 4

Canonical Calculi

In the previous chapter we established a strong connection between pure calculi and

many-valued systems. However, there is a price to pay for the high generality. Evidently,

the set of semantic conditions of the many-valued pre-system MG for some calculus G

might be very complicated, which makes the search for a refuting valuation as com-

plicated as proof-search in G. In such cases the semantic criteria for cut-admissibility

and analyticity might be useless. Thus it makes sense to study narrower families of se-

quent calculi, for which we can obtain effective semantics, as well as simple and decidable

characterizations of their proof-theoretic properties.

A particular interesting family of this sort is the family of canonical systems, that was

introduced in [17]. The idea behind canonical systems implicitly underlies a long tradition

in the philosophy of logic, established by Gentzen in his seminal paper [56]. According

to this tradition, the meaning of a connective � is determined by the derivation rules

which are associated with it. For that matter, one should have rules of some “ideal”

type, in each of which � is mentioned exactly once, and no other connective is involved.

Formulating this idea, [17] introduced the notion of a “canonical (introduction) rule”,

and “canonical propositional Gentzen-type systems” were defined as two-sided sequent

systems in which: (i) all logical rules are canonical rules; (ii) the usual cut rule, identity-

axiom and all structural rules are included. The semantics of canonical systems was

given using non-deterministic matrices (Nmatrices), a natural generalization of logical

many-valued matrices. This revealed a remarkable triple correspondence in canonical

systems between cut-admissibility, sub-analyticity, and the existence of a characteristic

two-valued Nmatrix. Later the theory was generalized to many-sided sequent calculi that

employ certain (fixed) cut rules and identity axioms [19, 21].

In this chapter we generalize previously studied canonical systems, and study a wide

family of pure calculi employing canonical logical rules. Since all of them are pure

sequent calculi, we utilize the general results of the previous chapter. We show that in

47



48 Chapter 4. Canonical Calculi

this more restricted settings, the obtained many-valued systems are very simple, and

they can be seen as a slight generalization the framework of Nmatrices from [17]. We

call these many-valued systems partial non-deterministic matrices (PNmatrices). As

Nmatrices, the main attractive property of (finite) PNmatrices is their effectiveness, as

they always induce decision procedures for their underlying logics. In addition, we show

that using the PNmatrix that characterizes a given canonical calculus G, it is easy to

decide whether G admits strong sub-analyticity, strong cut-admissibility and axiom-

expansion. In particular, our results show that strong sub-analyticity is equivalent to

strong cut-admissibility in this family of calculi.

The structure of this chapter is as follows. First, we precisely define the family

of canonical calculi that we study (which is a subfamily of pure calculi studied in the

previous chapters). In Section 4.2 we present the framework of PNmatrices (which is a

subfamily of many-valued systems introduced in the previous chapter) and show that it

is effective. The connection between canonical calculi and PNmatrices is established and

exemplified in Section 4.3. Finally, Section 4.4 provides simple decidable characterizations

of proof-theoretic properties of canonical calculi based on their characteristic PNmatrices.

Publications Related to this Chapter

Most of the material in this chapter was included in [28, 29]. However, the notions

and proofs in these papers consider canonical calculi and PNmatrices in their own right.

Here we introduce them as particular cases of pure calculi and many-valued systems,

and derive our results using the more general theorems from the previous chapters. In

addition, specific cases of canonical two-sided calculi without cut and/or identity axiom

were included in [68, 70].

4.1 Canonical Calculi

Canonical calculi are pure calculi that, in addition to the primitive rules, include only

pure rules of a special well-behaved form, called canonical rules. Each canonical rule is

associated with some connective �, and �(p1, ... , par(�)) is the only formula occurring in

its conclusion. In turn, its premises are composed only from p1, ... , par(�). Formally, this

is defined as follows:

Definition 4.1.1. A pure 〈L,£〉-rule r is called canonical if its conclusion has the form

{X: � (p1, ... , par(�))} for some non-empty X ⊆ £ and � ∈ ♦L, and its premises are all

〈{p1, ... , par(�)},£〉-sequents. Canonical pure 〈L,£〉-rules will be also called canonical

〈L,£〉-rules, and in the case above we will say that r is a canonical 〈L,£〉-rule for �.
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Note that by definition canonical 〈L,£〉-rules for a connective � ∈ ♦L have the form:

(X1
1:p1) ∪ ... ∪ (X

ar(�)
1 :par(�)), ... , (X

1
m:p1) ∪ ... ∪ (Xar(�)

m :par(�))/(X: � (p1, ... , par(�))).

for some m ≥ 0 and X1
1, ... , X

ar(�)
1 , ... , X1

m, ... , X
ar(�)
m , X ⊆ £ (where X is not empty). An

application of a rule of this form is any inference step of the following form:

(X1
1:ϕ1) ∪ ... ∪ (X

ar(�)
1 :ϕar(�)) ∪ c1 ... (X1

m:ϕ1) ∪ ... ∪ (X
ar(�)
m :ϕar(�)) ∪ cm

(X: � (ϕ1, ... , ϕar(�))) ∪ c1 ∪ ... ∪ cm
where ϕ1, ... , ϕar(�) are L-formulas, and ci is an 〈L,£〉-sequent for every 1 ≤ i ≤ m.

Example 4.1.2. The pure 〈L,£2〉-rules from Example 2.2.6 {t:p1}, {f:p2}/{f:p1 ⊃ p2},
{f:p1, t:p2}/{t:p1 ⊃ p2}, and {t:p2}/{t:p1 ⊃ p2}, are all canonical. On the other hand,

the rules {f:¬p1}, {f:¬p2}/{f:¬(p1 ∧ p2)} and {t:p1}, {t:¬p1}/{f:¬(p1 ∧ ¬p1)} from Ex-

ample 2.2.22 are not canonical.

Example 4.1.3. Note that we allow the formula in the conclusion to appear with more

than one label. For example, ∅/{f: ? p1, t: ? p1} is a canonical 〈{?1}, {f, t, i}〉-rule. In

fact, this rule is also a canonical 〈{?1},£2〉-rule, that may be useful when (id) is not

available in general.

In turn, canonical calculi are defined as follows.

Definition 4.1.4. A canonical 〈L,£〉-calculus G is a pure 〈L,£〉-calculus, such that RG

(the set of non-primitive rules of G) consists only of canonical 〈L,£〉-rules.

Note that we do impose any limitations on the primitive rules, in particular allowing

any set of cuts and identity axioms in canonical calculi. Hence the canonical calculi

studied here are substantially more general than previously studied canonical systems:

• The canonical systems of [17] correspond to canonical 〈L,£2〉-calculi whose primi-

tive rules consist of (cut) and (id) (except for the weakening rules), and the conclu-

sion of each non-primitive rule takes the form {x: � (p1, ... , par(�))} for some x ∈ £2

and � ∈ ♦L. In particular, LK (see Example 2.2.20) is such a canonical 〈L,£2〉-
calculus.

• The signed canonical calculi of [19, 21] are similar to our canonical calculi, but they

all employ {x:p1}, {y:p1}/∅ for every x 6= y as cut rules and ∅/(£ : p1) as the only

identity axiom.

In addition, the family of canonical calculi studied here includes all labelled calculi from

[26] for many-valued logics.

Due to the special form of the rules of canonical calculi (which, except for cuts,

enjoy the subformula property), in this family of calculi cut-admissibility guarantees

sub-analyticity:
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Proposition 4.1.5. If a canonical calculus enjoys (strong) cut-admissibility, then it is

(strongly) sub-analytic.

Using the semantics, we show below that these two properties are actually equivalent

(Corollary 4.4.4).

4.2 Partial Non-deterministic Matrices

In this section we introduce the semantic framework of partial non-deterministic matrices

(PNmatrices), and show that the consequence relations induced by (finite) PNmatrices

are always decidable. In the next section we show that this framework is indeed suitable

for all canonical calculi.

PNmatrices are many-valued systems (see Definition 3.1.5) in which all semantic

conditions have the following well-behaved form:

Definition 4.2.1. An L-semantic condition I ⇒ I over U is called canonical if there is

some � ∈ ♦L, such that the formulas occurring in I are all in {p1, ... , par(�)}, and I has

the form {�(p1, ... , par(�)) + ui | ui ∈ U ′} for some non-empty (finite) U ′ ⊆ U . In this

case we also say that I ⇒ I is a canonical L-semantic condition for �.

The semantic conditions in Example 3.2.12 are canonical L-semantic conditions for

⊃. On the other hand, the L-semantic condition in Example 3.2.13 is not canonical.

Example 4.2.2. Suppose that ⊃∈ ♦2
L, and let U = {f, t}. The following are canonical

L-semantic conditions for ⊃ (over U):

{{p1 + t}, {p2 + f}} ⇒ {p1 ⊃ p2 + f}
{{p2 + t}} ⇒ {p1 ⊃ p2 + t}

Definition 4.2.3. A (pre-) partial non-deterministic matrix ((pre-) PNmatrix, for short)

for L is a many-valued (pre-) system M for L, in which all L-semantic conditions in ΛM

are canonical.

Now, the semantic conditions in (pre-) PNmatrices can be easily presented using

many-valued truth tables. However, usual deterministic truth tables would not suffice.

Thus, as done in [17], we use non-deterministic truth tables, where there might be more

than one option to determine the value of a compound formula according to the values

of its immediate subformulas. In fact, we slightly extend this notion, by introducing

partial non-deterministic truth tables, in which we also allow empty sets of options to

appear. This extension will enable us to have “truth tables presentation” for all (pre-)

PNmatrices.
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Definition 4.2.4. Let � ∈ ♦L and let U be a set of truth vales.

1. A partial non-deterministic truth table (PNtable, for short) for � over U is a function

from Uar(�) to 2U .

2. A partial L-valuation v with Imv ⊆ U respects a PNtable Ξ for � over U if

v(σ(�(p1, ... , par(�)))) ∈ Ξ(v(σ(p1)), ... , v(σ(par(�)))

for every L-substitution σ such that σ({p1, ... , par(�), �(p1, ... , par(�))}) ⊆ Domv.

Example 4.2.5. Let L = {?1}. Consider the following PNtables for ? over U = {u1, u2}:
Ξ1

u1 {u2}
u2 {u1}

Ξ2

u1 {u2}
u2 {u1, u2}

Ξ3

u1 ∅
u2 {u2}

The L-valuation assigning u2 to all formulas respects Ξ2 and Ξ3, but not Ξ1. In addition,

this is the only L-valuation (whose image is contained in U) that respects Ξ3.

Now, any set of canonical L-semantic conditions for some connective naturally induces

a PNtable.

Example 4.2.6. Suppose that ⊃∈ ♦2
L. Let M be a pre-PNmatrix for L such that

VM = UM = {f, t}, and ΛM consists of the canonical L-semantic conditions for ⊃ from

Example 4.2.2. Consider the PNtable Xi for ⊃ over {f, t}:1

Ξ f t

f {f, t} {t}
t {f} {t}

It is easy to verify that a partial L-valuation v with Domv closed under subformulas

and Imv ⊆ {f, t} is M-legal iff it respects Ξ. Note that this PNtable corresponds to the

semantics of “primal implication” from [62].

The general construction is given by:

Definition 4.2.7. Let M be a (pre-) PNmatrix. For every � ∈ ♦L, �M is the PNtable for

� over VM defined as follows. For every u1, ... , uar(�) ∈ VM, �M(u1, ... , uar(�)) consists of

all truth values u ∈ VM such that for every canonical L-semantic condition I ⇒ I ∈ ΛM

for �, �(p1, ... , par(�)) + u ∈ I whenever for every I ′ ∈ I we have pi + ui ∈ I ′ for some

1 ≤ i ≤ ar(�).

Example 4.2.8. Let L = {?1}. Consider the three pre-PNmatrices M1,M2 and M3 for

L defined by: VMi
= UMi

= {u1, u2} and:

1We represent PNtables for binary connectives by two-dimensional tables. The lines range over the
first argument, and the columns over the second one.
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1. ΛM1 = {{{p1 + u1}} ⇒ I2, {{p1 + u2}} ⇒ I1}
2. ΛM2 = {{{p1 + u1}} ⇒ I2}
3. ΛM3 = {{{p1 + u1}} ⇒ I1, {{p1 + u1}} ⇒ I2, {{p1 + u2}} ⇒ I2}

where: I1 = {?p1 + u1} and I2 = {?p1 + u2}. Then for every 1 ≤ i ≤ 3, ?Mi
= Ξi given

in Example 4.2.5.

Proposition 4.2.9. Let M be a (pre-) PNmatrix. A partial L-valuation v whose domain

is closed under subformulas is M-legal iff Imv ⊆ UM and v respects �M for every � ∈ ♦L.

Proof. The proof is completely straightforward using the definitions above. Let v be a

partial L-valuation whose domain is closed under subformulas.

1. Suppose that v is M-legal. By definition, Imv ⊆ UM. Let � ∈ ♦L and let

ϕ = �(p1, ... , par(�)). We show that v respects �M. Let σ be an L-substitution with

σ({p1, ... , par(�), ϕ}) ⊆ Domv. We show that v(σ(ϕ)) ∈ �M(v(σ(p1)), ... , v(σ(par(�))).

By definition, it suffices to show that for every canonical L-semantic condition

I ⇒ I ∈ ΛM for �, �(p1, ... , par(�)) + v(σ(ϕ)) ∈ I whenever for every I ′ ∈ I we

have pi + v(σ(pi)) ∈ I ′ for some 1 ≤ i ≤ ar(�). Suppose that for every I ′ ∈ I
we have pi + v(σ(pi)) ∈ I ′ for some 1 ≤ i ≤ ar(�). Then for every I ′ ∈ I, v

satisfies σ(I ′). Since v is M-legal it satisfies I ⇒ I. Hence, v satisfies σ(I) (note

that σ(ψ) ∈ Domv for each formula ψ that occurs in I ⇒ I). Since I ⇒ I is a

canonical L-semantic condition for �, it follows that σ(ϕ) + v(σ(ϕ)) ∈ σ(I). Thus

ϕ + v(σ(ϕ)) ∈ I.

2. Suppose that Imv ⊆ UM and v respects �M for every � ∈ ♦L. We show that v is

M-legal. Thus we have to show that v satisfies every L-semantic condition I ⇒ I

in ΛM. Let I ⇒ I ∈ ΛM. Since M is a (pre-) PNmatrix, I ⇒ I is a canonical

L-semantic condition for some connective �. Let σ be an L-substitution such that

σ(ϕ) ∈ Domv for every ϕ that occurs in I ⇒ I. Let ϕ = �(p1, ... , par(�)). In

particular, ϕ occurs in I, and thus σ(ϕ) ∈ Domv. Since Domv is closed under

subformulas we also have σ({p1, ... , par(�)}) ⊆ Domv. Suppose that v satisfies

σ(I ′) for every I ′ ∈ I. Then for every I ′ ∈ I, there is some 1 ≤ i ≤ ar(�)
such that pi + v(σ(pi)) ∈ I. The definition of �M ensures that ϕ + u ∈ I for

every u ∈ �M(v(σ(p1)), ... , v(σ(par(�)))). Now, since v respects �M, we have that

v(σ(ϕ)) ∈ �M(v(σ(p1)), ... , v(σ(par(�)))). Therefore, ϕ + v(σ(ϕ)) ∈ I. It follows

that v satisfies σ(I).
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4.2.1 Effectiveness

The major attractive property of PNmatrices is their effectiveness: the logics induced by

finite PNmatrices are all decidable. This can be easily shown for the subclass of proper

PNmatrices, that corresponds to the Nmatrices of [17] (where no empty sets of truth

values are allowed to appear in the truth tables of the logical connectives):

Definition 4.2.10. A (pre-) PNmatrix M for L, is called proper if UM is non-empty,

and for every connective � ∈ ♦L and u1, ... , uar(�) ∈ UM, �M(u1, ... , uar(�)) ∩ UM 6= ∅.

Example 4.2.11. Let L = {?1}. Consider the three pre-PNmatrices M1,M2 and M3

for L given in Example 4.2.8. Then M1 and M2 are proper, but M3 is not proper since

?M3(u1) ∩ {u1, u2} = ∅.

Proper PNmatrices are exactly these in which every partial valuation (whose domain

is closed under subformulas) can be extended to a full one, and thus they are sub-analytic

many-valued systems (see Definition 3.1.16). Hence the effectiveness of proper PNma-

trices directly follows from Theorem 3.1.18. In addition, the characterization of strong

sub-analyticity in canonical sequent calculi (Corollary 4.4.1 below) will immediately fol-

low from this observation as well.

Proposition 4.2.12. A (pre-) PNmatrix M (for L) is proper iff it is sub-analytic.

Proof (Outline). Suppose that M is proper. The extension of an M-legal partial L-

valuation whose domain is closed under subformulas is recursively defined by induction

on the complexity of formulas. For atomic formulas that are not in the original domain,

we arbitrarily choose a value in UM. For non-atomic formulas that are not in the original

domain, we arbitrarily choose a value from UM that occurs in the (non-empty) set of

options allowed by the corresponding PNtable.

For the converse, note first that if UM is empty, then the empty valuation (whose

domain is the empty set) cannot be extended. Otherwise, there is some � ∈ ♦L and

u1, ... , uar(�) ∈ UM, such that �M(u1, ... , uar(�))∩UM = ∅. Define v : {p1, ... , par(�)} → UM
by v(pi) = ui. Obviously, v is an M-legal partial L-valuation, whose domain is finite and

closed under subformulas. However, v cannot be extended to an M-legal L-valuation,

since there is no truth value to assign to �(p1, ... , par(�)).

Corollary 4.2.13. Let M be a finite proper PNmatrix for L. Given a finite set Γ of

L-formulas and an L-formula ϕ, it is decidable whether Γ 
M ϕ or not.

Proof. Directly follows from Theorem 3.1.18 and Proposition 4.2.12.

Now, we show that also non-proper finite PNmatrices are effective. This is an imme-

diate corollary of Theorem 3.1.19 using the following theorem:
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Theorem 4.2.14. Let M be a finite PNmatrix for L. Given an M-legal partial L-

valuation v, whose domain is finite and closed under subformulas, it is decidable whether

v can be extended to an M-legal (full) L-valuation or not.

In other words, the framework of finite PNmatrices allows to effectively check whether

a certain partial valuation (whose domain is closed under subformulas) is a restriction of

a full one. To prove this theorem we use the following notation and proposition:

Notation 4.2.15. For a (pre-) PNmatrix M and U ⊆ UM, we denote by M ∩ U the

(pre-) PNmatrix which is identical to M except for UM∩U = U .

Obviously, if an L-valuation is M ∩ U -legal for some U ⊆ UM, then it is M-legal. It

follows that for every PNmatrix M and U ⊆ UM, `M⊆
M∩U .

Proposition 4.2.16. Let M be a (pre-) PNmatrix for L, and let F ⊆ L be closed

under subformulas. An M-legal partial L-valuation v, whose domain is closed under

subformulas, can be extended to a (full) M-legal L-valuation iff v is M∩U -legal for some

U ⊆ UM such that M ∩ U is proper.

Proof. Suppose that there is some U ⊆ UM such that M ∩ U is proper and v is M ∩ U -

legal. By Proposition 4.2.12, there exists an M ∩ U -legal L-valuation v′ that extends v.

Clearly, v′ is also M-legal.

For the converse, let v′ be an M-legal L-valuation that extends v. Choose U = Imv′ .

Obviously, U ⊆ UM and v is M ∩ U -legal. We show that M ∩ U is proper. Obviously,

U is non-empty. Let � ∈ ♦L and u1, ... , uar(�) ∈ U . Since U = Imv′ , there are some

ϕ1, ... , ϕar(�) ∈ L, such that v′(ϕi) = ui for every 1 ≤ i ≤ ar(�). Since v′ is M-legal,

v′(�(ϕ1, ... , ϕar(�))) ∈ �M(u1, ... , uar(�)). By definition v′(�(ϕ1, ... , ϕar(�))) ∈ U . Hence

�M∩U(u1, ... , uar(�)) ∩ U = �M(u1, ... , uar(�)) ∩ U 6= ∅.

Proof of Theorem 4.2.14. To verify that v can be extended to an M-legal L-valuation, go

over all finite sets U ⊆ UM such that M∩U is proper, and check whether v is M∩U -legal

for each of them. Return a positive answer iff such U have been found. The correctness

is guaranteed by Proposition 4.2.16.

As a corollary we have the following:

Corollary 4.2.17. Let M be a finite PNmatrix for L. Given a finite set Γ of L-formulas

and an L-formula ϕ, it is decidable whether Γ 
M ϕ or not.

Proof. Directly follows from Theorem 3.1.19 and Theorem 4.2.14.
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Remark 4.2.18. As done for ordinary matrices (see, e.g., [93]) it is also possible to define


℘, the consequence relation induced by a family ℘ of PNmatrices to be
⋂

M∈℘ 
M.

A PNmatrix can then be thought of as a succinct presentation of a family of proper

PNmatrices: following the proof of Proposition 4.2.16, the consequence relation induced

by a PNmatrix M can be shown to be equivalent to the relation induced by the family

of all the proper PNmatrices M ∩ U for U ⊆ UM. Conversely, for every family of proper

PNmatrices it is possible to construct an equivalent PNmatrix.

4.3 PNmatrices for Canonical Calculi

To show that the semantics of canonical calculi can be characterized by PNmatrices, it

suffices to note that the semantic conditions induced by canonical rules are all canonical

semantic conditions.

Proposition 4.3.1. Let r be a canonical 〈L,£〉-rule for a connective �. Then Sem(r)

is a canonical L-semantic condition for �.

Proof. Directly follows from the definitions.

It follows that for every canonical 〈L,£〉-calculus G, the many-valued pre-system

MG is actually a pre-PNmatrix:

Corollary 4.3.2. Let G be a canonical 〈L,£〉-calculus. Then, the many-valued pre-

system MG is a pre-PNmatrix for which `G=`MG
. Furthermore, for every set X ⊆ £,

the logic induced by G and X is identical to the logic induced by the PNmatrix MX
G.

Proof. Directly follow from Proposition 4.3.1, Theorem 3.2.15, and Corollary 3.2.18

Example 4.3.3. Let L = {⊃2,∧2, T 2}, and G be a canonical 〈L,£2〉-calculus that

consists of the following rules:

(f:weak) {∅}/{f:p1} (t:weak) {∅}/{t:p1}
(cut) {f:p1}, {t:p1}/∅ (id) ∅/{f:p1, t:p1}
(f: ⊃) {t:p1}, {f:p2}/{f:p1 ⊃ p2} (t: ⊃) {t:p2}/{t:p1 ⊃ p2}
(f:∧) {f:p1, f:p2}/{f:p1 ∧ p2} (t:∧) {t:p1}, {t:p2}/{t:p1 ∧ p2}
(f:T ) {f:p2}/{f:p1Tp2} (t:T ) {t:p1}/{t:p1Tp2}

The rules for ∧ are the usual ones (those of LK), while the rules for ⊃ are those employed

in primal logic [62] (see Example 2.2.6). T is standing for the “Tonk” connective, and

the two rules above are equivalent to its original introduction rule from [83]. We sketch

the modular construction of the pre-PNmatrix MG.
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1. Begin with G0, a canonical 〈L,£2〉-calculus, that does not have any rules besides

the two weakening rules above. Then, VMG0
= 2£2 = {∅, {f}, {t}, {f, t}}. Now

since PG0 is empty, UMG0
= VMG0

. Since RG0 is empty as well, there are no semantic

L-conditions in ΛMG0
, and thus it is represented by “completely non-deterministic”

PNtables, that is �MG0
(X1, X2) = VMG0

for every � ∈ {⊃,∧, T} and X1, X2 ∈ VMG0
.

2. Add (f: ⊃) to G0 to obtain G1. This introduces the following canonical L-semantic

condition for ⊃ in ΛMG1
:

Sem((f: ⊃)) = {{p1 + {t}, p1 + {f, t}}, {p2 + {f}, p2 + {f, t}}} ⇒
{p1 ⊃ p2 + {f}, p1 ⊃ p2 + {f, t}}.

Consequently the PNtable of ⊃ in MG1 is:

⊃MG1
∅ {f} {t} {f, t}

∅ 2£2 2£2 2£2 2£2

{f} 2£2 2£2 2£2 2£2

{t} 2£2 {{f}, {f, t}} 2£2 {{f}, {f, t}}
{f, t} 2£2 {{f}, {f, t}} 2£2 {{f}, {f, t}}

3. Add all other canonical rules of G to G1 to obtain G2. This introduces one more

canonical L-semantic condition for ⊃, two canonical L-semantic conditions for ∧,

and two for T . The PNtables in MG2 are given by:

⊃MG2
∅ {f} {t} {f, t}

∅ 2£2 2£2 {{t}, {f, t}} {{t}, {f, t}}
{f} 2£2 2£2 {{t}, {f, t}} {{t}, {f, t}}
{t} 2£2 {{f}, {f, t}} {{t}, {f, t}} {{f, t}}
{f, t} {{t}, {f, t}} {{f, t}} {{t}, {f, t}} {{f, t}}

∧MG2
∅ {f} {t} {f, t}

∅ 2£2 {{f}, {f, t}} 2£2 {{f}, {f, t}}
{f} {{f}, {f, t}} {{f}, {f, t}} {{f}, {f, t}} {{f}, {f, t}}
{t} 2£2 {{f}, {f, t}} {{t}, {f, t}} {{f, t}}
{f, t} {{f}, {f, t}} {{f}, {f, t}} {{f, t}} {{f, t}}

TMG2
∅ {f} {t} {f, t}

∅ 2£2 {{f}, {f, t}} 2£2 {{f}, {f, t}}
{f} 2£2 {{f}, {f, t}} 2£2 {{f}, {f, t}}
{t} {{t}, {f, t}} {{f, t}} {{t}, {f, t}} {{f, t}}
{f, t} {{t}, {f, t}} {{f, t}} {{t}, {f, t}} {{f, t}}
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4. Add (id) to G2 to obtain G3. This does not effect ΛMG2
, but it does change the

legal truth values, and we now have UMG3
= {{f}, {t}, {f, t}} (see Example 3.2.9).

5. Finally add (cut) to G3 to obtain G. This overrules another truth value, and we

finally have UMG
= {{f}, {t}}. Note that the PNtables of MG are the same as in

MG2 . Nevertheless, since UMG
= {{f}, {t}}, we can reduce them to the following

tables:

⊃MG
{f} {t}

{f} {{f}, {t}} {{t}}
{t} {{f}} {{t}}

∧MG
{f} {t}

{f} {{f}} {{f}}
{t} {{f}} {{t}}

TMG
{f} {t}

{f} {{f}} {{f}, {t}}
{t} ∅ {{t}}

Note that MG is not proper since TMG
({t}, {f}) ∩ UMG

= ∅.

Example 4.3.4. Suppose that L contains a unary connective denoted by ¬, and let G

be a canonical 〈L,£2〉-calculus. Let (f:¬) and (t:¬) be the two usual rules for ¬, that is

the rules {t:p1}/{f:¬p1} and {f:p1}/{t:¬p1} (respectively). The following tables present

¬MG
for four different options: (i) there are no canonical rules for ¬ in G; (ii) (f:¬) is

the only canonical rules for ¬ in G; (iii) (t:¬) is the only canonical rules for ¬ in G; and

(iv) (f:¬) and (t:¬) are the only canonical rules for ¬ in G.

(i)

∅ 2£2

{f} 2£2

{t} 2£2

{f, t} 2£2

(ii)

∅ 2£2

{f} 2£2

{t} {{f}, {f, t}}
{f, t} {{f}, {f, t}}

(iii)

∅ 2£2

{f} {{t}, {f, t}}
{t} 2£2

{f, t} {{t}, {f, t}}

(iv)

∅ 2£2

{f} {{t}, {f, t}}
{t} {{f}, {f, t}}
{f, t} {{f, t}}

Remark 4.3.5. The semantics of PNmatrices obtained for canonical calculi according

to the definitions above coincide with the Nmatrices semantics suggested in [17, 19] (see

also [21]) for the (narrower) families of canonical systems studied there. The transition

from Nmatrices to PNmatrices makes it possible to provide semantics for every canonical

calculi, while [17, 19] handle only a subset of them, called coherent canonical calculi.

Indeed, the calculus G from Example 4.3.3 is not coherent (because of the rules for T ),

and it is captured by the (non-proper) PNmatrix given above.

It can be easily verified that for LK (see Example 2.2.20) we obtain the usual two-

valued truth tables semantics of classical logic. In addition, the PNmatrix obtained for
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LK’s (cut)-free fragment is practically equivalent to the semantics of three-valued Schütte

valuations for this calculus (see [58]). Obviously, since LK has cut-elimination, this

semantics coincides with the usual classical semantics when it comes to the provability of

sequents from the empty set of assumptions. Similarly, the PNmatrix for LK’s (id)-free

fragment coincides with the three-valued semantics introduced in [64] for this fragment.2

Next, we demonstrate how this semantics can be used to prove that certain applications

of cuts or identity axioms are unavoidable.

Example 4.3.6. Using the PNmatrix semantics of canonical calculi, one can easily verify

that using (cut) is unavoidable in a given derivation. For example, we obviously have

{t:p1 ⊃ p2} `LK {t:p1 ⊃ (p3 ⊃ p2)} (see Example 2.2.20 for a precise definition of LK).

We show that the Lcl-sequent {t:p1 ⊃ (p3 ⊃ p2)} has no cut-free derivation in LK from

{t:p1 ⊃ p2}. Consider a partial Lcl-valuation v with:

1. Domv = {p1, p2, p3, p1 ⊃ p2, p3 ⊃ p2, p1 ⊃ (p3 ⊃ p2)}.
2. v(p1) = v(p3) = {t}, v(p2) = v(p3 ⊃ p2) = {f}, v(p1 ⊃ (p3 ⊃ p2)) = {f},
v(p1 ⊃ p2) = {f, t}.

Then v is MLKcf
-legal. To see this note that UMLKcf

= {{f}, {t}, {f, t}}, and the

PNtable ⊃MLKcf
is the following one (omitting the occurrences of the non-legal truth-

value ∅):
⊃MLKcf

{f} {t} {f, t}

{f} {{t}, {f, t}} {{t}, {f, t}} {{t}, {f, t}}
{t} {{f}, {f, t}} {{t}, {f, t}} {{f, t}}
{f, t} {{f, t}} {{t}, {f, t}} {{f, t}}

Since MLKcf
is proper, the partial Lcl-valuation v can be extended to an MLKcf

-legal

Lcl-valuation v′. v′ is a model of {t:p1 ⊃ p2} but not of {t:p1 ⊃ (p3 ⊃ p2)}, and

so we have {t:p1 ⊃ p2} 0MLKcf
{t:p1 ⊃ (p3 ⊃ p2)}. Corollary 4.3.2 entails that

{t:p1 ⊃ p2} 0LKcf
{t:p1 ⊃ (p3 ⊃ p2)}.

Example 4.3.7. Using the PNmatrix semantics, one can easily verify that using (id)

is unavoidable in a given derivation. For example, clearly {t:¬p1} `LK {t:¬(p1 ∧ p2)}.
Consider a partial Lcl-valuation v with Domv = {p1, p2,¬p1, p1 ∧ p2,¬(p1 ∧ p2)}, defined

by v(p1) = ∅, v(¬p1) = v(p2) = v(p1 ∧ p2) = {t}, and v(¬(p1 ∧ p2)) = {f}. It is easy to

verify that v is MLKif
-legal: UMLKif

= {∅, {f}, {t}}, the PNtable ∧MLKif
is the same as

∧MG2
from Example 4.3.3, and the PNtable ¬MLKif

is the one given in case (iv) in Exam-

ple 4.3.4. Since MLKif
is proper, v can be extended to an MLKif

-legal Lcl-valuation v′.

2Note that [58] and [64] concern also the usual quantifiers of LK, while here we only investigate its
propositional fragment.
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v′ is a model of {t:¬p1} but not of {t:¬(p1∧p2)}. Hence, {t:¬p1} 0MLKif
{t:¬(p1∧p2)}.

Corollary 4.3.2 entails that {t:¬p1} 0LKif
{t:¬(p1 ∧ p2)}. In other words, {t:¬(p1 ∧ p2)}

has no identity-axiom-free derivation in LK from {t:¬p1}.

Now, the decidability of canonical calculi and logics induced by canonical calculi are

immediate corollaries.

Corollary 4.3.8. Given a canonical 〈L,£〉-calculus G, a finite set S of 〈L,£〉-sequents

and an 〈L,£〉-sequent s, it is decidable whether S `G s or not. In addition, given a

canonical 〈L,£〉-calculus G, a set of labels X ⊆ £, a finite set Γ of L-formulas and an

L-formula ϕ, it is decidable whether Γ 
X
G ϕ or not.

Proof. Construct MG according to the definitions above and use Corollary 3.2.16, The-

orem 4.2.14, and Corollary 4.3.2.

We note that the use of non-deterministic truth tables is essential for charactering

the logics induced by arbitrary canonical calculi. Indeed, the use of non-deterministic

semantics is unavoidable in cases of “syntactic under-specification” in the canonical rules

for the connectives (see [21]). But, even when the calculus employs the usual connectives

with their ordinary introduction rules, non-deterministic truth tables are required to

characterize the cut-free and the identity-axiom-free fragments of the calculus. The next

proposition demonstrates this claim.

Definition 4.3.9. Let M be a (pre-) PNmatrix for L. A connective � ∈ ♦L is called

deterministic in M if �M(u1, ... , uar(�)) ∩ UM is a singleton for every u1, ... , uar(�) ∈ UM.

Proposition 4.3.10. Suppose that L contains a unary connective denoted by ¬, and let

G be a canonical 〈L,£2〉-calculus, whose rules for ¬ are the usual rules: {t:p1}/{f:¬p1}
and {f:p1}/{t:¬p1}. Let M be any finite PNmatrix for L. If ¬ is deterministic in M

then: 
M 6=
{t}Gcf
and 
M 6=
{t}Gif

.

Proof. Assume that ¬ is deterministic in M.

1. Suppose that 
M=
{t}Gcf
. Note that for every n ≥ 0, {¬ip1 | i > n} 1{t}Gcf

¬np1 (it

is easy to verify this using Corollary 4.3.2). Consequently, {¬ip1 | i > n} 1M ¬np1

for every n ≥ 0. For every n ≥ 0, let vn be an M-legal L-valuation, which is

a model (with respect to M) of {¬ip1 | i > n}, and not of ¬np1. We show that

vm(p1) 6= vn(p1) for every n > m ≥ 0 (and so, M is infinite). Let n > m ≥ 0. Since

vm is a model of ¬np1, and vn is not a model of ¬np1, we have vm(¬np1) 6= vn(¬np1).

This implies (using the fact that ¬M is deterministic) that vm(p1) 6= vn(p1).
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2. Suppose that 
M=
{t}Gif
. Note that (i) ¬np1 


{t}
Gif
¬mp1 for every n,m ∈ Neven

provided that n ≤ m; and (ii) ¬n+2p1 1{t}Gif
¬np1 for every n ∈ N (it is easy to

verify this using Corollary 4.3.2). For every n ≥ 0, let vn be an M-legal L-valuation,

which is a model (with respect to M) of ¬n+2p1, but not of ¬np1. We show that

vn(p1) 6= vm(p1) for every n,m ∈ Neven such that n < m (and so, M is infinite).

Let n,m ∈ Neven such that n < m. Then, since vn is a model of ¬n+2p1, (i) implies

that vn is a model of ¬mp1. On the other hand, vm is not a model of ¬mp1. This

implies (using the fact that ¬M is deterministic) that vn(p1) 6= vm(p1).

4.4 Characterization of Proof-Theoretic Properties

In addition to decision procedures, the semantics of PNmatrices is useful for checking

proof-theoretic properties of canonical calculi. In this section we use the semantic charac-

terizations of strong sub-analyticity, strong cut-admissibility, and axiom-expansion from

the previous chapter to obtain simple decidable criteria for these properties in canonical

calculi.

Using Theorem 3.3.3 and Proposition 4.2.12, the criterion for strong sub-analyticity

is immediate:

Corollary 4.4.1. A canonical 〈L,£〉-calculus G is strongly sub-analytic iff MG is proper.

Proof. By Theorem 3.3.3, G is strongly sub-analytic iff MG is sub-analytic. By Propo-

sition 4.2.12, this holds iff MG is proper.

To characterize strong cut-admissibility, we use the following lemma:

Lemma 4.4.2. Let G be a canonical 〈L,£〉-calculus. For every � ∈ ♦L, and every

X1, ... , Xar(�), X
′
1, ... , X

′
ar(�) ⊆ £ such that Xi ⊆ X′i for every 1 ≤ i ≤ ar(�), we have

�MG
(X′1, ... , X

′
ar(�)) ⊆ �MG

(X1, ... , Xar(�)).

Proof. Directly follows from the definitions.

Theorem 4.4.3. A canonical 〈L,£〉-calculus G enjoys strong cut-admissibility iff MG

is proper.

Proof. First, if MG is not proper, then (by Corollary 4.4.1) G is not sub-analytic. By

Proposition 4.1.5, G does not enjoy strong cut-admissibility. Now suppose that MG is

proper. If G has no cut rules then we are obviously done. Assume otherwise. We use

Theorem 3.3.9 to show that G enjoys strong cut-admissibility. Thus, we have to show

that for every Ms(G)cf -legal L-valuation v, there exists an Ms(G)cf -legal L-valuation v′

such that for every ϕ ∈ L: v′(ϕ) = v(ϕ) iff v(ϕ) 6= £. Note that we have:
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• UMs(G)
= UMG

since the additional primitive £-rules in s(G) do not have any effect

on the legal truth values.

• UMs(G)cf
= UMs(G)

∪ {£} by Lemma 3.3.11.

• £ 6∈ UMG
since G has at least one cut rule.

• �Ms(G)cf
= �MG

for every � ∈ ♦L since s(G)cf and G differ only in their primitive

rules.

Now, let v be an Ms(G)cf -legal L-valuation. The construction of v′ is done by recursion

on the complexity of formulas. First, for atomic formulas, if v(p) ∈ UMG
, we choose

v′(p) = v(p). Otherwise, we (arbitrarily) choose v′(p) to be an element of UMG
(which

is non-empty since MG is proper). Now, let � ∈ ♦L, ϕ = �(ϕ1, ... , ϕar(�)), and suppose

v′(ϕi) was defined for every 1 ≤ i ≤ ar(�). We choose v′(ϕ) to be equal to v(ϕ) if

the latter is in UMG
. Otherwise, v(ϕ) = £, and we choose v′(ϕ) to be some element

of �MG
(v′(ϕ1), ... , v′(ϕar(�))) ∩ UMG

(such an element exists since MG is proper). We

show that for every ϕ ∈ L: v′(ϕ) = v(ϕ) iff v(ϕ) 6= £. First, if v(ϕ) 6= £ then

v(ϕ) ∈ UMG
. In this case we chose v′(ϕ) = v(ϕ). Now, if v(ϕ) = £ then v(ϕ) 6∈ UMG

,

and v′(ϕ) 6= v(ϕ) since we chose v′(ϕ) ∈ UMG
. It remains to show that v′ is Ms(G)cf -

legal. By definition, v′(ϕ) ∈ UMG
⊆ UMs(G)cf

for every ϕ ∈ L. Suppose (for contradiction)

that v′(ϕ) 6∈ �Ms(G)cf
(v′(ϕ1), ... , v′(ϕar(�))) for some formula ϕ = �(ϕ1, ... , ϕar(�)). Thus

v′(ϕ) 6∈ �MG
(v′(ϕ1), ... , v′(ϕar(�))). If v(ϕ) = £, then our construction ensures that

v′(ϕ) ∈ �MG
(v′(ϕ1), ... , v′(ϕar(�))) ∩ UMG

. Hence, v(ϕ) 6= £, and so v′(ϕ) = v(ϕ).

Now, for every 1 ≤ i ≤ ar(�), v′(ϕi) = v(ϕi) iff v(ϕi) 6= £, and thus v′(ϕi) ⊆ v(ϕi).

Lemma 4.4.2 entails that v(ϕ) 6∈ �MG
(v(ϕ1), ... , v(ϕar(�))). This contradicts the fact that

v is Ms(G)cf -legal.

As a corollary we obtain the following correspondence in canonical 〈L,£〉-calculi:

Corollary 4.4.4. The following are equivalent for every canonical 〈L,£〉-calculus G:

• MG is proper.

• G is strongly sub-analytic.

• G enjoys strong cut-admissibility.

Proof. The equivalence follows by Corollary 4.4.1 and Theorem 4.4.3.

Corollary 4.4.5. The question whether a given canonical 〈L,£〉-calculus enjoys strong

sub-analyticity and strong cut-admissibility is decidable.

Proof. Construct MG and check whether it is proper or not.
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Remark 4.4.6. A similar equivalence was proved in [17] for the (narrower) family of

canonical calculi studied there. Note that [17] included also a necessary and sufficient

condition for strong cut-admissibility using a simple syntactic condition of coherence.

It can be shown that the coherence of a calculus G from the family studied in [17] is

equivalent to the fact that MG is proper.

Since canonical calculi are decidable, the property of axiom-expansion in them is

decidable as well (see Definition 2.3.21). Indeed, one has to verify that

{(X:pi) | ∅/(X:p1) ∈ PG, 1 ≤ i ≤ ar(�)} `Gif
(Y: � (p1, ... , par(�)))

for every Y ⊆ £ such that ∅/(Y:p1) ∈ PG and connective � ∈ ♦L (recall that Gif denotes

the calculus obtained from G by discarding all identity axioms). Alternatively, the

following semantic criterion can be used:

Corollary 4.4.7. Let G be a pure 〈L,£〉-calculus. A connective � ∈ ♦L of arity n admits

axiom-expansion in G if �MG
(X1, ... , Xn) ∩ UMGif

⊆ UMG
for every X1, ... , Xn ∈ UMG

. If

MGif
is proper, then the converse holds as well.

Proof. Suppose that � does not admit axiom-expansion in G. By Corollary 3.3.12,

there exists an MGif
-legal L-valuation v, such that X ∩ v(pi) 6= ∅ for every X ⊆ £

such that ∅/(X:p1) ∈ PG and 1 ≤ i ≤ n, but X0 ∩ v(�(p1, ... , pn)) = ∅ for some X0 ⊆ £

such that ∅/(X0:p1) ∈ PG. Since v is MGif
-legal, we have v(�(p1, ... , pn)) ∈ UMGif

and

v(�(p1, ... , pn)) ∈ �MGif
(v(p1), ... , v(pn)). Since X0 ∩ v(�(p1, ... , pn)) = ∅, we have that

v(�(p1, ... , pn)) 6∈ £(∅/(X0:p1)), and so v(�(p1, ... , pn)) 6∈ UMG
. By definition, we have

�MGif
= �MG

, and hence, �MG
(v(p1), ... , v(pn)) ∩ UMGif

6⊆ UMG
. Finally, note that

v(p1), ... , v(pn) ∈ UMG
, since v is MGif

-legal and X∩ v(pi) 6= ∅ for every X ⊆ £ such that

∅/(X:p1) ∈ PG and 1 ≤ i ≤ n.

For the converse, suppose that MGif
is proper. Assume that there are X1, ... , Xn ∈ UMG

and X ∈ �MG
(X1, ... , Xn) ∩ UMGif

such that X 6∈ UMG
. Consider the partial L-valuation

v, defined by: Domv(v) = {p1, ... , pn, �(p1, ... , pn)}, v(pi) = Xi for 1 ≤ i ≤ n, and

v(�(p1, ... , pn)) = X. v is MGif
-legal, and since MGif

is proper, there is an MGif
-legal

(full) L-valuation v′ that extends v (Proposition 4.2.12). Now, Y ∩ v′(pi) 6= ∅ for ev-

ery Y ⊆ £ such that ∅/(Y:p1) ∈ PG and 1 ≤ i ≤ n (since X1, ... , Xn ∈ UMG
), but

Y ∩ v′(�(p1, ... , pn)) 6= ∅ for some Y ⊆ £ such that ∅/(Y:p1) ∈ PG (since X 6∈ UMG
). By

Corollary 3.3.12, � does not admit axiom-expansion in G.

In the case of ordinary canonical 〈L,£2〉-calculi (as those studied in [17]) it is possible

to obtain a simpler characterization of axiom-expansion, showing that the connectives

that admit axiom-expansion are exactly the deterministic ones. This correspondence was
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originally proved in [11]. Here we provide a new semantic proof of it, using the more

general characterization given in Corollary 4.4.7.

Corollary 4.4.8. Let G be a pure 〈L,£2〉-calculus with PG = {(cut), (id)}, in which the

conclusion of each non-primitive rule takes the form {x:� (p1, ... , par(�))} for some x ∈ £2

and � ∈ ♦L. Suppose that MG is proper. A connective � ∈ ♦nL admits axiom-expansion

in G iff �MG
is deterministic (see Definition 4.3.9).

Proof. Following Example 3.2.9, UMGif
= {∅, {f}, {t}}, and UMG

= {{f}, {t}}. In

addition, for the given G, the following properties of MG are easily obtained from the

definitions:

• {{f}, {t}} ⊆ �MG
(X1, ... , Xn) iff ∅ ∈ �MG

(X1, ... , Xn) for every X1, ... , Xn ∈ UMG
.

• MGif
is proper. Otherwise, �MGif

(X1, ... , Xar(�)) ∩ UMGif
= ∅ for some � ∈ ♦L and

X1, ... , Xar(�) ∈ UMGif
. Let X′i = Xi ∪ {f} for every 1 ≤ i ≤ ar(�). By Lemma 4.4.2,

�MGif
(X′1, ... , X

′
ar(�)) ⊆ �MGif

(X1, ... , Xar(�)), and so �MG
(X′1, ... , X

′
ar(�)) ∩ UMG

= ∅.
This contradicts the fact that MG is proper.

Suppose that �MG
(X1, ... , Xar(�)) ∩ UMG

is not a singleton for some X1, ... , Xn ∈ UMG
.

Thus {{f}, {t}} ⊆ �MG
(X1, ... , Xn). Hence, ∅ ∈ �MG

(X1, ... , Xn). Therefore, we have

∅ ∈ �MG
(X1, ... , Xn) ∩ UMGif

but ∅ 6∈ UMG
. By Corollary 4.4.7, since MGif

is proper, �
does not admit axiom-expansion in G.

For the converse, suppose that � does not admit axiom-expansion in G. By Corol-

lary 4.4.7, there are X1, ... , Xn ∈ UMG
and X ∈ �MG

(X1, ... , Xn)∩UMGif
such that X 6∈ UMG

.

We must have X = ∅, and hence {{f}, {t}} ⊆ �MG
(X1, ... , Xn). Hence �MG

is non-

deterministic.



Chapter 5

Quasi-canonical Calculi

In the previous chapter we studied the family of canonical calculi, and showed how to

semantically characterize each logic induced by a canonical calculus using a PNmatrix,

and use this PNmatrix to give a decision procedure for the logic. However, a variety of

important logics have pure sequent calculi that are not canonical, but still have some-

what similar nature. In particular, this is true for the family of quasi-canonical systems,

introduced in [13]. These are propositional fully-structural two-sided systems, which in

addition to the usual weakening rules, cut and identity axiom, include also logical rules

with the following properties (the language is assumed to have a unary connective ¬):

1. Exactly one formula is introduced in the conclusion of the rule, on exactly one of

its two sides.

2. The formula being introduced is either of the form �(p1, ... , par(�)) or of the form

¬ � (p1, ... , par(�)).

3. All formulas in the premises of a rule introducing a connective � belong to the set

{p1, ... , par(�),¬p1, ... ,¬par(�)}.
4. There are no restrictions on the side formulas in the rule application (i.e. the rules

are pure).

Of course, rules of this kind are not canonical in the sense of Definition 4.1.1, due to the

following two “violations”: (i) the introduced formula can be not only �(p1, ... , par(�)),

but also ¬ � (p1, ... , par(�)), and (ii) the premises may contain not only atomic formulas

pi, but also ¬pi. Hence the results obtained in Chapter 4 for canonical calculi do not

directly apply.

In this chapter we show that the theory of canonical calculi can still be exploited for

quasi-canonical systems by translating them into equivalent (in the sense defined below)

canonical calculi. In fact, this is possible for a substantially larger family of many-sided

calculi of which the quasi-canonical systems of [13] are particular examples. In particular,

64
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in the calculi studied in this chapter ¬ does not have any special status, and all unary

connectives of a given language may occur in the premises or precede the main connective

in the conclusions of the logical rules. Note that various calculi for important many-valued

logics (e.g. for the propositional part of the relevance logic of first degree entailment [1]),

as well as the (cut-free) calculi proposed in [13] and [8] for many paraconsistent logics

(particularly, for C-systems [40]), fall in the family of quasi-canonical calculi studied in

this chapter.

Publications Related to this Chapter

The material in this chapter was included in [29]. However, [29] concerned only two-sided

quasi-canonical calculi with the usual cut and identity axiom, while here we naturally

consider quasi-canonical calculi employing any finite set of labels and primitive rules.

5.1 Quasi-canonical Calculi

As noted above, the language of quasi-canonical systems is assumed in [13] to include

a unary connective ¬. This restriction can be lifted by allowing any unary connective

(possibly in addition to ¬). Similarly, we shall not restrict ourselves to two-sided sequents,

and continue working in the full framework of pure 〈L,£〉-calculi. The notion of a quasi-

canonical rule can then be formalized in our terms as follows:

Definition 5.1.1. A pure 〈L,£〉-rule r is called quasi-canonical if its conclusion has the

form {X: � (p1, ... , par(�))} or {X: ? �(p1, ... , par(�))} for some non-empty X ⊆ £, � ∈ ♦L,

and ? ∈ ♦1
L, and its premises are all 〈{p1, ... , par(�)} ∪ {?pi | ? ∈ ♦1

L, 1 ≤ i ≤ ar(�)},£〉-
sequents. Quasi-canonical pure 〈L,£〉-rules will be also called quasi-canonical 〈L,£〉-
rules.

Note that this definition is more liberal then Definition 4.1.1, and every canonical

〈L,£〉-rule is also a quasi-canonical 〈L,£〉-rule.

Example 5.1.2. Various sequent calculi for paraconsistent logics and relevance logics

employ (some of) the following quasi-canonical 〈Lcl,£2〉-rules (see [8]):

(f:¬¬) {f:p1}/{f:¬¬p1} (t:¬¬) {t:p1}/{t:¬¬p1}
(f:¬∧) {f:¬p1}, {f:¬p2}/{f:¬(p1 ∧ p2)} (t:¬∧) {f:¬p1, f:¬p2}/{t:¬(p1 ∧ p2)}
(f:¬∨) {f:¬p1, f:¬p2}/{f:¬(p1 ∨ p2)} (t:¬∨) {t:¬p1}, {t:¬p2}/{t:¬(p1 ∨ p2)}
(f:¬ ⊃) {f:p1, f:¬p2}/{f:¬(p1 ⊃ p2)} (t:¬ ⊃) {t:p1}, {t:¬p2}/{t:¬(p1 ⊃ p2)}

Note that non of these rules is a canonical 〈Lcl,£2〉-rule.
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Example 5.1.3. All (non-primitive) rules of GC1 (see Example 2.2.22) except for the

rule {t:p1}, {t:¬p1}/{f:¬(p1 ∧ ¬p1)} are quasi-canonical.

In turn, quasi-canonical calculi are defined as follows:

Definition 5.1.4. A quasi-canonical 〈L,£〉-calculus G is a pure 〈L,£〉-calculus, such

that RG (the set of non-primitive rules of G) consists only of quasi-canonical 〈L,£〉-rules.

Various well-known logics are induced by quasi-canonical calculi. This includes many

important three and four-valued logics (e.g. for the relevance logic of first degree entail-

ment [1]), a large family of paraconsistent logics known as C-systems ([40]), for which

cut-free quasi-canonical systems were proposed in [13], and various other paraconsistent

extensions of positive classical logic studied in [8]. Note that the quasi-canonical systems

of [13] correspond to quasi-canonical 〈L,£2〉-calculi with ¬ ∈ ♦1
L, PG = {(cut), (id)}, ¬ is

the only connective that may appear in the premises of non-primitive rules, and the con-

clusions of non-primitive rules have the form {x: � (p1, ... , par(�))} or {x:¬ � (p1, ... , par(�))}
for x ∈ £2 and � ∈ ♦L.

5.2 From Quasi-canonical to Canonical Calculi

We provide a translation of a given quasi-canonical 〈L,£〉-calculus G into a canoni-

cal one T (G), which is equivalent to G in a sense defined below. The idea is to “en-

code” the information related to the connectives from ♦1
L in the labels employed in G,

so that connectives from ♦1
L “violating” canonicity are removed. To this end, we use

£∪{x? | x ∈ £, ? ∈ ♦1
L} as the set of labels for T (G). We denote this set by £♦

1
L . Note

that this may be seen as a generalization of the original idea behind two-sided sequents

in classical logic. Indeed, often one-sided sequents are translated to two-sided ones by

differentiating the negated formulas from the non-negated ones using two different labels

(sides).

Definition 5.2.1. For an £-labelled L-formula α, T (α) is the £♦
1
L-labelled L-formula,

defined as follows: T (α) = x?:ϕ if α = x: ? ϕ for some x ∈ £, ? ∈ ♦1
L and ϕ ∈ L, and

otherwise T (α) = α. T is extended to 〈L,£〉-sequents and sets of 〈L,£〉-sequents in the

obvious way (e.g. T (s) = {T (α) | α ∈ s}).

Example 5.2.2. Suppose that ¬ ∈ ♦1
L and £ = £2. Then:

T ({f:¬¬p1, t:¬p1, t:p2}) = {f¬:¬p1, t
¬:p1, t:p2}.

The translation of a quasi-canonical calculus into a canonical one is given by:

Notation 5.2.3. Given X ⊆ £ and ? ∈ ♦1
L, X? denotes the subset {x? | x ∈ X} of £♦

1
L .
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Definition 5.2.4. Let G be a quasi-canonical 〈L,£〉-calculus. T (G) is the canonical

〈L,£♦1
L〉-calculus that consists of the following rules (except for the weakening rules):

• T (G) includes all primitive £-rule in PG, and, in addition, for every primitive £-

rule in PG, r = (X1:p1), ... , (Xn:p1)/(X:p1), and ? ∈ ♦1
L, T (G) has the primitive

£♦
1
L-rule (X?1:p1), ... , (X?n:p1)/(X?:p1), denoted below by r?.

• For every quasi-canonical 〈L,£〉-rule r = S/s of G, T (G) includes the 〈L,£♦1
L〉-

rule T (S)/T (s), denoted by T (r).

• For every ? ∈ ♦1
L, T (G) includes the canonical 〈L,£♦1

L〉-rule {x?:p1}/{x: ? p1},
denoted below by (x? → x).

Example 5.2.5. Let L = {¬1,∧2}. The system PLK[{(¬∧ ⇒)}] from [8] is practically

a quasi-canonical 〈L,£2〉-calculus. Besides the weakening rules, (cut), and (id) this

calculus includes the following quasi-canonical rules:

(f:∧) {f:p1, f:p2}/{f:p1 ∧ p2} (t:∧) {t:p1}, {t:p2}/{t:p1 ∧ p2}
(t:¬) {f:p1}/{t:¬p1} (f:¬∧) {f:¬p1}, {f:¬p2}/{f:¬(p1 ∧ p2)}

We denote this system by G0. Now, £2
♦1
L = {f, t, f¬, t¬}. T (G0) is the canonical

〈L,£2
♦1
L〉-calculus, with the following rules:

(f:weak) {∅}/{f:p1} (t:weak) {∅}/{t:p1}
(f¬:weak) {∅}/{f¬:p1} (t¬:weak) {∅}/{t¬:p1}
(cut) {f:p1}, {t:p1}/∅ (id) ∅/{f:p1, t:p1}
(cut)¬ {f¬:p1}, {t¬:p1}/∅ (id)¬ ∅/{f¬:p1, t

¬:p1}
T ((f:∧)) {f:p1, f:p2}/{f:p1 ∧ p2} T ((t:∧)) {t:p1}, {t:p2}/{t:p1 ∧ p2}
T ((t:¬)) {f:p1}/{t¬:p1} T ((f:¬∧)) {f¬:p1}, {f¬:p2}/{f¬:p1 ∧ p2}
(f¬ → f) {f¬:p1}/{f:¬p1} (t¬ → t) {t¬:p1}/{t:¬p1}

It is easy to see that all rules in T (G) are primitive £♦
1
L-rules or canonical 〈L,£♦1

L〉-
rules, and thus T (G) is a canonical 〈L,£♦1

L〉-calculus. In particular, note that for a

quasi-canonical 〈L,£〉-rule r, T (r) as defined above, can either be a canonical 〈L,£♦1
L〉-

rule (as T ((f:¬∧)) above) or a primitive £♦
1
L-rule (as T ((t:¬)) above) .

To prove the equivalence between G and T (G) we use the following lemmas:

Lemma 5.2.6. Let x:ϕ be an £-labelled L-formula, and σ an L-substitution, such that

ϕ 6∈ atL or σ(ϕ) is not of the form ?ψ for ? ∈ ♦1
L and ψ ∈ L. Then, T (σ(x:ϕ)) = σ(T (x:ϕ)).

Proof. If ϕ = ?ψ for some ? ∈ ♦1
L and ψ ∈ L, then:

T (σ(x:ϕ)) = T (x: ? σ(ψ)) = x?:σ(ψ) = σ(x?:ψ) = σ(T (x:ϕ)).
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Otherwise, ϕ is either atomic or ϕ = �(p1, ... , par(�)) for ar(�) 6= 1, and in both cases

σ(ϕ) is not of the form ?ψ for ? ∈ ♦1
L and ψ ∈ L. Then:

T (σ(x:ϕ)) = T (x:σ(ϕ)) = x:σ(ϕ) = σ(x:ϕ) = σ(T (x:ϕ)).

Lemma 5.2.7. Let G be a quasi-canonical 〈L,£〉-calculus, and σ an L-substitution.

For every £-labelled L-formula α: {T (σ(α))} `T (G) {σ(T (α))}.

Proof. Let α = x:ϕ (for x ∈ £ and ϕ ∈ L). If ϕ 6∈ atL or σ(ϕ) is not of the form

?ψ for ? ∈ ♦1
L and ψ ∈ L, then by Lemma 5.2.6, T (σ(α)) = σ(T (α)), and obviously,

{T (σ(α))} `T (G) {σ(T (α))}. Otherwise, ϕ ∈ atL and σ(ϕ) = ?ψ for some ? ∈ ♦1
L and

ψ ∈ L. In this case, T (σ(α)) = T (x: ? ψ) = x?:ψ, and σ(T (α)) = σ(α) = x: ? ψ. By

applying the rule (x? → x), we obtain that {T (σ(α))} `T (G) {σ(T (α))}.

Proposition 5.2.8. For every quasi-canonical 〈L,£〉-calculus G, set S of 〈L,£〉-sequents

and 〈L,£〉-sequent s: if S `G s then T (S) `T (G) T (s).

Proof. It suffices to show that for every application of a rule of G deriving the 〈L,£〉-
sequent s from the 〈L,£〉-sequents s1, ... , sn, we can derive T (s) from T (s1), ... , T (sn) in

T (G). Consider the possible cases:

• s = {x:ϕ} ∪ c is derived from c by applying a weakening rule. In this case, we can

derive T (s) = T ({x:ϕ}) ∪ T (c) from T (c) by applying weakening as well.

• s = (X:ϕ) ∪ c1 ∪ ... ∪ cn is derived from s1 = (X1:ϕ) ∪ c1, ... , sn = (Xn:ϕ) ∪ cn by

applying of a primitive £-rule r = (X1:p1), ... , (Xn:p1)/(X:p1) of G. If ϕ does not

have the form ?ψ (for ? ∈ ♦1
L and ψ ∈ L), then T (si) = {Xi:ϕ} ∪ T (ci) for every

1 ≤ i ≤ n, and T (s) = {X:ϕ} ∪ T (c1) ∪ ... ∪ T (cn). By applying the same primitive

£-rule r, we can derive T (s) from T (s1), ... , T (sn) in T (G). Otherwise, ϕ = ?ψ

(for ? ∈ ♦1
L and ψ ∈ L). Here, T (si) = (X?i :ψ) ∪ T (ci) for every 1 ≤ i ≤ n,

and T (s) = (X?:ψ) ∪ T (c1) ∪ ... ∪ T (cn). By applying r?, we can derive T (s) from

T (s1), ... , T (sn) in T (G).

• s = σ(s′) ∪ c1 ∪ ... ∪ cn is derived from s1 = σ(s′1) ∪ c1, ... , sn = σ(s′n) ∪ cn by

applying a quasi-canonical rule r = s′1, ... , s
′
n/s

′ of G. For every 1 ≤ i ≤ n,

T (si) = T (σ(s′i))∪T (ci), and thus by Lemma 5.2.7 (using also Proposition 2.2.17),

T (si) `T (G) σ(T (s′i)) ∪ T (ci). By applying the rule T (r) of T (G) we can derive

σ(T (s′)) ∪ T (c1) ∪ ... ∪ T (cn). Since r is quasi-canonical, s′ consists solely of non-

atomic formulas, and by Lemma 5.2.6, σ(T (s′)) = T (σ(s′)). Thus, we derived T (s)

in T (G).

For the other direction, we define a translation T−1, mapping 〈L,£♦1
L〉-sequents to

〈L,£〉-sequents:
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Definition 5.2.9. For an £♦
1
L-labelled L-formula α, T−1(α) is the £-labelled L-formula,

defined as follows: T−1(α) = x: ? ϕ if α = x?:ϕ for some x ∈ £, ? ∈ ♦1
L and ϕ ∈ L,

and otherwise T−1(α) = α. T−1 is extended to 〈L,£♦1
L〉-sequents and sets of 〈L,£♦1

L〉-
sequents in the obvious way (e.g. T−1(s) = {T−1(α) | α ∈ s}).

Lemma 5.2.10. T−1(σ(T (s))) = σ(s) for every 〈L,£〉-sequent s, and L-substitution σ.

Proposition 5.2.11. For every quasi-canonical 〈L,£〉-calculus G, set S of 〈L,£♦1
L〉-

sequents and 〈L,£♦1
L〉-sequent s: if S `T (G) s then T−1(S) `G T−1(s).

Proof. It suffices to show that for every application of a rule of T (G) deriving the

〈L,£♦1
L〉-sequent s from the 〈L,£♦1

L〉-sequents s1, ... , sn, we can derive T−1(s) from

T−1(s1), ... , T−1(sn) in G. Consider the possible cases:

• s = {x:ϕ} ∪ c is derived from c by applying a weakening rule. In this case, we can

derive T−1(s) = T−1({x:ϕ}) ∪ T−1(c) from T−1(c) by applying weakening as well.

• s = (X:ϕ) ∪ c1 ∪ ... ∪ cn is derived from s1 = (X1:ϕ) ∪ c1, ... , sn = (Xn:ϕ) ∪ cn by

applying the primitive £-rule (X1:p1), ... , (Xn:p1)/(X:p1) of T (G), that occurs also

in G itself. For every 1 ≤ i ≤ n, T−1(si) = (Xi:ϕ) ∪ T−1(ci). By applying the same

rule we can derive T−1(s) = (X:ϕ) ∪ T−1(c1) ∪ ... ∪ T−1(cn) in G.

• s = (X?:ϕ) ∪ c1 ∪ ... ∪ cn is derived from s1 = (X?1:ϕ) ∪ c1, ... , sn = (X?n:ϕ) ∪ cn by

applying the primitive £♦
1
L-rule r? = (X?1:p1), ... , (X?n:p1)/(X?:p1) of T (G). In this

case r = (X1:p1), ... , (Xn:p1)/(X:p1) is a primitive rule of G. For every 1 ≤ i ≤ n,

T−1(si) = (Xi: ? ϕ) ∪ T−1(ci). By applying the rule r we can derive the 〈L,£〉-
sequent T−1(s) = (X: ? ϕ) ∪ T−1(c1) ∪ ... ∪ T−1(cn) in G.

• s = σ(T (s′)) ∪ c1 ∪ ... ∪ cn is derived from s1 = σ(T (s′1)) ∪ c1, ... , sn = σ(T (s′n)) ∪ cn
by applying a rule T (r) of T (G), where r = s′1, ... , s

′
n/s

′ is a rule of G. By

Lemma 5.2.10, for every 1 ≤ i ≤ n, T−1(si) = σ(s′1) ∪ T−1(ci). By applying r

we can derive T−1(s) = σ(s′) ∪ T−1(c1) ∪ ... ∪ T−1(cn) in G.

• s = {x: ? ϕ} ∪ c is derived from s1 = {x?:ϕ) ∪ c using the rule (x? → x). In this

case we have T−1(s) = T−1(s1), and obviously we are done.

It follows that T (G) is equivalent to the original quasi-canonical calculus G in the

following sense:

Theorem 5.2.12. For every quasi-canonical 〈L,£〉-calculus G, set S of 〈L,£〉-sequents

and 〈L,£〉-sequent s: S `G s iff T (S) `T (G) T (s).
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Proof. By Lemma 5.2.10 T−1(T (s)) = s for every 〈L,£〉-sequent s (take the “identity

substitution”). Thus the claim directly follows from Propositions 5.2.8 and 5.2.11.

A general decidability result for all quasi-canonical calculi immediately follows:

Corollary 5.2.13. 1. Given a quasi-canonical 〈L,£〉-calculus G, a finite set S of

〈L,£〉-sequents, and an 〈L,£〉-sequent s, it is decidable whether S `G s or not.

2. Given a quasi-canonical 〈L,£〉-calculus G, a set X ⊆ £, a finite set Γ of L-formulas,

and an L-formula ϕ, it is decidable whether Γ 
X
G ϕ or not.

Proof. Directly follows from Corollary 4.3.8 and Theorem 5.2.12. Note that the construc-

tion of T (G) from G is obviously computable.

In addition to decidability, the results of the previous chapters provide a method to

obtain a (pre-) PNmatrix semantics for T (G) and the logics it induces. Next we show

that in the most common and interesting case, dealing with a quasi-canonical 〈L,£2〉-
calculus G with PG = {(cut), (id)}, we are also able to use the semantic framework of

PNmatrices to characterize G itself and the logics it induces.

Proposition 5.2.14. Let G be a quasi-canonical 〈L,£2〉-calculus, and v an MT (G)-legal

L-valuation. Suppose that PG = {(cut), (id)}. Then, for every 〈L,£2〉-sequent s: v |= s

iff v |= T (s).

Proof. Suppose that v |= T (s). By definition, there exists some £2
♦1
L-labelled L-formula

x:ϕ ∈ T (s) such that x ∈ v(ϕ). If x ∈ £2 then x:ϕ ∈ s as well, and clearly v |= s.

Otherwise, x = y? for some y ∈ £2 and ? ∈ ♦1
L, and we have y: ? ϕ ∈ s. Now, since

v is MT (G)-legal and T (G) includes the rule (y? → y), we should have y ∈ v(?ϕ), and

consequently, v |= s. To see this, note that since T (G) includes the rule (y? → y), we

have that Sem((y? → y)) ∈ ΛMT (G)
. Since v is MT (G)-legal, it satisfies Sem((y? → y).

Now, Sem((y? → y) = {{p1 + X | {y?} ⊆ X ⊆ £}} ⇒ {?p1 + X | {y} ⊆ X ⊆ £}. Conse-

quently, since y? ∈ v(ϕ), we have y ∈ v(?ϕ).

For the converse, suppose that v |= s. By definition, there exists some £2-labelled

L-formula x:ϕ ∈ s such that x ∈ v(ϕ). If ϕ does not have a form ?ψ for ? ∈ ♦1
L, then

x:ϕ ∈ T (s), and clearly v |= T (s). Otherwise, ϕ = ?ψ for some ? ∈ ♦1
L and ψ ∈ L, and

x?:ψ ∈ T (s). We show that we have x? ∈ v(ψ) in this case (and so, v |= T (s)). First,

since v is MT (G)-legal and (cut) ∈ PT (G), we have x 6∈ v(ϕ) (where f = t and t = f,

see Example 3.2.9). Since T (G) includes the rule (x? → x), this entails that x? 6∈ v(ψ)

(this is proved as in the first direction above). Finally, since (id)? ∈ PT (G), it follows that

x? ∈ v(ψ).
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Corollary 5.2.15. Let G be a quasi-canonical 〈L,£2〉-calculus with PG = {(cut), (id)}.
Then, `G=`MT (G)

and 
X
G=
MX

T (G)
for every X ⊆ £2.

Proof. Easily follows from Proposition 5.2.14, Theorem 5.2.12, and Theorem 3.2.15.

Example 5.2.16. Consider the logic induced by the quasi-canonical calculus G0 from

Example 5.2.5 and the set of labels {t}. The corresponding PNmatrix M = M
{t}
T (G0),

which is obtained from the canonical calculus T (G0) constructed in that example, consists

of:1

1. UM = {{t, t¬}, {t, f¬}, {f, t¬}}.
2. DM = {{t, t¬}, {t, f¬}}.
3. ∧ and ¬ have the following PNtables:

∧M {t, f¬} {t, t¬} {f, t¬}
{t, f¬} {{t, f¬}} {{t, t¬}, {t, f¬}} {{f, t¬}}
{t, t¬} {{t, t¬}, {t, f¬}} {{t, t¬}, {t, f¬}} {{f, t¬}}
{f, t¬} {{f, t¬}} {{f, t¬}} {{f, t¬}}

¬M
{t, f¬} {{f, t¬}}
{t, t¬} {{t, t¬}, {t, f¬}}
{f, t¬} {{t, t¬}, {t, f¬}}

Corollary 5.2.15 entails that M characterizes the tcr 
{t}G0
(that is: T 
M ϕ iff T 
{t}G0

ϕ).

Note that M is isomorphic to the three-valued Nmatrix for this logic given in [8]. Fur-

thermore, it is easy to check that this is the case for all the PNmatrices obtained by this

general procedure for the quasi-canonical calculi considered in [8, 13].

1For simplicity, we use a reduced presentation of M as explained in Remark 3.1.12.



Chapter 6

Non-pure Sequent Calculi

For various important non-classical logics, such as modal logics and intuitionistic logic,

there is no known (cut-free) pure calculus. Indeed, a major restriction in pure calculi is

that unlimited context sequents may be freely used in all inference steps. Well-known

sequent calculi for modal logics and intuitionistic logic do not meet this requirement, and

thus they do not belong to the family of pure calculi studied in the previous chapters.

For example, consider the following schemes of applications written in the usual notation

of two-sided sequents:

(1)
Γ, ϕ1 ⇒ ϕ2

Γ⇒ ϕ1 ⊃ ϕ2

(2)
�Γ⇒ ϕ

�Γ⇒ �ϕ
(3)

Γ⇒ ϕ

�Γ⇒ �ϕ
These schemes demonstrate different possibilities regarding context sequents, and non of

them can be presented as a pure rule:

1. Scheme (1) allows only left context formulas, that is: all context sequents should

be subsets of {f:ϕ | ϕ ∈ L}. This scheme is employed in the multiple-conclusion

sequent calculus for intuitionistic logic [90].

2. Scheme (2) again allows only left context formulas, but all of them should begin

with � (�Γ is an abbreviation for {�ϕ | ϕ ∈ Γ}). In other words, all context

sequents should be subsets of {f:�ϕ | ϕ ∈ L}. This scheme is employed in the

usual sequent calculus for the modal logic S4 [96].

3. Scheme (3) exhibits more complicated treatment of the context formulas: each

labelled formula f:ϕ in the premise “becomes” f:�ϕ in the conclusion of the ap-

plication. In other words, any sequent c ⊆ {f:ϕ | ϕ ∈ L} can serve as a context

sequent in the premise of the application, provided that {f:�ϕ | f:ϕ ∈ c} is the

context sequent of the conclusion. This scheme is employed in the usual sequent
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calculus for the modal logic K.1

In this chapter we introduce a general framework of sequent calculi, called basic

calculi, that allow context restrictions of certain kinds (including those demonstrated

above). Unlike in the previous chapters, we restrict our attention only to two-sided

sequent calculi. Various sequent calculi that seem to have completely different natures

can be directly presented as basic calculi. This includes standard sequent calculi for

modal logics, as well as the usual multiple-conclusion systems for intuitionistic logic, its

dual, and bi-intuitionistic logic. Our goal is to carry out a general and uniform semantic

study of these systems, that will provide useful semantics for them, as well as semantic

criteria for their proof-theoretic properties.

Publications Related to this Chapter

The material in this chapter was included in [15, 73].

6.1 Basic Calculi

In this section we precisely define the general structure of derivation rules that are allowed

to appear in basic calculi. Rules of this structure will be called basic rules. As in

Section 2.2, we explicitly differentiate between a rule and its applications. Derivations in

a certain basic calculus consist of applications of rules, and the rules themselves are just

succinct formulations of their sets of applications. In addition, for the formulation of the

rules, we differentiate between two parts of their applications, namely the context part

and the non-context part (see [92]). The non-context part is obtained by instantiating

a rigid structure that is given in the rule. In turn, the structure of the context part is

determined using context-relations. This structure is less restrictive, as the number of

context formulas is completely free. Next we turn to the formal definitions.

Notation 6.1.1. Throughout this chapter, dealing only with two-sided sequents, we will

not mention the set of labels in the aforementioned notions. For example, we refer to £2-

labelled L-formulas and 〈L,£2〉-sequents simply as labelled L-formulas and L-sequents.

We may use the usual sequent notation Γ⇒ ∆, where Γ and ∆ are (possibly empty) finite

sets of formulas, interpreted as {f:ϕ | ϕ ∈ Γ} ∪ {t:ϕ | ϕ ∈ ∆}, and employ the standard

abbreviations, e.g., Γ, ϕ⇒ ψ instead of Γ ∪ {ϕ} ⇒ {ψ}, and Γ⇒ instead of Γ⇒ ∅.

1Our intuitive distinction between context formulas and non-context formulas in rule schemes is based
on the following principle: the exact number of non-context formulas is explicitly specified in the scheme,
while any (finite) number of context formulas may be employed. Taking this into account, note that
context formulas may “change” (as in (3)).
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Name Context-Relation Instances (all pair of the form:)

π0 {〈f:p1, f:p1〉, 〈t:p1, t:p1〉} 〈Γ⇒ ∆ , Γ⇒ ∆〉
πint {〈f:p1, f:p1〉} 〈Γ⇒ , Γ⇒ 〉
πd {〈t:p1, t:p1〉} 〈 ⇒ ∆ , ⇒ ∆〉
∅ ∅ 〈 ⇒ , ⇒ 〉
πK {〈f:p1, f:�p1〉} 〈Γ⇒ , �Γ⇒ 〉
πK4 {〈f:p1, f:�p1〉, 〈f:�p1, f:�p1〉} 〈Γ1,�Γ2 ⇒ , �Γ1,�Γ2 ⇒ 〉
πS4 {〈f:�p1, f:�p1〉} 〈�Γ⇒ , �Γ⇒ 〉
πB {〈f:p1, f:�p1〉, 〈t:�p1, t:p1〉} 〈Γ⇒ �∆ , �Γ⇒ ∆〉
πS5 {〈f:�p1, f:�p1〉, 〈t:�p1, t:�p1〉} 〈�Γ⇒ �∆ , �Γ⇒ �∆〉

Table 6.1: Important Context-Relations

Definition 6.1.2. An L-context-relation is a finite binary relation on the set of labelled

L-formulas. Given an L-context-relation π, π̄ is the binary relation between labelled

L-formulas consisting of all substitution instances of π, that is:

π̄ = {〈σ(α), σ(β)〉 | σ is an L-substitution and 〈α, β〉 ∈ π}.
A π-instance is an ordered pair of L-sequents 〈s1, s2〉 for which there exist (not neces-

sarily distinct) labelled L-formulas α1, ... , αn, and β1, ... , βn such that s1 = {α1, ... , αn},
s2 = {β1, ... , βn}, and αiπ̄βi for every 1 ≤ i ≤ n.

Several context-relations, that are used in the definitions and examples below, are

given in Table 6.1 (in some of them the language is assumed to have a unary connective

denoted by �).

Definition 6.1.3. A basic L-premise is an ordered pair of the form 〈s, π〉, where s is

an L-sequent and π is an L-context-relation. A basic L-rule is a pair of the form P/s,
where P is a finite set of basic L-premise, and s is an L-sequent. The elements of P are

called the premises of the rule, and s is called the conclusion of the rule. To improve

readability, we usually drop the set braces of the set P of premises. An application of a

basic L-rule 〈s1, π1〉, ... , 〈sn, πn〉/s is any inference step of the following form:

σ(s1) ∪ c1 ... σ(sn) ∪ cn
σ(s) ∪ c′1 ∪ ... ∪ c′n

where σ is an L-substitution, and for every 1 ≤ i ≤ n, ci and c′i are L-sequents such that

〈ci, c′i〉 is a πi-instance. The sequents σ(s1) ∪ c1, ... , σ(sn) ∪ cn are called the premises of

the application, while σ(s) ∪ c′1 ∪ ... ∪ c′n is called the conclusion of the application.

Table 6.2 provides some examples of basic rules and the forms of their applications.

Note that pure 〈L,£2〉-rules as defined in Chapter 2 are basic L-rules in which all premises

have the form 〈s, π0〉.
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Name Basic Rule Application

(T ) 〈{f:p1}, π0〉/{f:�p1}
Γ, ϕ⇒ ∆

Γ,�ϕ⇒ ∆

(S4) 〈{t:p1}, πS4〉/{t:p1}
�Γ⇒ ϕ

�Γ⇒ �ϕ

(K4) 〈{t:p1}, πK4〉/{t:�p1}
Γ1,�Γ2 ⇒ ϕ

�Γ1,�Γ2 ⇒ �ϕ

(D0) 〈{f:p1}, ∅〉/{f:�p1}
ϕ⇒
�ϕ⇒

(D) 〈∅, πK〉/∅
Γ⇒
�Γ⇒

(f: ⊃) 〈{t:p1}, π0〉, 〈{f:p2}, π0〉/{f:p1 ⊃ p2}
Γ1 ⇒ ϕ1,∆1 Γ2, ϕ2 ⇒ ∆2

Γ1,Γ2, ϕ1 ⊃ ϕ2 ⇒ ∆1,∆2

(f: ⊃′) 〈{t:p1}, π0〉, 〈{f:p2}, πint〉/{f:p1 ⊃ p2}
Γ1 ⇒ ϕ1,∆ Γ2, ϕ2 ⇒

Γ1,Γ2, ϕ1 ⊃ ϕ2 ⇒ ∆

(t: ⊃∗)
〈{f:p1, t:p2}, π〉/{t:p1 ⊃ p2}

where π = {〈f:p1 ⊃ p2, f:p1 ⊃ p2〉}
ψ1 ⊃ ψ′1, ... , ψn ⊃ ψ′n, ϕ1 ⇒ ϕ2

ψ1 ⊃ ψ′1, ... , ψn ⊃ ψ′n ⇒ ϕ1 ⊃ ϕ2

Table 6.2: Basic Rules Examples

Convention 6.1.4. Henceforth, we identify pure 〈L,£2〉-rules (see Definition 2.2.5) with

basic L-rules that employ π0 as the context-relation in all of their premises. Thus we

refer to all pure 〈L,£2〉-rules as basic rules.

Definition 6.1.5. A basic L-calculus consists of a finite set of basic £-rules, that includes

the primitive £2-rules: (f:weak), (t:weak), (cut) and (id) (see Page 14). A proof in a

basic L-calculus is defined exactly as in pure 〈L,£〉-calculus (see Definition 2.2.14), and

we write S `G s to denote the existence of a proof of an L-sequent s from a set S of

L-sequents in a basic L-calculus G.

Notation 6.1.6. We denote by RG all basic L-rules of a basic L-calculus G, except for

(f:weak), (t:weak), (cut) and (id). ΠG denotes the set of L-context-relations appearing

in the basic rules of G (in particular, since (cut) is always included, π0 ∈ ΠG for every

basic calculus G).

Note that pure 〈L,£2〉-calculi whose primitive rules include (cut) and (id) are ob-

tained as a particular instance in which ΠG = {π0}. In addition, the above notion of a

basic rule is sufficiently general, so that many known sequent systems for various propo-

sitional logics can be easily presented in this framework. Next, we list some of these
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sequent systems, and present their formulation as basic calculi. In the sequel, we will

return to some of these calculi, provide a semantics for them, and use it to study their

proof-theoretic properties.

Remark 6.1.7. When we say that a basic L-calculus G is a calculus for a logic L = 〈L,
〉,
we mean that {t:ψ | ψ ∈ T } `G {t:ϕ} iff T 
 ϕ. In cases where there is difference be-

tween the local version of the logic and the global one, as happens in modal logics, we

refer to the global version (see [35]). In addition, this chapter deals only with propo-

sitional logics. Throughout, when we mention a known Gentzen-type system, we refer

only to its propositional fragment.

Example 6.1.8 (LJ). The most famous sequent system for intuitionistic logic is of-

course Gentzen’s LJ [56]. This system manipulates single-conclusion sequents, and thus

it does not fall in our framework.2 However, there is an equivalent multiple-conclusion

system, called LJ ′ in [90], that can be naturally presented as a basic calculus, that

we call LJ. Its propositional language LLJ is {⊥0,∧2,∨2,⊃2} (¬ϕ can be defined by

ϕ ⊃⊥). The rules of LJ are the same rules of LK (see Example 2.2.20), except for

(t: ⊃), in which πint is used instead of π0 (see Table 6.1). Thus this rule has now the

form 〈{f:p1, t:p2}, πint〉/{t:p1 ⊃ p2}, and its applications allow to infer sequents of the

form Γ⇒ ϕ1 ⊃ ϕ2 from Γ, ϕ1 ⇒ ϕ2 (note that right context-formulas are forbidden). In

addition, since we do not include ¬ in LLJ, we discard its rules, and add the following

basic LLJ-rule for ⊥: ∅/{f: ⊥}.

Example 6.1.9 (BLJ). Bi-intuitionistic logic (see, e.g., [59]) is the extension of intu-

itionistic logic with a binary connective dual to implication (denoted here by ≺). Thus

its language is {⊥0,∧2,∨2,⊃2,≺2}, and we denote it by LBLJ. A sequent system for this

logic (see [80]) can be presented as a basic LBLJ-calculus, which we call BLJ, obtained

by augmenting LJ with the following rules:

(f: ≺) 〈{f:p1, t:p2}, πd〉/{f:p1 ≺ p2} (t: ≺) 〈{t:p1}, π0〉, 〈{f:p2}, π0〉/{t:p1 ≺ p2}
Applications of these rules have the forms:

(f: ≺)
ϕ1 ⇒ ϕ2,∆

ϕ1 ≺ ϕ2 ⇒ ∆
(t: ≺)

Γ1 ⇒ ϕ1,∆1 Γ2, ϕ2 ⇒ ∆2

Γ1,Γ2 ⇒ ϕ1 ≺ ϕ2,∆1,∆2

Example 6.1.10 (PLJ). Sequent systems for many paraconsistent logics that extend the

positive fragment of intuitionistic logic are defined and studied in [8]. All of them belong

to the family of basic calculi. For example, we present the system PLJ({(⇒ ¬ ⊃)})
from [8] as a basic calculus, that we call PLJ. Let LPLJ = {¬1,∧2,∨2,⊃2}. The basic

2Note that canonical single-conclusion (two-sided) sequent calculi, of which LJ is the prototype ex-
ample, were introduced and studied in the author’s M.Sc. thesis (see also [14]).
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LPLJ-calculus PLJ is obtained from LJ by adding the following rules (and discarding

the rule for ⊥):

(t:¬) 〈{f:p1}, π0〉/{t:¬p1} (t:¬ ⊃) 〈{t:p1}, π0〉, 〈{t:¬p2}, π0〉/{t:¬(p1 ⊃ p2)}
Applications of these rules have the forms:

(t:¬)
Γ, ϕ⇒ ∆

Γ⇒ ¬ϕ,∆
(t:¬ ⊃)

Γ1 ⇒ ϕ1,∆1 Γ2 ⇒ ¬ϕ2,∆2

Γ1,Γ2 ⇒ ¬(ϕ1 ⊃ ϕ2),∆1,∆2

Example 6.1.11 (Systems for Modal Logics). Ordinary sequent systems for modal logics

are surveyed in [96] and [81]. All of them belong to the family of basic calculi. As

examples we present as basic calculi six of them (used later to demonstrate certain

semantic phenomena). Let L� = {�1,¬1,∧2,∨2,⊃2}. We use the basic rules (K), (B)

and (S5) (in addition to some of the rules presented in Table 6.2). (K), (B) and (S5) all

have the form 〈{t:p1}, π〉/{t:�p1}, where π is πK, πB, and πS5 respectively (see Table 6.1).

Applications of these rules have the form:

(K)
Γ⇒ ϕ

�Γ⇒ �ϕ
(B)

Γ⇒ ϕ,�∆

�Γ⇒ �ϕ,∆
(S5)

�Γ⇒ ϕ,�∆

�Γ⇒ �ϕ,�∆

Based on LK, six basic L�-calculi are defined as follows:

K = LK + (K) K4 = LK + (K4) KD = K + (D)

KB = LK + (B) S4 = LK + (S4) + (T ) S5 = LK + (S5) + (T )

Note that � is the only primitive modality in the language L�, and ♦ϕ can be defined as

¬�¬ϕ. For an extended language with two dual primitive modal operators, one should

modify some of the context-relations in the rules for �, and add dual rules for ♦. For

example, for the logic S4 the following four schemes are used:

�Γ⇒ ϕ,♦∆

�Γ⇒ �ϕ,♦∆

Γ, ϕ⇒ ∆

Γ,�ϕ⇒ ∆

�Γ, ϕ⇒ ♦∆

�Γ,♦ϕ⇒ ♦∆

Γ⇒ ϕ,∆

Γ⇒ ♦ϕ,∆

Example 6.1.12 (GL). The logicGL (the modal logic of provability, see [94]) is obtained

by adding the axiom �(�ϕ ⊃ ϕ) ⊃ �ϕ to the usual Hilbert system for the modal logic

K. In addition, GL has a well-known sequent system (see, e.g., [75, 84, 3]), that can be

presented as a basic L�-calculus, that we call GL. GL is obtained from LK by adding

(GL) – the basic L�-rule 〈{f:�p1, t:p1}, πK4〉/{t:�p1}. Applications of (GL) allow to

infer sequents of the form �Γ1,�Γ2 ⇒ �ϕ from Γ1,�Γ2,�ϕ⇒ ϕ.

Example 6.1.13 (IS5). Sequent systems for intuitionistic modal logics provide an in-

teresting source of examples to be studied in the framework of basic calculi, as they

naturally employ more than one (non-trivial) context-relation. For example, the system

G3 from [78] can be presented as the basic L�LJ-calculus obtained from LJ by adding the

rules (S5) and (T ) (L�LJ denotes the language obtained by augmenting LLJ with a unary

connective �). In the sequel, we refer to this basic calculus as IS5.
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Example 6.1.14. In [74] several sequent calculi for weak modal logics are introduced.

All of them belong to the family of basic calculi. For example, the first system from [74]

(called Mseq there), is the basic L�-calculus obtained from LK by adding (M) – the

basic rule 〈{f:p1, t:p2}, ∅〉/{f:�p1, t:�p2}. Its applications allow to infer sequents of the

form �ϕ1 ⇒ �ϕ2 from ϕ1 ⇒ ϕ2.

Example 6.1.15. Several sequent systems for logics of strict implication are provided in

[65], and can be presented as basic calculi. For example, GS4I (from [65]) is equivalent

to the basic Lcl-calculus, obtained from LK by replacing the rule (t: ⊃) with the rule

(t: ⊃∗) (see Table 6.2). Note that GS4I includes also a less standard rule (denoted by

(→ KI) in [65]) that cannot be presented as one basic rule. However, one can show that

it is redundant in GS4I .

Example 6.1.16 (GP). Primal logic was defined and studied in [31]. As explained

there, this logic is used in the context of the access control language DKAL. We consider

here the sequent system GP from [31] for primal logic with disjunction and quotations.

Given a finite set Q of constants denoting “principals”, let

LQGP = {⊥0,>0,∧2,∨2,⊃2} ∪ {q said1, q implied1 | q ∈ Q}.
The sequent system GP (over Q) can be presented as a basic LQGP-calculus, that we call

GPQ. The rules of GPQ are the rules of LK for ∧,∨, and the following rules for the

other connectives (for every q ∈ Q):

(f: ⊥) ∅/{f: ⊥} (t:>) ∅/{t:>}
(f: ⊃) 〈{t:p1}, π0〉, 〈{f:p2}, π0〉/{f:p1 ⊃ p2} (t: ⊃) 〈{t:p2}, π0〉/{t:p1 ⊃ p2}

(Saidq) 〈{t:p1}, πqs〉/{t:q said p1}
(Impliedq) 〈{t:p1}, πqi 〉/{t:q implied p1}

where πqs = {〈f:p1, f:q said p1〉}, and πqi = πqs ∪{〈f:p1, f:q implied p1〉} for every q ∈ Q.

Applications of these rules have the form:

(f: ⊥)
⊥⇒

(t:>)
⇒ >

(f: ⊃)
Γ1 ⇒ ϕ1,∆1 Γ2, ϕ2 ⇒ ∆2

Γ1,Γ2, ϕ1 ⊃ ϕ2 ⇒ ∆1,∆2

(t: ⊃)
Γ⇒ ϕ2,∆

Γ⇒ ϕ1 ⊃ ϕ2,∆

(Saidq)
Γ⇒ ϕ

q said Γ⇒ q said ϕ
(Impliedq)

Γ,∆⇒ ϕ

q said Γ, q implied ∆⇒ q implied ϕ

6.1.1 Proof-Theoretic Properties

Generally speaking, the definition of the proof-theoretic properties from Chapter 2 are

adapted in the obvious way to basic calculi (see Section 2.3). Formally, since we explicitly
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required that each basic calculus includes (cut) and (id), we can not consider the calculi

obtained from a basic calculus by discarding (cut) or (id) as basic calculi. Thus we find

it convenient to restrict the proofs in basic calculi via proof specifications:

Definition 6.1.17. An L-proof-specification is a triple of sets of L-formulas 〈F , C,A〉.
Given an L-proof-specification ρ = 〈F , C,A〉, a proof P in a basic L-calculus G is called

a ρ-proof if the following conditions hold:

1. P contains only F -sequents (that is L-sequents consisting only of formulas from F ,

see Definition 2.3.3).

2. The cut-formula of every application of (cut) in P is in C.
3. The id-formula of every application of (id) in P is in A.

We write S `G�ρ s if there exists a ρ-proof in a basic L-calculus G of an L-sequent s

from a set S of L-sequents.

Note that `G is a special case of `G�ρ, obtained by choosing ρ = 〈L,L,L〉. In

addition, the following are equivalent:

1. S `G�ρ s for ρ = 〈F , C,A〉.
2. {s′ ∈ S | frm[s′] ⊆ F} `G�ρ′ s for ρ′ = 〈F , C ∩ F ,A ∩ F〉.
3. S ∪ {{f:ϕ, t:ϕ} | ϕ ∈ A} `G�ρ′ s for ρ′ = 〈F , C, ∅〉.

Now, we can uniformly define (strong) ≤-analyticity, (strong) cut-admissibility, and

axiom-expansion using proof-specifications.

Definition 6.1.18. Let G be a basic L-calculus.

1. Let ≤ be a safe partial order on L. G is ≤-analytic if for every L-sequent s, `G s

implies `G�ρ s for ρ = 〈↓≤ [s],L,L〉. G is strongly ≤-analytic if for every set S of

L-sequents and L-sequent s, S `G s implies S `G�ρ s for ρ = 〈↓≤ [S ∪ {s}],L,L〉.

2. G enjoys cut-admissibility if for every L-sequent s, `G�ρ s for ρ = 〈L, ∅,L〉 whenever

`G s. G enjoys strong cut-admissibility if for every set S of L-sequents and L-

sequent s, S `G�ρ s for ρ = 〈L, frm[S],L〉 whenever S `G s.

3. A connective � ∈ ♦L admits axiom-expansion in G if `G�ρ {f:ϕ, t:ϕ} for the for-

mula ϕ = �(p1, ... , par(�)) and ρ = 〈L,L, {p1, ... , par(�)}〉.

Note also that the consequences of (strong) ≤-analyticity discussed in Section 2.3.1

(consistency, conservativity, and decidability) hold for (strong) ≤-analytic basic calculi

as well, with minor modification in their proofs.
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6.2 Kripke-style Semantics for Basic Calculi

In this section we introduce a method for providing semantics for any given basic cal-

culus and proof-specification. Thus, given a basic calculus G and a proof-specification

ρ, we show how to uniformly recognize a class of semantic structures KG�ρ, that natu-

rally induce a semantic consequence relation `KG�ρ between sequents, for which we have

soundness and completeness, i.e. `G�ρ=`KG�ρ . The semantic framework employed for

this purpose is a generalization of Kripke-style semantics for modal and intuitionistic

logic, where instead of usual Kripke frames and models, we will have (partial) Kripke

valuations. These are defined as follows:

Definition 6.2.1. A partial Kripke L-valuation (partial L-Kvaluation, for short) is a

function v from the Cartesian product of some set Wv (whose elements are called worlds)

and some set Domv ⊆ L to 2{f,t}. A partial L-Kvaluation v with Domv = L is also

called an L-Kvaluation.

Note that as in Chapter 3, the truth values are subsets of labels. Next, we introduce

the semantic consequence relation associated with a given set of such valuations.

Definition 6.2.2. Let v be a partial L-Kvaluation.

1. A labelled L-formula x:ϕ is true in some w ∈ Wv with respect to v (denoted by:

v, w |= x:ϕ) if ϕ ∈ Domv and x ∈ v(w,ϕ).

2. An L-sequent s is true with respect to v:

(a) in some w ∈ Wv (denoted by: v, w |= s) if v, w |= α for some α ∈ s.
(b) in some set W ⊆ Wv (denoted by: v,W |= s) if v, w |= s for every w ∈ W .

3. v is a model of:

(a) an L-sequent s (denoted by: v |= s) if s is a Domv-sequent and v,Wv |= s.

(b) a set S of L-sequents (denoted by: v |= S) if v |= s for every Domv-sequent

s ∈ S.

Now, the given proof-specification ρ = 〈F , C,A〉 enforces some simple conditions on

Kvaluations: (1) As in Chapter 3, Domv should consist exactly of the formulas in F , those

that are allowed to appear in ρ-proofs; (2) If some formula ϕ may serve as a cut-formula

(i.e., if ϕ ∈ C ∩ F), the value {f, t} should be never assigned to ϕ; and (3) Similarly, ∅
should not be assigned to ϕ, if ϕ may serve as an id-formula (i.e., if ϕ ∈ A ∩ F). These

restrictions are formulated in the next definition.
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Definition 6.2.3. Let ρ = 〈F , C,A〉 be an L-proof-specification. A partial L-Kvaluation

v is called ρ-legal if the following hold:

1. Domv = F .

2. v(w,ϕ) 6= {f, t} for every w ∈ Wv and ϕ ∈ C ∩ F .

3. v(w,ϕ) 6= ∅ for every w ∈ Wv and ϕ ∈ A ∩ F .

A special kind of Kvaluations will be particularly needed below:

Definition 6.2.4. A partial L-Kvaluation is called normal if it is 〈F ,L,L〉-legal for some

F ⊆ L.

Note that a normal partial L-Kvaluation v assigns either {f} or {t} to any pair

〈w,ϕ〉 ∈ Wv ×Domv.

Next we turn to restrictions on Kvaluations imposed by the basic system itself. As

in Chapter 3, the intuitive idea is that each syntactic ingredient of G imposes a certain

constraint on Kvaluations. Taking all of these constraints together, we get a set of

Kvaluations for which G is sound and complete. The exact constraints are formulated

below.

First, we associate with each context-relation π of G a binary (“accessibility”) relation

on Wv, and enforce certain conditions on the associated accessibility relations.

Definition 6.2.5. Given a set W , a 〈G,W 〉-coupling is a function assigning a binary

relation on W to every π ∈ ΠG.

Definition 6.2.6. Let G be a basic L-calculus, v a partial L-Kvaluation, and < a

〈G,Wv〉-coupling.

1. Given an L-context-relation π, Rv
π denotes the binary relation on Wv defined as

follows: w1R
v
πw2 iff for every two labelled Domv-formulas α1, α2, if α2π̄α1 and

v, w2 |= α2 then v, w1 |= α1.

2. 〈v,<〉 is called:

(a) π-legal for some π ∈ ΠG if <(π) ⊆ Rv
π.

(b) Π-legal for some Π ⊆ ΠG if it is π-legal for every π ∈ Π.

Example 6.2.7. Let G be a basic L-calculus, v a partial L-Kvaluation, and < a 〈G,Wv〉-
coupling.

1. Consider the L-context-relation π0. By definition, α2π̄0α1 iff α2 = α1. Thus

w1R
v
π0
w2 iff for every labelled Domv-formula α such that v, w2 |= α, we have
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v, w1 |= α. Equivalently, w1R
v
π0
w2 iff v(w2, ϕ) ⊆ v(w1, ϕ) for every ϕ ∈ Domv.

Therefore, 〈v,<〉 is π0-legal iff for every w1, w2 ∈ Wv such that w1<(π0)w2, we

have that v(w2, ϕ) ⊆ v(w1, ϕ) for every ϕ ∈ Domv. In particular, if <(π0) is iden-

tity (on Wv) then 〈v,<〉 is π0-legal. Note that if v is normal, then w1R
v
π0
w2 iff

v(w1, ϕ) = v(w2, ϕ) for every ϕ ∈ Domv. In this case, 〈v,<〉 is π0-legal iff for ev-

ery w1, w2 ∈ Wv such that w1<(π0)w2, we have that v(w2, ϕ) = v(w1, ϕ) for every

ϕ ∈ Domv.

2. Suppose that πint appears in ΠG. Here, α2π̄intα1 iff α2 = α1 = f:ϕ for some ϕ ∈ L.

Thus w1R
v
πint
w2 iff for every labelled Domv-formula α of the form f:ϕ, if v, w2 |= α,

then v, w1 |= α. Equivalently, w1R
v
πint
w2 iff f ∈ v(w2, ϕ) implies that f ∈ v(w1, ϕ) for

every ϕ ∈ Domv. Therefore, 〈v,<〉 is πint-legal iff for every w1, w2 ∈ Wv such that

w1<(πint)w2, we have that f ∈ v(w2, ϕ) implies f ∈ v(w1, ϕ) for every ϕ ∈ Domv.

Note that if v is normal, then 〈v,<〉 is πint-legal iff for every w1, w2 ∈ Wv such

that w1<(πint)w2, we have that v(w1, ϕ) = {t} implies v(w2, ϕ) = {t} for every

ϕ ∈ Domv. This restriction corresponds to the persistence (or “monotonicity”)

condition that is employed in intuitionistic Kripke semantics, where <(πint) serves

as the accessibility relation.

3. Suppose that πK appears in ΠG. Here, w1R
v
πK
w2 iff v, w2 |= f:ϕ implies v, w1 |= f:�ϕ

whenever ϕ ∈ Domv and �ϕ ∈ Domv. Equivalently, w1R
v
πK
w2 iff f ∈ v(w2, ϕ) im-

plies f ∈ v(w1,�ϕ) whenever ϕ ∈ Domv and �ϕ ∈ Domv. Therefore, 〈v,<〉 is

πK-legal iff for every w1, w2 ∈ Wv such that w1<(πK)w2, we have that f ∈ v(w2, ϕ)

implies f ∈ v(w1,�ϕ) whenever ϕ ∈ Domv and �ϕ ∈ Domv. Roughly speaking,

this provides “one half” of the usual semantics of �.

4. Suppose that ∅ appears in ΠG (this context-relation is used in the rule (M), see

Example 6.1.14). Since there do not exist labelled L-formulas α1, α2 such that

α2∅̄α1, w1R
v
∅w2 trivially holds for every w1, w2 ∈ Wv. Thus Rv

∅ = Wv ×Wv, and

every pair 〈v,<〉 is trivially ∅-legal.

Next we formulate the effect of the basic rules appearing in a basic calculus.

Notation 6.2.8. Given a set W , a binary relation R ⊆ W ×W , and an element w ∈ W ,

we denote the set {w′ ∈ W | wRw′} by R[w].

Definition 6.2.9. Let G be a basic L-calculus, v a partial L-Kvaluation, and < a

〈G,Wv〉-coupling. 〈v,<〉 is called:

1. r-legal for some r = 〈s1, π1〉, ... , 〈sn, πn〉/s in RG if the following condition holds for

every w ∈ Wv and L-substitution σ such that frm[σ({s1, ... , sn, s})] ⊆ Domv: if

v,<(πi)[w] |= σ(si) for every 1 ≤ i ≤ n, then v, w |= σ(s).
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2. R-legal for some R ⊆ RG if it is r-legal for every r ∈ R.

Example 6.2.10. Let G be a basic L-calculus, v a partial L-Kvaluation, and < a

〈G,Wv〉-coupling.

1. Suppose that RG includes a rule r of the form 〈{t:p1}, π〉/{t:�p1} (such a rule

appears in various basic calculi for modal logics presented above). 〈v,<〉 is r-legal

iff for every w ∈ Wv and L-substitution σ: if frm[σ({t:p1, t:�p1})] ⊆ Domv, and

v,<(π)[w] |= σ({t:p1}), then v, w |= σ({t:�p1}). Equivalently, 〈v,<〉 is r-legal iff

for every w ∈ Wv and formula ϕ: if {ϕ,�ϕ} ⊆ Domv, and t ∈ v(w′, ϕ) for every

w′ ∈ <(π)[w], then t ∈ v(w,�ϕ). Roughly speaking, this provides the “other half”

of the usual semantics of � (see Example 6.2.7, Item 3).

2. Suppose that RG includes a rule r of the form 〈{t:p1}, π〉, 〈{f:p2}, π〉/{f:p1 ⊃ p2}
(a rule of this form appears in LK and LJ with π = π0). 〈v,<〉 is r-legal iff

for every w ∈ Wv and L-substitution σ: if frm[σ({t:p1, f:p2, f:p1 ⊃ p2})] ⊆ Domv,

v,<(π)[w] |= σ({t:p1}) and v,<(π)[w] |= σ({f:p2}), then v, w |= σ({f:p1 ⊃ p2}).
Equivalently, 〈v,<〉 is r-legal iff for every w ∈ Wv and two formulas ϕ1, ϕ2: if

{ϕ1, ϕ2, ϕ1 ⊃ ϕ2} ⊆ Domv, and for every w′ ∈ <(π)[w] it holds that t ∈ v(w′, ϕ1)

and f ∈ v(w′, ϕ2), then f ∈ v(w,ϕ1 ⊃ ϕ2).

3. Suppose that RG includes a rule r of the form 〈{f:p1, t:p2}, π〉/{t:p1 ⊃ p2} (a rule of

this form appears in LK with π = π0, and in LJ with π = πint). 〈v,<〉 is r-legal iff

for every w ∈ Wv and L-substitution σ: if frm[σ({f:p1, t:p2, t:p1 ⊃ p2})] ⊆ Domv,

and v,<(π)[w] |= σ({f:p1, t:p2}), then v, w |= σ({t:p1 ⊃ p2}). Equivalently, 〈v,<〉
is r-legal iff for every w ∈ Wv and two formulas ϕ1, ϕ2: if {ϕ1, ϕ2, ϕ1 ⊃ ϕ2} ⊆ Domv,

and f ∈ v(w′, ϕ1) or t ∈ v(w′, ϕ2) for every w′ ∈ <(π)[w], then t ∈ v(w,ϕ1 ⊃ ϕ2).

4. Suppose that RG includes a rule r of the form 〈∅, π〉/∅ (for example, this is the

form of the rule (D), see Table 6.2). Applications of this rule allow to infer an

L-sequent s′ from an L-sequent s whenever 〈s, s′〉 is a π-instance. 〈v,<〉 is r-legal

iff for every w ∈ Wv: if v,<(π)[w] |= ∅, then v, w |= ∅ (note that σ(∅) = ∅ for every

L-substitution σ). Since the empty sequent is not true in any world, this condition

would hold iff for every world w there exists some w′ ∈ <(π)[w]. In other words,

〈v,<〉 is r-legal iff <(π) is a serial relation.

Now, by collecting the semantic restrictions introduced by the context-relations and

the basic rules, as well as those of the proof-specification, we obtain the set KG�ρ of

partial L-Kvaluations for which a given basic calculus G and a proof-specification ρ are

sound and complete.
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Definition 6.2.11. Let G be a basic L-calculus, and v a partial L-Kvaluation.

1. Given a 〈G,Wv〉-coupling <, the pair 〈v,<〉 is called G-legal if it is both ΠG-legal,

and RG-legal.

2. v is called G-legal if 〈v,<〉 is G-legal for some 〈G,Wv〉-coupling <.

3. Given an L-proof-specification ρ, v is called G�ρ-legal if it is both ρ-legal and

G-legal. KG�ρ denotes the set of all G�ρ-legal partial L-Kvaluations.

Theorem 6.2.12. `G�ρ=`KG�ρ for every basic L-calculus G and L-proof-specification

ρ.

The proof is given in Section 6.4. In order to obtain a very general soundness result,

we chose above the set KG�ρ to be as large as possible. On the other hand, a stronger

completeness result can be obtained by considering a smaller set of Kvaluations:

Notation 6.2.13. Given a partial L-Kvaluation v, we denote by Idv the identity relation

on Wv.

Definition 6.2.14. Let G be a basic L-calculus, and v a partial L-Kvaluation.

1. <vG denotes the 〈G,Wv〉-coupling defined by <vG(π0) = Idv, and <vG(π) = Rv
π for

every other π ∈ ΠG (see Definition 6.2.6).

2. v is called strongly G-legal if 〈v,<vG〉 is RG-legal.

3. v is called differentiated if Rv
π0

= Idv.

4. Given an L-proof-specification ρ, v is called strongly G�ρ-legal if it is both ρ-

legal and strongly G-legal. K∗G�ρ denotes the set of all strongly G�ρ-legal and

differentiated partial L-Kvaluations.

By definition (and following Example 6.2.7, Item 1), for every partial L-Kvaluation

v, the pair 〈v,<vG〉 is π-legal for every π ∈ ΠG. Thus, a strongly G-legal partial L-

Kvaluation is G-legal.

Remark 6.2.15. Following Example 6.2.7 (Item 1), a normal partial L-Kvaluation v is

differentiated iff w1 = w2 whenever v(w1, ϕ) = v(w2, ϕ) for every ϕ ∈ Domv. The name

of this property is taken from [41].

Theorem 6.2.16. `G�ρ=`K∗G�ρ
for every basic L-calculus G and L-proof-specification

ρ.
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The proof is given in Section 6.4. The two last theorems are combined in the following

theorem, that provides an “interval” of possible semantics for a given basic calculus.

Theorem 6.2.17. Let G be a basic L-calculus, and ρ an L-proof-specification. Then,

`G�ρ=`K for every set K of partial L-Kvaluations satisfying K∗G�ρ ⊆ K ⊆ KG�ρ.

The proof is given in Section 6.4. The following is a useful instance that does not

consider proof-specifications at all:

Corollary 6.2.18. Let G be a basic L-calculus. Then, `G=`K for every set K of

normal G-legal L-Kvaluations that contains all normal strongly G-legal differentiated

L-Kvaluations.

Proof. Since 〈L,L,L〉-legal partial L-Kvaluations are exactly normal L-Kvaluations, the

claim directly follows from Theorem 6.2.17.

Theorem 6.2.17 provides a general soundness and completeness result applicable to

every basic L-calculus G and L-proof-specification ρ. Its exact content depends on the

choice of set K of partial L-Kvaluations. K should meet two conditions: first, it should

contain only G�ρ-legal partial L-Kvaluations; and second, it should contain all strongly

G�ρ-legal differentiated partial L-Kvaluations. In many cases, using the structure of the

context-relations in ΠG, it is possible to recognize some properties common to all strongly

G�ρ-legal differentiated partial L-Kvaluations, and derive specific soundness and com-

pleteness results with respect to the set of all G�ρ-legal partial L-Kvaluations satisfying

these properties. The following proposition is particularly useful for this purpose.

Notation 6.2.19. Given a labelled formula of the form f:ϕ, we denote by f:ϕ the labelled

formula t:ϕ. Similarly, t:ϕ denotes the labelled formula f:ϕ.

Proposition 6.2.20. Let v be a partial L-Kvaluation, and π1, π2, π3 context-relations.

1. Suppose that π̄3 = π̄1 ∪ π̄2. Then Rv
π3

= Rv
π2
∩ Rv

π1
. In particular, if π̄1 ⊆ π̄2 then

Rv
π2
⊆ Rv

π1
.

2. Suppose that for every labelled Domv-formulas α1, α2, if α2π̄3α1 then there exists

α′ ∈ Domv such that α2π̄1α
′ and α′π̄2α1. Then Rv

π2
◦ Rv

π1
⊆ Rv

π3
.3 In particular,

if for every labelled Domv-formulas α1 and α2, α2π̄1α1 implies that there exists a

labelled Domv-formula α′ such that α2π̄1α
′ and α′π̄1α1, then Rv

π1
is a transitive

relation.

3Given two relations R1, R2 ⊆ A2, aR1 ◦R2b if there exists some c ∈ A such that aR1c and cR2b.
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3. Assume that v is normal. If α1π̄1α2 whenever α2π̄2α1, then Rv
π1
⊆ (Rv

π2
)−1. In

particular, (i) if α1π̄1α2 implies α2π̄2α1 and vice-versa, then Rv
π2

= (Rv
π1

)−1, and

(ii) if α1π̄1α2 implies α2π̄1α1 and vice-versa, then Rv
π1

is a symmetric relation.

Proof. 1. Suppose first that w1R
v
π3
w2. By definition, this means that for every labelled

Domv-formulas α1, α2, if α2π̄3α1 and v, w2 |= α2 then v, w1 |= α1. Since π̄1 ⊆ π̄3,

this implies that for every labelled Domv-formulas α1, α2, if α2π̄1α1 and v, w2 |= α2

then v, w1 |= α1. Hence, w1R
v
π1
w2. Similarly, w1R

v
π2
w2. For the converse, suppose

that w1R
v
π1
w2 and w1R

v
π2
w2. By definition, this means that for every labelled

Domv-formulas α1, α2, if α2π̄1α1 or α2π̄2α1, and v, w2 |= α2 then v, w1 |= α1. Since

π̄3 ⊆ π̄1 ∪ π̄2, this implies that for every labelled Domv-formulas α1, α2, if α2π̄3α1

and v, w2 |= α2 then v, w1 |= α1. Hence, w1R
v
π3
w2.

2. Let w1, w2 ∈ Wv such that w1R
v
π2
◦ Rv

π1
w2. Then there exists w′ ∈ Wv, such that

w1R
v
π2
w′ and w′Rv

π1
w2. We show that w1R

v
π3
w2. Let α1, α2 be labelled Domv-

formulas, such that α2π̄3α1, and v, w2 |= α2. Therefore, there exists a labelled

Domv-formula α′ such that α2π̄1α
′ and α′π̄2α1. Since w′Rv

π1
w2, we have v, w′ |= α′.

Since w1R
v
π2
w′, we have v, w1 |= α1.

3. Let wRv
π1
w′. We show that w′Rv

π2
w. Let α1, α2 be labelled Domv-formulas, such

that α2π̄2α1 and v, w |= α2. This implies that α1π̄1α2. Now, since v is normal and

v, w |= α2, we have that v, w 6|= α2. Since wRv
π1
w′, we have v, w′ 6|= α1. Since v is

normal, this entails that v, w′ |= α1.

The following soundness and completeness results are easily obtained using Proposi-

tion 6.2.20:

Corollary 6.2.21. Let G be a basic L-calculus, and ρ an L-proof-specification. Suppose

that π̄ = π̄ ◦ π̄ for some π ∈ ΠG. Let K be the set of all ρ-legal partial L-Kvaluations v

for which there exists a 〈G,Wv〉-coupling <, such that <(π) is a transitive relation, and

〈v,<〉 is G-legal. Then, `G=`K.

Proof. Clearly, K is a set of G�ρ-legal partial L-Kvaluations. By Theorem 6.2.17 it

suffices to show that K contains all strongly G�ρ-legal partial L-Kvaluations. Let v be a

strongly G�ρ-legal partial L-Kvaluation. Then 〈v,<vG〉 is G-legal. By Proposition 6.2.20

(Item 2), <vG(π) = Rv
π is transitive. It follows that v ∈ K.

Corollary 6.2.22. Let G be a basic L-calculus, and ρ an L-proof-specification. Suppose

that for some π ∈ ΠG, π̄ includes only pairs of the form 〈α, α〉. Let K be the set of all

ρ-legal partial L-Kvaluations v for which there exists a 〈G,Wv〉-coupling <, such that

<(π) is a reflexive relation, and 〈v,<〉 is G-legal. Then, `G=`K.
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Proof. As in the proof of Corollary 6.2.21, it suffices to show that K contains all strongly

G�ρ-legal partial L-Kvaluations. Let v be a strongly G�ρ-legal partial L-Kvaluation.

Then 〈v,<vG〉 is G-legal. Proposition 6.2.20 (Item 1) entails that Rv
π0
⊆ Rv

π. Since

Idv ⊆ Rv
π0

, <vG(π) = Rv
π is reflexive. It follows that v ∈ K.

Semantic characterizations of ≤-analyticity, cut-admissibility, and axiom-expansion

in basic calculi follow from Theorem 6.2.17. This is the topic of Section 6.3. To end this

section, we prove a useful property of differentiated ρ-legal partial L-Kvaluations:

Proposition 6.2.23. Let v be a differentiated 〈F , C,A〉-legal partial L-Kvaluation.

1. If v(w,ϕ) = v(w′, ϕ) for every ϕ ∈ F then w = w′.

2. |Wv| ≤ 2|F∩C∩A| · 3|F∩C∩A|+|F∩C∩A| · 4|F∩C∩A|.

Proof. 2 directly follows from 1 by counting the number of possible functions from F to

2{f,t}, that can be used in an 〈F , C,A〉-legal partial L-Kvaluation. For 1, suppose that

v(w,ϕ) = v(w′, ϕ) for every ϕ ∈ F . It follows that wRv
π0
w′. Since v is differentiated,

Rv
π0

= Idv, and so w = w′.

Together with Theorem 6.2.17, the last proposition makes it possible to have a se-

mantic decision procedure for deciding whether S `G�ρ s given a basic L-calculus G, an

L-proof-specification ρ = 〈F , C,A〉 with finite F , C and A, finite set S of L-sequents,

and a single L-sequent s. Indeed, it is possible to check all functions of the form

v : W ×F → 2{f,t}, where |W | is bounded according to the last proposition. Theo-

rem 6.2.17 and the last proposition entail that S 6`G�ρ s iff one of these functions is a

strongly G�ρ-legal partial L-Kvaluation, which is a model of S but not of s. In this

case the semantics is effective, leading to a counter-model search procedure. (Note that

a syntactic decision procedure for this problem is trivial, as one can simply construct

and check one-by-one all possible proof candidates.) It follows that we have a semantic

decision procedure to decide whether S `G�ρ s for strongly ≤-analytic basic calculus

G (where ≤ is safe, see Definition 2.3.1). Indeed, in this case S `G s iff S `G�ρ s for

ρ = 〈↓≤ [S ∪ {s}], ↓≤ [S ∪ {s}], ↓≤ [S ∪ {s}]〉.

6.2.1 Examples

In this section we provide various examples of applications of Corollary 6.2.18, by ap-

plying it to some of the basic calculi presented above. In particular, many fundamental

soundness and completeness theorems for known logics and calculi are easily obtained as

special cases.
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Example 6.2.24 (LJ). Using Corollary 6.2.18, we are able to obtain a sound and com-

plete semantics for LJ, which is practically identical to the usual Kripke semantics for

intuitionistic logic. For this purpose, let KLJ be the set of normal LLJ-Kvaluations v

that respect the usual truth tables of ∧,∨,⊥ in each world (where obviously, {f} and

{t} are identified with false and true), and in addition there exists a partial order ≤ on

Wv satisfying the following conditions:

(persistence) If v(w,ϕ) = {t} then v(w′, ϕ) = {t} for every w′ ≥ w.

(implication) v(w,ϕ1 ⊃ ϕ2) = {t} iff v(w′, ϕ1) = {f} or v(w′, ϕ2) = {t} for every

w′ ≥ w.

We show that (1) KLJ is a set of normal LJ-legal LLJ-Kvaluations, and (2) KLJ contains

all normal strongly LJ-legal differentiated LLJ-Kvaluations. Corollary 6.2.18 implies

then that `LJ=`KLJ
.

1. Let v ∈ KLJ, and let ≤ be a partial order on Wv satisfying (persistence) and (im-

plication). Recall that ΠLJ = {π0, πint}. Choose < to be the 〈LJ,Wv〉-coupling

assigning Idv to π0, and ≤ to πint. Clearly, 〈v,<〉 is π0-legal. By Example 6.2.7

(Item 2), condition (persistence) ensures that 〈v,<〉 is πint-legal. It is straight-

forward to show that 〈v,<〉 is RLJ-legal. For example, following Example 6.2.10

(Item 3), (implication) above immediately implies that 〈v,<〉 is (t: ⊃)-legal.

2. Let v be a normal strongly LJ-legal differentiated LLJ-Kvaluation. It is easy

to show that v respects the usual truth tables of ∧,∨,⊥ in each world. We

show that Rv
πint

is a partial order satisfying (persistence) and (implication). Since

π̄int ⊆ π̄int ◦ π̄int, Proposition 6.2.20 (Item 2) entails that Rv
πint

is transitive. Next,

note that πint ⊆ π0, hence, by Proposition 6.2.20 (Item 1), Rv
π0
⊆ Rv

πint
; since

Idv ⊆ Rv
π0

, Rv
πint

is reflexive. To see that Rv
πint

is anti-symmetric, suppose that

wRv
πint
w′ and w′Rv

πint
w. This implies that v(w,ϕ) = v(w′, ϕ) for every ϕ ∈ LLJ.

Since v is differentiated, w = w′. It remains to show that (persistence) and (impli-

cation) hold for Rv
πint

. Following Example 6.2.7 (Item 2), since 〈v,<vLJ〉 is πint-legal,

condition (persistence) holds. By Example 6.2.10 (Item 2), since 〈v,<vLJ〉 is (f: ⊃)-

legal, we have that for every w ∈ Wv, if v(w,ϕ1) = {t} and v(w,ϕ2) = {f} then

v(w,ϕ1 ⊃ ϕ2) = {f}. By Example 6.2.10 (Item 3), since 〈v,<vLJ〉 is (t: ⊃)-legal,

we have that for every w ∈ Wv, if v(w′, ϕ1) = {f} or v(w′, ϕ2) = {t} for every

w′ ∈ Rv
πint

[w], then v(w,ϕ1 ⊃ ϕ2) = {t}. These two facts together with (persis-

tence) establish (implication).

Now, what happens if we simply apply Theorem 6.2.12 for LJ (perhaps without knowing

about the usual Kripke semantics for intuitionistic logic)? In this case, we obtain that
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LJ is sound and complete for the set of normal LJ-legal LLJ-Kvaluations. This set can

be defined exactly like KLJ without restricting ≤ to be a partial order. Thus, we obtain

a semantics which is less restrictive than the usual one. On the other hand, we can

apply Theorem 6.2.16, and obtain that LJ is sound and complete for the set of normal

strongly LJ-legal differentiated LLJ-Kvaluations. This set is a subset of KLJ obtained by

imposing also the converse of (persistence) (if v(w,ϕ) = {t} implies v(w′, ϕ) = {t} for

every ϕ, then w ≤ w′). Here we obtain a more restrictive semantics than the usual one.

Example 6.2.25 (BLJ). Using Corollary 6.2.18, we obtain a sound and complete se-

mantics for BLJ, which is practically the same as the usual Kripke semantics for bi-

intuitionistic logic (see, e.g., [59]). For this purpose, let KBLJ be the set of all normal

LBLJ-Kvaluations v satisfying the conditions from Example 6.2.24, and the following

additional condition:

(exclusion) v(w,ϕ1 ≺ ϕ2) = {f} iff v(w′, ϕ1) = {f} or v(w′, ϕ2) = {t} for every w′ ≤ w.

Now, KBLJ is a set of BLJ-legal LBLJ-Kvaluations, that contains all normal strongly

BLJ-legal differentiated LBLJ-Kvaluations, and so `BLJ=`KBLJ
by Corollary 6.2.18. This

is shown similarly as for LJ. In particular, the rules of ≺ correspond to (exclusion),

and Proposition 6.2.20 (Item 3) entails that in strongly BLJ-legal LBLJ-Kvaluations

Rv
πd

= (Rv
πint

)−1 (since α1π̄dα2 iff α2π̄intα1).

Example 6.2.26 (PLJ). Using Corollary 6.2.18, PLJ is sound and complete with re-

spect to the set K of normal LPLJ-Kvaluations v satisfying the conditions from Exam-

ple 6.2.24 (ignoring the condition involving ⊥), and the following two conditions:

• If v(w,ϕ) = {f} then v(w,¬ϕ) = {t}.

• If v(w,ϕ1) = {t} and v(w,¬ϕ2) = {t} then v(w,¬(ϕ1 ⊃ ϕ2)) = {t}.

To see this it suffices to show that K is a set of PLJ-legal LPLJ-Kvaluations containing

all normal strongly PLJ-legal differentiated LPLJ-Kvaluations. This is done straightfor-

wardly. Clearly, this semantics is non-deterministic, as the truth values of ϕ in every

world may not determine the truth values of ¬ϕ. For example, in an LPLJ-Kvaluation

with a single world w, if v(w, p1) = {t}, then v(w,¬p1) can be either {t} or {f}. Note

that this semantics is different from the (three-valued) semantics given in [8] for this

system.

Example 6.2.27 (K). The usual Kripke semantics of the modal logic K can be described

using the set KK of normal L�-Kvaluations defined as follows: v ∈ KK iff v respects the

usual truth tables of the classical connectives in each world, and there exists a binary

relation R on Wv such that the following condition holds:
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(necessity) v(w,�ϕ) = {t} iff v(w′, ϕ) = {t} for every w′ ∈ R[w].

Now Corollary 6.2.18 implies that `K=`KK
. To see this, we prove that KK is a set of nor-

mal K-legal L�-Kvaluations that contains all normal strongly K-legal L�-Kvaluations:

1. Let v ∈ KK, and let R be a relation on Wv satisfying (necessity). Choose < to be

the 〈K,Wv〉-coupling assigning Idv to π0, and R to πK. Following Example 6.2.7

(Items 1 and 3), 〈v,<〉 is ΠK-legal. It remains to show that 〈v,<〉 is RK-legal. We

show it here only for the rule (K). Following Example 6.2.10 (Item 1), it suffices

to see that for every w ∈ Wv and formula ϕ: if v(w′, ϕ) = {t} for every w′ ∈ R[w],

then v(w,�ϕ) = {t}. This follows from the definition of KK.

2. Let v be a normal strongly K-legal Kvaluation. It is easy to show that v respects

the usual truth tables of the classical connectives in each world. We claim that Rv
πK4

is a relation satisfying (necessity). To see this, note that since 〈v,<vK〉 is (K)-legal,

we have that if v(w′, ϕ) = {t} for every w′ ∈ Rv
πK4

[w], then v(w,�ϕ) = {t}. The

converse is obtained from the fact that (by definition) w1R
v
πK4
w2 iff v(w2, ϕ) = {f}

implies v(w1,�ϕ) = {f} for every ϕ ∈ L�.

Example 6.2.28 (Systems for modal logics). The usual Kripke semantics of the modal

logics K4, KD, KB, S4 and S5 can be described as variations on the set KK (from

Example 6.2.27), obtained by imposing an additional requirement on R:

• KK4 – R is transitive.

• KKD – R is serial.

• KKB – R is symmetric.

• KS4 – R is reflexive and transitive.

• KS5 – R is an equivalence relation.

For every G ∈ {K4,KD,KB,S4,S5}, Corollary 6.2.18 implies that `G=`KG
. In-

deed, we prove that in each of these cases KG is a set of G-legal L�-Kvaluations that

contains all strongly G-legal L�-Kvaluations. Let G ∈ {K4,KD,KB} (the proofs for

S4 and S5 are similar and left for the reader).

1. Let v ∈ KG, and R be a relation on Wv satisfying (necessity) and the additional

condition of KG (transitivity, seriality, or symmetry). Choose < to be the 〈G,Wv〉-
coupling assigning Idv to π0, and R to the other context relation in ΠG (πK4,πK, or

πB). We show that v is G-legal:

K4 As in Example 6.2.27, 〈v,<〉 is π0-legal and RK4-legal. It remains to show

that R ⊆ Rv
πK4

(and so 〈v,<〉 is πK4-legal). Suppose that w1Rw2. Let α1

and α2 be labelled L�-formulas such that α2 ¯πK4α1 and v, w2 |= α2. Then,

α2 = f:ϕ and α1 = f:�ϕ, or α2 = α1 = f:�ϕ (for some formula ϕ). In
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the first case, (necessity) directly implies that v, w1 |= α1. Suppose now that

α2 = α1 = f:�ϕ for some formula ϕ. Since v, w2 |= α2 (i.e., v(w2,�ϕ) = {f}),
(necessity) entails that v, w |= f:ϕ (i.e., v(w,ϕ) = {f}) for some w ∈ R[w2].

The transitivity of R then ensures that w1Rw. Again (necessity) implies that

v, w1 |= α1. It follows that w1R
v
πK4
w2.

KD As in Example 6.2.27, 〈v,<〉 is ΠKD-legal, and RKD\{(D)}-legal. In addition,

following Example 6.2.10 (Item 4), the seriality of R ensures that 〈v,<〉 is (D)-

legal. Therefore v is KD-legal.

KB As in Example 6.2.27, 〈v,<〉 is π0-legal and RKB-legal. It remains to show

that R ⊆ Rv
πB

(and so 〈v,<〉 is also πB-legal). Suppose that w1Rw2. Let

α1 and α2 be labelled L�-formulas such that α2π̄α1 and v, w2 |= α2. Then,

α2 = f:ϕ and α1 = f:�ϕ, or α2 = t:�ϕ and α1 = t:ϕ (for some formula

ϕ). In the first case, (necessity) directly implies that v, w1 |= α1. Suppose

now that α2 = t:�ϕ and α1 = t:ϕ. Since v, w2 |= α2 (i.e., v(w2,�ϕ) = {t}),
(necessity) entails v, w |= α1 for every w ∈ R[w2]. The symmetry of R ensures

that w2Rw1, and so v, w1 |= α1. It follows that w1R
v
πB
w2.

2. Let v be a normal strongly G-legal L�-Kvaluation. Similarly to Example 6.2.27,

one shows that v ∈ KK. In addition:

K4 Since ¯πK4 ⊆ ¯πK4◦ ¯πK4, Proposition 6.2.20 (Item 2) entails that Rv
πK4

is transitive.

KD Since 〈v,<vKD〉 is (D)-legal, Rv
πD

is serial (see Example 6.2.10, Item 4).

KB Since α1π̄Bα2 iff α2π̄Bα1, Proposition 6.2.20 (Item 3) entails that Rv
πB

is sym-

metric.

Example 6.2.29 (GL). Semantically, the modal logic GL is characterized by the set of

Kripke frames whose accessibility relation is transitive and conversely well-founded. How-

ever, GL is not strongly complete with respect to models built on this set of frames (i.e.

we have 
GL ϕ iff every such frame is a model of ϕ, but we do not have T 
GL ϕ iff every

such frame which is a model of T is a model of ϕ, see [94]). Using our method, starting

from the basic calculus GL, we obtain a (different) strongly sound and complete semantics

for GL. Indeed, by Corollary 6.2.18, GL is (strongly) sound and complete with respect

to the set KGL of normal L�-Kvaluations, defined similarly to KK (see Example 6.2.27),

with two additional requirements: (1) R is transitive; and (2) If v(w′, ϕ) = {f} for some

w′ ∈ R[w], then there is some w′′ ∈ R[w] such that v(w′′, ϕ) = {f} and v(w′′,�ϕ) = {t}.
To see this we prove that KGL is a set of GL-legal L�-Kvaluations that contains all

normal strongly GL-legal L�-Kvaluations:
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1. Let v ∈ KGL, and let R be a transitive relation on Wv, satisfying (necessity) and

condition (2) above. Choose < to be the 〈GL,Wv〉-coupling assigning Idv to π0,

and R to πK4. Similarly to Example 6.2.28, one proves that R ⊆ Rv
πK4

(using the

transitivity of R), and so 〈v,<〉 is πK4-legal. It remains to show that 〈v,<〉 is RGL-

legal. We show it here for (GL). Let w ∈ Wv, and let σ be an L�-substitution.

Suppose that v,<(πK4)[w] |= σ({f:�p1, t:p1}). We show that v, w |= σ({t:�p1}).
Assume otherwise. Then v(w,�σ(p1)) = {f}. Thus (necessity) implies that there

exists some w′ ∈ R[w], such that v(w′, σ(p1)) = {f}. By condition (2), there is

some w′′ ∈ R[w] such that v(w′′, σ(p1)) = {f} and v(w′′,�σ(p1)) = {t}. Clearly,

v, w′′ 6|= σ({f:�p1, t:p1}). But, since <(πK4) = R, this contradicts the fact that

v,<(πK4)[w] |= σ({f:�p1, t:p1}).

2. Let v be a normal strongly GL-legal L�-Kvaluation. It is straightforward to show

that v respects the usual truth tables of the classical connectives in each world.

We show that there exists a transitive relation R on Wv satisfying (necessity) and

condition (2) above. We show that Rv
πK4

has this property (its transitivity is proved

exactly as in Example 6.2.28):

(a) Since 〈v,<vGL〉 is (GL)-legal, if v(w′, ϕ) = {t} for every w′ ∈ Rv
πK4

[w], then

v(w,�ϕ) = {t}. The converse holds since 〈v,<vGL〉 is πK4-legal.

(b) We prove that Rv
πK4

satisfies condition (2) above. Suppose (for contradiction)

that there exist some ϕ ∈ L� and w ∈ Wv, such that v(w′, ϕ) = {f} for some

w′ ∈ Rv
πK4

[w], and there does not exist w′′ ∈ Rv
πK4

[w], such that v(w′′, ϕ) = {f}
and v(w′′,�ϕ) = {t}. It follows that v,<(πK4)[w] |= {f:�ϕ, t:ϕ}. Since 〈v,<〉
is (GL)-legal, v(w,�ϕ) = {t}. But, this contradicts (necessity).

We note it is not clear whether this semantics for GL is useful (in particular, whether it

leads to a decision procedure). This question is left open for a future work.

Example 6.2.30 (GPQ). Using Corollary 6.2.18, we obtain a sound and complete se-

mantics for GPQ, which is practically identical to the semantics presented in [31]. For

this purpose, let K be the set of LQGP-Kvaluations v that respect the usual truth tables

of ∧,∨,⊥,> in each world, and satisfy the following conditions:

1. If v(w,ϕ1) = {t} and v(w,ϕ2) = {f} then v(w,ϕ1 ⊃ ϕ2) = {f}.
2. If v(w,ϕ2) = {t} then v(w,ϕ1 ⊃ ϕ2) = {t}.
3. For every q ∈ Q, there exist binary relations, Sq and Iq, on Wv, satisfying:

(a) Iq ⊆ Sq.

(b) v(w, q said ϕ) = {t} iff v(w′, ϕ) = {t} for every w′ ∈ Sq[w].
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(c) v(w, q implied ϕ) = {t} iff v(w′, ϕ) = {t} for every w′ ∈ Iq[w].

Clearly, this semantics is non-deterministic, as the truth values of ϕ1 and ϕ2 in every

world may not determine the value of ϕ1 ⊃ ϕ2. As in previous examples, it is straight-

forward to show that K is a set of normal GPQ-legal LQGP-Kvaluations, that contains

all normal strongly GPQ-legal LQGP-Kvaluations (the fact that in all strongly GPQ-legal

LQGP-Kvaluations <(πqi ) ⊆ <(πqs) for every q ∈ Q follows from Proposition 6.2.20, Item 1).

Example 6.2.31 (IS5). Using Corollary 6.2.18, we obtain a sound and complete Kripke

semantics for IS5. For this purpose, let K be the set of normal L�LJ-Kvaluations v sat-

isfying the conditions from Example 6.2.24, and in addition, there exists an equivalence

relation ∼, such that v(w,�ϕ) = {t} iff v(w′, ϕ) = {t} for every w′ ∈∼[w]. (Note that

if v ∈ K, then for every w,w′ ∈ Wv, we have that if w ≤ w′ and v(w′′, ϕ) = {t} for every

w′′ ∈∼ [w], then v(w′′, ϕ) = {t} for every w′′ ∈∼ [w′].) As in previous examples, it is

straightforward to show that K is a set of normal IS5-legal L�LJ-Kvaluations, that con-

tains all normal strongly IS5-legal L�LJ-Kvaluations. Interestingly, the Kripke semantics

presented in [78] is not identical to this one. In particular, in our semantics ∼ should be

an equivalence relation, and no direct conditions bind ≤ and ∼.

6.3 Characterization of Proof-Theoretic Properties

In this section we use Theorem 6.2.17 to derive characterizations of strong ≤-analyticity,

strong cut-admissibility, and axiom-expansion in basic calculi. First, note that the sound-

ness part of Theorem 6.2.17 can be utilized for providing relatively simple semantic ar-

guments for the failure of certain proof-theoretic properties. For example, by exhibiting

an 〈L, ∅,L〉-legal G-legal L-Kvaluation which is not a model of some sequent s, we show

that every proof of s requires to use (cut). If we also have `G s, then it follows that

G does not enjoy cut-admissibility. Similarly, by using the other two components of the

proof-specification, we can show that a certain calculus G is not ≤-analytic (for some

≤) or that some connective does not admit axiom-expansion in G. Note that proving

facts of this kind using proof-theoretic methods is sometimes very challenging! Next we

provide some concrete examples of such applications.

Example 6.3.1. Let s be the LBLJ-sequent {f:p1, t:p2, t:p1 ⊃ (p1 ≺ p2)}. We show that

6`BLJ�ρ s for ρ = 〈LBLJ, ∅,LBLJ〉 (i.e., there does not exist a proof of s in BLJ without

cuts). By Theorem 6.2.17, it suffices to find a BLJ�ρ-legal LBLJ-Kvaluation which is not

a model of s. Let v be an LBLJ-Kvaluation defined byWv = {w1, w2}, v(w,ϕ) = {f, t} for

every w ∈ Wv and LBLJ-formula ϕ except for: v(w1, p1) = v(w2, p1) = v(w2, p2) = {t},
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and v(w1, p2) = v(w1, p1 ⊃ (p1 ≺ p2)) = v(w2, p1 ≺ p2) = {f}. Let < be the 〈BLJ,Wv〉-
coupling defined by <(π0) = {〈w2, w2〉}, <(πint) = {〈w1, w2〉}, and <(πd) = ∅. One can

straightforwardly verify that 〈v,<〉 is BLJ-legal, and clearly, v 6|= s. However, it is easy

to find a proof for s in BLJ, and thus `BLJ s. This provides a semantic demonstration of

the fact that BLJ does not enjoy cut-admissibility (the sequent s is a simplified version

of the one used in [80] to syntactically prove this fact).

Example 6.3.2. It is well-known that S5 does not enjoy cut-admissibility. We provide a

semantic demonstration of this fact. Let s be the L�-sequent {t:p1, t:�¬�p1}. It is easy

to see that s is provable in S5 (using a cut on �p1). Now, let ρ = 〈L�, {p1,�¬�p1},L�〉.
We show that 6`S5�ρ s (and so, in particular, there does exist a cut-free proof of s). Let v

be an L�-Kvaluation defined by Wv = {w1, w2}, v(w,ϕ) = {f, t} for every w ∈ Wv and

L�-formula ϕ except for:

v(w2, p1) = v(w2,�p1) = {t},
v(w1, p1) = v(w1,�¬�p1) = v(w2,¬�p1) = v(w2,�¬�p1) = {f}.

Clearly, v is ρ-legal and v 6|= s. Let < be the 〈S5,Wv〉-coupling with <(π0) = {〈w2, w2〉}
and <(πS5) = {〈w1, w2〉, 〈w2, w2〉}. One can straightforwardly verify that 〈v,<〉 is S5-

legal, and thus v is S5-legal. For example:

• 〈v,<〉 is πS5-legal since the following conditions are met: (1) if w<(πS5)w
′ and

t ∈ v(w′,�ϕ) then t ∈ v(w,�ϕ); (2) if w<(πS5)w
′ and f ∈ v(w′,�ϕ) then

f ∈ v(w,�ϕ).

• 〈v,<〉 is (S5)-legal since the following condition is met: if t ∈ v(w′, ϕ) for every

w′ ∈ <(πS5)[w], then t ∈ v(w,�ϕ).

• 〈v,<〉 is (T )-legal since the following condition is met: if f ∈ v(w′, ϕ) for every

u ∈ <(π0)[w], then f ∈ v(w,�ϕ).

Example 6.3.3. PLJ is not sub-analytic. This is shown in [8], by proving that the LPLJ-

sequent s = {t:p1, t:p2 ⊃ ¬(p2 ⊃ p1)} is provable, but every proof of it must include a

formula that does not occur in sub[s]. Using Theorem 6.2.17, we can provide a semantic

demonstration of this fact. Let ρ = 〈sub[s],LPLJ,LPLJ〉. Consider the ρ-legal partial

LPLJ-Kvaluation v, defined by Wv = {w1, w2}, and:

v(w1, p1) = v(w1, p2) = v(w1,¬(p2 ⊃ p1)) = v(w1, p2 ⊃ ¬(p2 ⊃ p1)) = {f},
v(w1, p2 ⊃ p1) = {t},
v(w2,¬(p2 ⊃ p1)) = v(w2, p2 ⊃ ¬(p2 ⊃ p1)) = {f},
v(w2, p1) = v(w2, p2) = v(w2, p2 ⊃ p1) = {t}.
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Let < be the 〈PLJ,Wv〉-coupling defined by <(πint) = {〈w1, w1〉, 〈w2, w2〉, 〈w1, w2〉} and

<(π0) = Idv. It is straightforward to show that 〈v,<〉 is PLJ-legal, and so v is PLJ�ρ-

legal. Clearly, v 6|= s. By Theorem 6.2.17, 6`PLJ�ρ s. In other words, there does not exist

a proof of s in PLJ consisting solely of sub[s]-sequents.

Next, we present characterizations of strong ≤-analyticity, strong cut-admissibility,

and axiom-expansion in basic calculi, that may be used to prove these properties. For

simplicity of the presentation, we shall not discuss the weak versions of ≤-analyticity

and cut-admissibility, but note that they are always implied by the strong property (by

takings S = ∅). We use the following additional notion:

Definition 6.3.4. An instance of a partial L-Kvaluation v is a normal (full) L-Kvaluation

v′ such that Wv′ = Wv, and v′(w,ϕ) ⊆ v(w,ϕ) for every w ∈ Wv and ϕ ∈ Domv.

The following proposition immediately follows from the definitions.

Proposition 6.3.5. Let v be a partial L-Kvaluation, and let v′ be an instance of v.

Then, for every Domv-sequent s: if v′ |= s then v |= s. If v is 〈F , C,A〉-legal and

frm[s] ⊆ C, the converse holds as well.

The following characterization of strong ≤-analyticity follows from the previous re-

sults.

Corollary 6.3.6. A basic L-calculus G is strongly ≤-analytic iff for every set S of L-

sequents and L-sequent s, S `K1 s implies S `K2 s, where K1 is the set of all normal G-

legal L-Kvaluations, andK2 is the set of all normal strongly G-legal partial L-Kvaluations

whose domain is ↓≤ [S ∪ {s}].

Proof. Suppose that G is strongly ≤-analytic. Assume that S `K1 s for some set S
of L-sequents and L-sequent s. By Corollary 6.2.18, S `G s, and so S `G�ρ s for

ρ = 〈↓≤ [S ∪ {s}],L,L〉. Note that ρ = 〈↓≤ [S ∪ {s}],L,L〉-legal partial L-Kvaluations

are exactly normal partial L-Kvaluations whose domain is ↓≤ [S ∪ {s}]. Therefore, by

Theorem 6.2.17, S `K2 s.

For the converse, suppose that S `G s. By Corollary 6.2.18, S `K1 s, and so

our assumption entails that S `K2 s. Theorem 6.2.17 again entails that S `G�ρ s for

ρ = 〈↓≤ [S ∪ {s}],L,L〉.

The above characterization might be quite complicated to be used in practice. There-

fore, we now present a simpler semantic criterion, that turns out to be useful for many

basic calculi.
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Corollary 6.3.7. Let G be a basic L-calculus. Suppose that every normal strongly

G-legal partial L-Kvaluation whose domain is closed under ≤ has a G-legal instance.

Then G is strongly ≤-analytic.

Proof. We use Corollary 6.3.6. Let S be a set of L-sequents, and s a single L-sequent.

Let K1 and K2 be defined as in Corollary 6.3.6. Assume that S `K1 s. We prove that

S `K2 s. Let v ∈ K2, and suppose that v |= S. Since Domv = ↓≤ [S ∪ {s}] is closed under

≤, our assumption entails that there exists a G-legal instance v′ of v. Thus v′ ∈ K1. By

Proposition 6.3.5, we have v′ |= S. Since S `K1 s, we have v′ |= s. Proposition 6.3.5

entails that v |= s.

Before turning to some examples of applying the criterion above, we present a charac-

terization of strong cut-admissibility. Its proof is similar to the proof of Corollary 6.3.6.

Definition 6.3.8. Given a set C ⊆ L, an L-Kvaluation is called C-cut-restricted if it is

〈L, C,L〉-legal. An L-Kvaluation is called cut-restricted if it is ∅-cut-restricted.

Corollary 6.3.9. A basic L-calculus G enjoys strong cut-admissibility iff for every set S
of L-sequents and L-sequent s, S `K1 s implies S `K2 s, where K1 is the set of all normal

G-legal L-Kvaluations, and K2 is the set of all frm[S]-cut-restricted strongly G-legal

L-Kvaluations.

Again, the following provides a simpler sufficient criterion:

Corollary 6.3.10. Let G be a basic L-calculus. Suppose that every cut-restricted

strongly G-legal L-Kvaluation has a G-legal instance. Then G enjoys strong cut-

admissibility.

Proof. We use Corollary 6.3.9. Let S be a set of L-sequents, and s a single L-sequent. Let

K1 and K2 be defined as in Corollary 6.3.9. Assume that S `K1 s. We prove that S `K2 s.

Let v ∈ K2, and suppose that v |= S. Since v is cut-restricted, our assumption entails

that there exists a G-legal instance v′ of v. Thus v′ ∈ K1. By Proposition 6.3.5, we have

v′ |= S (since v′ is 〈L, frm[S],L〉-legal). Since S `K1 s, we have v′ |= s. Proposition 6.3.5

entails that v |= s.

Next we apply the previous criteria to prove strong ≤-analyticity and/or strong cut-

admissibility for some of the basic calculi presented in the examples above.

Example 6.3.11. We use Corollary 6.3.10 to show that LJ enjoys strong cut-admissibility.

Let v be a cut-restricted strongly LJ-legal LLJ-Kvaluation. We recursively construct an

instance v′ of v. For every w ∈ Wv and for every atomic formula p, v′(w, p) = {x}
if v(w, p) = {x}, and otherwise v′(w, p) = {t} (say). Now suppose that v′(w,ϕ1) and

v′(w,ϕ2) were defined for every w ∈ Wv:
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• v′(w,ϕ1 ⊃ ϕ2) is defined by: if v(w,ϕ1 ⊃ ϕ2) = {x} then v′(w,ϕ1 ⊃ ϕ2) = {x}.
Otherwise v′(w,ϕ1 ⊃ ϕ2) = {t} iff for every w′ ∈ Rv

πint
[w], either v′(w′, ϕ1) = {f}

or v′(w′, ϕ2) = {t}.
• v′(w,ϕ1 ∧ ϕ2) is defined by: if v(w,ϕ1 ∧ ϕ2) = {x} then v′(w,ϕ1 ∧ ϕ2) = {x}.

Otherwise v′(w,ϕ1 ∧ ϕ2) = {t} iff v′(w,ϕ1) = {t} and v′(w,ϕ2) = {t}. Similar

definitions are used for the other connectives of LJ.

Clearly, v′ is an instance of v. Based on the fact that v is a cut-restricted strongly LJ-legal

LLJ-Kvaluation, it is easy to prove that 〈v′,<vLJ〉 is LJ-legal (and so v′ is LJ-legal).

Example 6.3.12. While BLJ does not enjoy cut-admissibility (Example 6.3.1), we use

Corollary 6.3.7 to show that it is still strongly sub-analytic. This answers a question

raised in [80].4 Let v be a normal strongly BLJ-legal partial LBLJ-Kvaluation, whose

domain is closed under subformulas. A construction of an instance v′ of v, is done as in

Example 6.3.11 with the following addition:

• If v(w,ϕ1 ≺ ϕ2) = {x} then v′(w,ϕ1 ≺ ϕ2) = {x}. Otherwise v′(w,ϕ1 ≺ ϕ2) = {f}
iff v′(w′, ϕ1) = {f} or v′(w′, ϕ2) = {t} for every w′ ∈ Rv

πd
[w].

Clearly, v′ is an instance of v. Based on the facts that v is a normal strongly BLJ-legal

partial LBLJ-Kvaluation, and that Domv is closed under subformulas, it is straightfor-

ward to prove that 〈v′,<vBLJ〉 is BLJ-legal.

Example 6.3.13. Following Example 6.3.3, PLJ is not sub-analytic. As a substitute,

a weaker property is proved for this system in [8] (called the n-subformula property).

Roughly speaking, this property means that whenever a sequent s is provable, there also

exists a proof of s that includes only formulas from sub[s] and some of their negations. To

be more precise, it is equivalent to strong nsub-analyticity, where nsub is the transitive

closure of the union of the relation sub and

{〈¬ϕi,¬(ϕ1 � ϕ2)〉 | ϕ1, ϕ2 ∈ LPLJ, � ∈ {∧,∨,⊃}, i = 1, 2}.
Note that nsub is safe, and so strong nsub-analyticity suffices to establish decidability.

Next, we prove strong nsub-analyticity for PLJ using Corollary 6.3.7. Let v be a normal

strongly PLJ-legal partial LPLJ-Kvaluation, whose domain is closed under subformulas.

A construction of an instance v′ of v is done as in Example 6.3.11 with the following

addition: v′(w,¬ϕ) = {x} if v(w,¬ϕ) = {x}, and v′(w,¬ϕ) = {t} otherwise. Clearly,

v′ is an instance of v. Based on the fact that v is a normal strongly PLJ-legal partial

4 Note that other systems for this logic, that enjoy cut-admissibility, were devised in [59] and [80].
However, these systems do not employ the standard notion of a sequent used in Gentzen-type systems,
but more complicated data-structures.
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LPLJ-Kvaluation, we show that v′ is PLJ-legal, since 〈v′,<vPLJ〉 is PLJ-legal. To see that

〈v′,<vPLJ〉 is πint-legal, it suffices to note that for every ϕ ∈ LPLJ, if v′(w,ϕ) = {t} then

v′(w′, ϕ) = {t} for every w′ ∈ <(πint)[w]. We claim that 〈v′,<vPLJ〉 is RPLJ-legal. We

demonstrate it here only for the rule (t:¬ ⊃). Thus we show that if v′(w,ϕ1) = {t} and

v′(w,¬ϕ2) = {t} then v′(w,¬(ϕ1 ⊃ ϕ2)) = {t}. Assume that v′(w,¬(ϕ1 ⊃ ϕ2)) = {f}.
Our construction then ensures that ¬(ϕ1 ⊃ ϕ2) ∈ Domv, and v(w,¬(ϕ1 ⊃ ϕ2)) = {f}
as well. Since {ϕ1,¬ϕ2} ⊆ ↓nsub[¬(ϕ1 ⊃ ϕ2)] and Domv is closed under nsub, we have

that {ϕ1,¬ϕ2} ⊆ Domv. Since 〈v′,<vPLJ〉 is (t:¬ ⊃)-legal, either v(w,ϕ1) = {f} or

v(w,¬ϕ2) = {f}. By our construction, v′(w,ϕ1) = {f} or v′(w,¬ϕ2) = {f}.

Example 6.3.14. Each of the four basic calculi K, K4, KD, and S4 admits the semantic

criterion given in Corollary 6.3.10 (and so they all enjoy strong cut-admissibility). To

see this, let G be any one of these calculi, and v a cut-restricted strongly G-legal L�-

Kvaluation. We recursively construct an instance v′ of v. For every w ∈ Wv and for

every atomic formula p, v′(w, p) = {x} if v(w, p) = {x}, and otherwise v′(w, p) = {t}
(say). Now suppose that v′(w,ϕ1) and v′(w,ϕ2) were defined, define v′(w,ϕ1 ⊃ ϕ2) as

follows (similar definitions for the other classical connectives): if v(w,ϕ1 ⊃ ϕ2) = {x}
then v′(w,ϕ1 ⊃ ϕ2) = {x}, and otherwise v′(w,ϕ1 ⊃ ϕ2) = {t} iff either v′(w,ϕ1) = {f}
or v′(w,ϕ2) = {t}. In addition, v′(w,�ϕ) = {x} if v(w,�ϕ) = {x}, and otherwise we set

v′(w,�ϕ) = {t} iff v′(w′, ϕ) = {t} for every w′ ∈ Rv
π[w] (where π is the context-relation

in ΠG, that is not π0). Clearly, v′ is an instance of v. Using the fact that v is a cut-

restricted strongly G-legal L�-Kvaluation, it is easy to show that 〈v′,<vG〉 is G-legal.

Example 6.3.15. While KB and S5 do not enjoy cut-admissibility (for S5, see Exam-

ple 6.3.2), Corollary 6.3.7 can be used to show that they are still strongly sub-analytic.

We demonstrate it here for KB. Let v be a normal strongly KB-legal partial L�-

Kvaluation, whose domain is closed under subformulas. A construction of an instance

v′ of v is done exactly as in Example 6.3.14. We show that v′ is indeed a KB-legal

Kvaluation, as 〈v′,<vKB〉 is KB-legal. To see that 〈v′,<vKB〉 is πB-legal, we show that

Rv
πB
⊆ Rv′

πB
. Suppose that w1R

v
πB
w2. Note that by Proposition 6.2.20 (Item 3), we have

that w2R
v
πB
w1 (because of the structure of πB). We prove that w1R

v′
πB
w2. Let α1 and α2

be labelled L�-formulas such that α2π̄Bα1 and v, w2 |= α2. The structure of πB ensures

that there exists some ϕ ∈ L� such that either α2 = f:ϕ and α1 = f:�ϕ, or α2 = t:�ϕ

and α1 = t:ϕ. If �ϕ ∈ Domv then α1 and α2 are labelled Domv-formulas (since Domv

is closed under subformulas). In this case, since w1R
v
πB
w2, we have that v, w1 |= α1, and

we are done. Otherwise, for every w ∈ Wv, v
′(w,�ϕ) = {t} iff v′(w′, ϕ) = {t} for every

w′ ∈ Rv
πB

[w]. Now, if α2 = f:ϕ and α1 = f:�ϕ, then v, w2 |= α2 directly entails that

v, w1 |= α1. Otherwise, α2 = t:�ϕ and α1 = t:ϕ. It follows that v′(w′, ϕ) = {t} for every

w′ ∈ Rv
πB

[w2]. Since w2R
v
πB
w1, v, w1 |= α1 in this case as well. Finally, we claim that
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〈v′,<vKB〉 is RKB-legal. We show it here only for the rule (B). Following Example 6.2.10

(Item 1), we should prove that for every w ∈ Wv and L�-formula ϕ: if v′(w′, ϕ) = {t}
for every w′ ∈ Rv

πB
[w], then v′(w,�ϕ) = {t}. Let w ∈ Wv, and ϕ ∈ L�. Suppose that

v′(w′, ϕ) = {t} for every w′ ∈ Rv
πB

[w]. If �ϕ 6∈ Domv, then the construction of v′ directly

entails that v′(w,�ϕ) = {t}. Otherwise, ϕ ∈ Domv as well, and the construction of v′

entails that v(w′, ϕ) = {t} for every w′ ∈ Rv
πB

[w]. Since v is strongly KB-legal, 〈v,<vKB〉
is (B)-legal. Thus we have that t ∈ v(w,�ϕ) (see Definition 6.2.9, Item 1). It then

follows that v′(w,�ϕ) = {t}.

Example 6.3.16. Using the semantic criterion of Corollary 6.3.10, it is easy to see that

GPQ enjoys strong cut-admissibility. The construction of a GPQ-legal instance for every

cut-restricted strongly GPQ-legal LQGP-Kvaluation is done as for K (see Example 6.3.14),

with straightforward modifications for q said and q implied. In addition we replace the

{f, t} values assigned to formulas of the form ϕ1 ⊃ ϕ2 by the value assigned to ϕ2 in

each world.

Example 6.3.17. IS5 does not enjoy cut-admissibility, since the L�LJ-sequent

s = {f:�(�p1 ∨ p2), t:�p1, t:(�p2 ⊃⊥) ⊃⊥}
is provable, but not cut-free provable (see [78]). Using Theorem 6.2.12, one can semanti-

cally verify that there is no cut-free proof of s, by constructing an IS5-legal 〈L�LJ, ∅,L�LJ〉-
legal L�LJ-Kvaluation which is not a model of it. In addition, the condition for strong

sub-analyticity given in Corollary 6.3.7 does not hold for IS5. Since this condition is

only proven to be sufficient, it does not mean that IS5 is not strongly sub-analytic, and

this question remains open.

Finally, Theorem 6.2.17 also naturally leads to the following semantic characterization

of axiom-expansion.

Corollary 6.3.18. Let � ∈ ♦L, and let ϕ = �(p1, ... , par(�)). � admits axiom-expansion in

a basic L-calculus G iff every 〈L,L, {p1, ... , par(�)}〉-legal strongly G-legal L-Kvaluation

is also 〈L,L, {ϕ}〉-legal.

Proof. We prove one direction. The converse is similar. Assume that � admits axiom-

expansion in G. By definition, `G�ρ {f:ϕ, t:ϕ} for ρ = 〈L,L, {p1, ... , par(�)}〉. Theo-

rem 6.2.17 entails that every strongly G�ρ-legal L-Kvaluation is a model of {f:ϕ, t:ϕ}.
It follows that in every strongly G�ρ-legal L-Kvaluation v, v(w,ϕ) 6= ∅ for every w ∈ Wv.

Thus, every strongly G�ρ-legal L-Kvaluation is 〈L,L, {ϕ}〉-legal.

Example 6.3.19 (LJ). Using the criterion given in Corollary 6.3.18, it is straightforward

to prove that every connective of LLJ admits axiom-expansion in LJ. We do it here for
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⊃. Let v be an 〈L,L, {p1, p2}〉-legal strongly LJ-legal LLJ-Kvaluation. We show that

v(w, p1 ⊃ p2) 6= ∅ for every w ∈ Wv, and so v is 〈L,L, {p1 ⊃ p2}〉-legal. Suppose that

t 6∈ v(w, p1 ⊃ p2) for some w ∈ Wv. Since 〈v,<vLJ〉 is (f: ⊃)-legal, f 6∈ v(w′, p1) and

t 6∈ v(w′, p2) for some w′ ∈ <vLJ(πint)[w]. Since v is 〈L,L, {p1, p2}〉-legal, v(w′, p1) 6= ∅
and v(w′, p2) 6= ∅. This entails that v(w′, p1) = {t} and v(w′, p2) = {f}. Since 〈v,<vLJ〉
is (f: ⊃)-legal and <vLJ(π0) = Idv, we have that f ∈ v(w′, p1 ⊃ p2). Since 〈v,<vLJ〉 is

πint-legal, f ∈ v(w, p1 ⊃ p2) as well.

6.4 Soundness and Completeness Proofs

This section is devoted to prove Theorem 6.2.17. Theorems 6.2.12 and 6.2.16 are im-

mediately obtained as special cases. Let G be a basic L-calculus, and ρ = 〈F , C,A〉
an L-proof-specification. Clearly, to show that `G�ρ=`K for every set K of partial L-

Kvaluations satisfying K∗G�ρ ⊆ K ⊆ KG�ρ, it suffices to prove the following:

Soundness `G�ρ⊆`KG�ρ . Completeness `K∗G�ρ
⊆`G�ρ.

Soundness

For the soundness proof we use the following simple lemmas.

Lemma 6.4.1. Let v be a partial L-Kvaluation, let w ∈ Wv, and let s1 and s2 be two

L-sequents. Then, v, w |= s1 ∪ s2 iff either v, w |= s1 or v, w |= s2.

Lemma 6.4.2. Let 〈s, s′〉 be a π-instance for some L-context-relation π. Let v be partial

L-Kvaluation, and let w ∈ Wv. Suppose that v, w′ |= s for some w′ ∈ Rv
π[w]. Then either

frm[s′] 6⊆ Domv or v, w |= s′.

Proof. Suppose that frm[s′] ⊆ Domv, we show that v, w |= s′. Since v, w′ |= s, we have

v, w′ |= α2 for some α2 ∈ s. Since 〈s, s′〉 is a π-instance, there exists α1 ∈ s′ such that

α2π̄α1. Note that frm[α2] ∈ Domv (because v, w′ |= α2) and frm[α1] ∈ Domv (because

frm[s′] ⊆ Domv). Then since wRv
πw
′, v, w |= α1 . It follows that v, w |= s′.

Now, assume that S `G�ρ s0. Thus there exists a ρ-proof P in G of s0 from S.

Let K = KG�ρ. We prove that S `K s0. Let v ∈ K. Then, 〈v,<〉 is G-legal for some

〈G,Wv〉-coupling <. Suppose that v |= S. Using induction on the length of P , we show

that v |= s for every sequent s appearing in P . It then follows that v |= s0. Note first

that since v is ρ-legal, Domv = F , and so every sequent in P is a Domv-sequent. Thus

it suffices to prove that for every sequent s′ appearing in P , we have v,Wv |= s′. This
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trivially holds for the sequents of S that appear in P . We show that the property of being

true in Wv is preserved by applications of the rules of G. Consider such an application

in P , and assume that v,Wv |= s for every premise s of this application. We show that

its conclusion is also true in Wv. Let w ∈ Wv.

1. Suppose that c ∪ {x:ϕ} is derived using from c, using (x:weak) (x ∈ £2). Since

v, w |= c, Lemma 6.4.1 entails that v, w |= c ∪ {x:ϕ}.

2. Suppose that {f:ϕ, t:ϕ} is derived using (id). In this case, ϕ ∈ A. Since v is ρ-legal,

v(w,ϕ) 6= ∅. This easily implies that v, w |= {f:ϕ, t:ϕ}.

3. Suppose that c1 ∪ c2 is derived from c1 ∪ {f:ϕ} and c2 ∪ {t:ϕ} using (cut). In this

case, ϕ ∈ C. Since v is ρ-legal, v(w,ϕ) 6= {f, t}. This easily implies that either

v, w 6|= {f:ϕ} or v, w 6|= {t:ϕ}. Since v, w |= c1 ∪ {f:ϕ}, Lemma 6.4.1 entails that

either v, w |= c1 or v, w |= {f:ϕ}. Similarly, either v, w |= c2 or v, w |= {t:ϕ}.
This entails that either v, w |= c1 or v, w |= c2. Therefore Lemma 6.4.1 entails that

v, w |= c1 ∪ c2.

4. Suppose that σ(s) ∪ c′1 ∪ ... ∪ c′n is derived from σ(s1) ∪ c1, ... , σ(sn) ∪ cn using a

basic L-rule r = 〈s1, π1〉, ... , 〈sn, πn〉/s′ in RG. Thus 〈ci, c′i〉 is a πi-instance for

every 1 ≤ i ≤ n. Now, if v, w |= c′i for some 1 ≤ i ≤ n, then by Lemma 6.4.1,

v, w |= σ(s) ∪ c′1 ∪ ... ∪ c′n, and we are done. Assume otherwise. We show that

v,<(πi)[w] |= σ(si) for every 1 ≤ i ≤ n. Let 1 ≤ i ≤ n and w′ ∈ <(πi)[w].

Since 〈v,<〉 is πi-legal, we have that wRv
πi
w′. Now, since 〈ci, c′i〉 is a πi-instance,

Lemma 6.4.2 entails that v, w′ 6|= ci. By Lemma 6.4.1 (since we assumed that

v, w′ |= σ(si) ∪ ci), v, w′ |= σ(si). Finally, we have v, w |= σ(s) since 〈v,<〉 is r-legal

and frm[σ({s1, ... , sn, s})] ⊆ Domv. By Lemma 6.4.1, v, w |= σ(s) ∪ c′1 ∪ ... ∪ c′n.

Completeness

Recall that by extended L-sequent we mean a (possibly infinite) set of labelled L-formulas

(see Definition 3.3.6). For this completeness proof, we call an extended L-sequent µ

provable if S `G�ρ s for some L-sequent s ⊆ µ. Otherwise, we say that µ is unprovable. In

addition, we call an extended L-sequent µ∗ maximal if it satisfies the following conditions:

(1) frm[µ∗] ⊆ F ; (2) µ∗ is unprovable; and (3) for every labelled F -formula α 6∈ µ∗,

{α} ∪ µ∗ is provable. As in Section 3.4, it is straightforward to show that:

(a) For every unprovable extended F -sequent µ, there is a maximal extended L-sequent

µ∗ such that µ ⊆ µ∗.
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Now, suppose that S 6`G�ρ s0. We show that S 0K∗G�ρ
s0. Let v be the partial L-

Kvaluation defined by: Wv is the set of all maximal extended L-sequents; Domv = F ;

and v(µ, ϕ) = {x ∈ {f, t} | x:ϕ 6∈ µ} for every µ ∈ Wv and ϕ ∈ F . We show that

v ∈ K∗G�ρ, and that v is a model of S but not of s0.

Note first that v is ρ-legal. By definition Domv = F . To see that v(µ, ϕ) 6= {f, t} for

every ϕ ∈ C, it suffices to prove that if ϕ ∈ C ∩ F then f:ϕ ∈ µ or t:ϕ ∈ µ. Assume by

way of contradiction that f:ϕ 6∈ µ and t:ϕ 6∈ µ for some ϕ ∈ C ∩F . It follows that there

exist F -sequents s1, s2 ⊆ µ such that S `G�ρ s1 ∪ {f:ϕ} and S `G�ρ s2 ∪ {t:ϕ}. Since

ϕ ∈ C, a (legal) application of (cut) ensured that S `G�ρ s1 ∪ s2. But this contradicts

the properties of µ. To see that v(µ, ϕ) 6= ∅ for every ϕ ∈ A, it suffices to prove that

ϕ ∈ A ∩ F implies that f:ϕ 6∈ µ or t:ϕ 6∈ µ. Note that if ϕ ∈ A ∩ F then {f:ϕ, t:ϕ} is a

(legal) application of (id), and so S `G�ρ {f:ϕ, t:ϕ}. Since µ is maximal, either f:ϕ 6∈ µ
or t:ϕ 6∈ µ.

Now, for every π ∈ ΠG, let RFπ denote the binary relation on Wv defined by: µ1R
F
π µ2

iff for every labelled F -formulas α1, α2, if α2π̄α1 and α2 ∈ µ2 then α1 ∈ µ1. We claim

that the following hold:

(b) For every labelled F -formula α and µ ∈ Wv: v, µ |= α iff α 6∈ µ.

Proof. Suppose that α = x:ϕ where x ∈ {f, t}. Then, x ∈ v(µ, ϕ) iff α 6∈ µ.

Equivalently, v, µ |= α iff α 6∈ µ.

(c) RFπ = Rv
π for every π ∈ ΠG, and RFπ0 = Idv.

Proof. For every context-relation π, RFπ = Rv
π follows from (b). To see that

RFπ0 = Idv, note that α2π̄0α1 iff α2 = α1. Thus, µ1R
F
π0
µ2 iff for every labelled

F -formula α, v, µ2 |= α implies that v, µ1 |= α. By (b), we obtain that µ1R
F
π0
µ2 iff

µ1 ⊆ µ2. Therefore, obviously, µRFπ0µ for every µ ∈ Wv. For the converse, we show

that if µ1, µ2 ∈ Wv and µ1 ⊆ µ2, then µ1 = µ2. Assume (by way of contradiction)

that µ1 ⊆ µ2 and there exists α ∈ µ2 \ µ1. Since µ1 is maximal, there exists an F -

sequent s ⊆ µ1 such that S `G�ρ s ∪ {α}. But, s ∪ {α} ⊆ µ2, and this contradicts

the fact that µ2 is unprovable.

(d) For every F -sequent s and µ ∈ Wv: s 6⊆ µ iff v, µ |= s.

Proof. Easily follows from (b).

(e) For every F -sequent s and µ ∈ Wv: if there exists an F -sequent s′ ⊆ µ such that

S `G�ρ s ∪ s
′, then v, µ |= s.
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Proof. Assume that there exists a sequent s′ ⊆ µ such that S `G�ρ s ∪ s
′. Since µ

is unprovable, s 6⊆ µ. Therefore, (d) entails that v, µ |= s.

(f) For every F -sequent s, µ ∈ Wv, and π ∈ ΠG: if v,RFπ [µ] |= s, then there exists a

π-instance 〈c, c′〉 such that c′ ⊆ µ and S `G�ρ s ∪ c.

Proof. Assume that there is no π-instance 〈c, c′〉 such that c′ ⊆ µ and S `G�ρ s ∪ c.
We show that v,RFπ [µ] 6|= s. Let µ∗ = {α | frm[α] ∈ F and ∃β ∈ µ.απ̄β}. Since

(f:weak) and (t:weak) are available, our assumption implies that s ∪ µ∗ is un-

provable. Since frm[s ∪ µ∗] ⊆ F , (a) entails that there exists maximal extended

L-sequent µ′, such that s ∪ µ∗ ⊆ µ′. (d) entails that v, µ′ 6|= s. By definition,

µRFπ µ
′. Hence, v,RFπ [µ] 6|= s.

(g) For every L-sequent s: v |= s iff S `G�ρ s.

Proof. Note first that if frm[s] 6⊆ F , then by definition, v 6|= s and S 6`G�ρ s.
Assume now that frm[s] ⊆ F . One direction easily follows from (e). For the

converse, assume that S 6`G�ρ s. We show that v 6|= s. Because of the presence of

(f:weak) and (t:weak), there does not exist s′ ⊆ s such that S `G�ρ s
′. By (a),

there exists µ ∈ Wv, such that s ⊆ µ. (d) entails that v, µ 6|= s. Hence, v 6|= s.

Next, we show that v is strongly G-legal. Thus we prove that 〈v,<vG〉 is RG-legal.

Let r = 〈s1, π1〉, ... , 〈sn, πn〉/s be a rule in RG. Let µ ∈ Wv, and let σ be an L-

substitution. Suppose that frm[σ({s1, ... , sn, s})] ⊆ F , and that v,<vG(πi)[µ] |= σ(si)

for every 1 ≤ i ≤ n. We prove that v, µ |= σ(s). By (c), <vG(πi) = RFπi for every

1 ≤ i ≤ n. Thus (f) entails that for every 1 ≤ i ≤ n, there exists a π-instance 〈ci, c′i〉
such that c′i ⊆ µ and S `G�ρ σ(si) ∪ ci. Now we can use these proofs, and the rule r to

obtain S `G�ρ σ(s) ∪ c′1 ∪ ... ∪ c′n, where c′1 ∪ ... ∪ c′n ⊆ µ. (e) entails that v, µ |= σ(s).

It follows that v ∈ K∗G�ρ (note that by (c), v is differentiated). Finally, we show that

v |= S but v 6|= s0. Since obviously S `G�ρ s
′ for every F -sequent s′ ∈ S, (g) implies

that v |= s′ for every such s′. Since S 6`G�ρ s0, (g) also implies that v 6|= s0.



Chapter 7

Canonical Gödel Hypersequent

Calculi

Gödel logic, known also as Gödel-Dummett logic, is perhaps the most prominent inter-

mediate logic, and one of the three fundamental fuzzy logics [63]. It was introduced in

[48] both semantically, by an infinite-valued matrix, and syntactically, with a simple ax-

iomatization, namely the extension of (an axiomatization of) intuitionistic logic with the

axiom scheme (ϕ1 ⊃ ϕ2) ∨ (ϕ2 ⊃ ϕ1) of linearity. The quest for a (cut-free) Gentzen-type

formulation for (propositional) Gödel logic began later, and several calculi were proposed

(see, e.g., [86, 46, 2, 50, 25, 51]). One of the most important cut-free calculi for Gödel

logic is the calculus HG, introduced in [4] (see also [22] and [76]). HG is relatively

simple, especially due to the fact that its logical rules are practically the same rules as

in LJ, the well-known single-conclusion sequent calculus for intuitionistic logic. This is

obtained by working in the slightly richer framework of (single-conclusion) hypersequents,

that provides a natural generalization of Gentzen’s original sequents framework.1 The

structural part of HG consists of all the usual structural rules, both on the sequent level

(internal) and on the hypersequent level (external). In addition, it includes the commu-

nication rule that allows “exchange of information“ between two hypersequents [7], and,

needless to say, the identity axiom and the (admissible) cut rule.

In this chapter we introduce and study the family of canonical Gödel hypersequent

calculi of which HG is the prototype example. The idea, just like in canonical sequent

calculi (following [17], see Chapter 4), is to allow any “ideal” logical rules for introducing

the logical connectives. Thus we define canonical single-conclusion hypersequent rules,

and in turn, canonical hypersequent Gödel calculi are (two-sided, single-conclusion) hy-

persequent calculi that include all standard structural rules, the cut rule, the identity

1Note that hypersequents are currently the main proof-theoretic framework for fuzzy logics [76].
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axiom, the communication rule, and an arbitrary finite set of canonical single-conclusion

hypersequent rules.2 Then, as in the previous chapters, we study canonical Gödel calculi

from a semantic point of view. Note that we could similarly study multiple-conclusion

hypersequent calculi in which some of the rules do not allow right context formulas (as

the right rules for implication in the multiple-conclusion calculus for intuitionistic logic).

We choose to work in the single-conclusion framework both in order to demonstrate

the applicability of our methods in this framework, and because the single-conclusion

framework is more common when it comes to Gödel logic.

First and foremost, our study includes a general method to obtain a sound and com-

plete semantics for every canonical Gödel calculus. The semantics is based on totally

ordered algebraic structures with (possibly) non-deterministic interpretations of the dif-

ferent connectives. Here we also consider the semantic effect of the cut rule and the

identity axiom, and obtain semantics for canonical Gödel calculi in which these rules

are restricted to apply only on some given set of formulas. This semantics is then used

to characterize proof-theoretic properties of canonical Gödel calculi, and particularly to

identify the “good” ones, namely those that enjoy (strong) cut-admissibility. In fact, we

show that the simple coherence criterion of [17, 14] characterizes strong cut-admissibility

in canonical Gödel calculi as well.

Publications Related to this Chapter

The material in this chapter was included in [71, 69]. Note that canonical single-

conclusion (two-sided) sequent calculi were introduced and studied in the author’s M.Sc.

thesis (see also [14]).

7.1 Preliminaries

As in the previous chapter, in this chapter we only consider two-sided sequents, refer

to them as L-sequents, and employ the standard notation and abbreviations (see Nota-

tion 6.1.1). In turn, hypersequents are defined as follows:

Definition 7.1.1. An L-hypersequent is a finite set of L-sequents. Given a set F ⊆ L,

an F -hypersequent is a hypersequent consisting solely of F -sequents.

2In fully-structural single-conclusion sequent calculi weakening on the right side can only be applied
on a sequent whose right side is empty. Similarly, in fully-structural single-conclusion hypersequent
calculi right internal weakening can only be applied on a hypersequent including a component with an
empty right-hand side.
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Notation 7.1.2. We usually use H as a metavariable for L-hypersequents. We usually

denote an L-hypersequent {s1, ... , sn} by s1 | ... | sn, and employ the standard abbrevia-

tions, e.g. H1 | H2 instead of H1 ∪H2, and H | s instead of H ∪ {s}.

Remark 7.1.3. As we did for sequents, we defined hypersequents using sets. This

immediately entails that the external exchange rule, the external contraction rule and

the external expansion rule (the converse of contraction) are built-in in all hypersequent

calculi that we study.

Unlike previous chapters, we study here single-conclusion calculi:

Definition 7.1.4. An L-sequent s satisfying |{ϕ ∈ L | t:ϕ ∈ s}| ≤ 1 is called a single-

conclusion L-sequent. An L-sequent s is called negative if {ϕ ∈ L | t:ϕ ∈ s} = ∅. A

single-conclusion L-hypersequent is an L-hypersequent that consists solely of single-

conclusion L-sequents.

We usually use the metavariable E and F for singleton or empty sets of formulas (to

represent the “right-side” of a single-conclusion sequent). Since in this chapter we discuss

only the single-conclusion framework, we shall omit the prefix “single-conclusion” and

refer to single-conclusion L-(hyper)sequents simply as L-(hyper)sequents.

7.2 Canonical Gödel Calculi

As defined below, all canonical Gödel calculi include the external and internal weakening

rules ((f:weak) and (t:weak)), and the rules (com), (cut) and (id):3

External Weakening This rule allows to infer H | s from H for every L-hypersequent

H and L-sequent s.

(f:weak) This rule allows to infer H | s∪ {f:ϕ} from H | s for every L-hypersequent H,

L-sequent s, and L-formula ϕ.

(t:weak) This rule allows to infer H | s∪ {t:ϕ} from H | s for every L-hypersequent H,

negative L-sequent s, and L-formula ϕ.

(com) This rule allows to infer H | s1 ∪ c2 | s2 ∪ c1 from H | s1 ∪ c1 and H | s2 ∪ c2 for

every L-hypersequent H, L-sequents s1 and s2, and negative L-sequents c1 and c2.

In the more usual notation, applications of (com) have the form:

H | Γ1,Γ
′
2 ⇒ E1 H | Γ2,Γ

′
1 ⇒ E2

H | Γ1,Γ
′
1 ⇒ E1 | Γ2,Γ

′
2 ⇒ E2

3We use the names (f:weak), (t:weak), (cut) and (id) in this context as well, but strictly speaking
these are not the same rules that were defined in Chapter 2, but their hypersequential versions.
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(cut) This rule allows to infer H | s1 ∪ s2 from H | s1 ∪ {f:ϕ} and H | s2 ∪ {t:ϕ} for

every L-hypersequent H, L-sequent s1, and negative L-sequent s2.

(id) This rule provides all axioms of the form {{f:ϕ, t:ϕ}} for every L-formula ϕ.

Unlike the structural rules, the logical rules of canonical Gödel calculi are not prede-

fined, and they vary according to the concrete language of the calculus. Next we define

the general form of the allowed logical rules. We first define right-introduction rules and

their applications, and then deal with left-introduction rules.

Definition 7.2.1. A canonical right single-conclusion hypersequent L-rule is a pair of

the form S/{t: � (p1, ... , par(�))}, where � ∈ ♦L and S is a finite set of {p1, ... , par(�)}-
sequents. The elements of S are called the premises of the rule, and {t: � (p1, ... , par(�))}
is called the conclusion of the rule. An application of {s1, ... , sn}/{t: � (p1, ... , par(�))} is

any inference step of the following form:

H | σ(s1) ∪ c ... H | σ(sn) ∪ c
H | {t:σ(�(p1, ... , par(�)))} ∪ c

where σ is an L-substitution, c is a negative L-sequent (called context sequent), and H

is an L-hypersequent (called context hypersequent). H | σ(s1) ∪ c, ... , H | σ(sn) ∪ c are

called the premises of the application, while H | {t:σ(�(p1, ... , par(�)))} ∪ c is called the

conclusion of the application.

Example 7.2.2. Suppose that ∧ ∈ ♦2
L, and consider the following canonical right single-

conclusion hypersequent L-rule:

{{t:p1}, {t:p2}}/{t:p1 ∧ p2}
Applications of this rule have the form:

H | Γ⇒ ϕ1 H | Γ⇒ ϕ2

H | Γ⇒ ϕ1 ∧ ϕ2

Obviously, in applications of canonical right single-conclusion hypersequent rules, we

can not allow non-negative context sequents (otherwise there will not be “enough space”

for the conclusion). The following definition of left rules is slightly more complicated,

since a non-negative context sequent may be added to the negative premises. To have a

general notion here, we allow also cases in which some negative premises disallow non-

negative context (just like the negative premises of the right rules). Hence, the set of

premises of canonical left rules is divided into two different sets: premises that disallow

non-negative context (including all non-negative premises), and premises that allow non-

negative context (of-course all of them are negative).4

4A similar division of the premises was used in the definition of canonical left single-conclusion sequent
rules in [14].
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Definition 7.2.3. A canonical left single-conclusion hypersequent L-rule is a triple of

the form S1,S2/{f: � (p1, ... , par(�))}, where � ∈ ♦L, S1 is a finite set of {p1, ... , par(�)}-
sequents, and S2 is a finite set of negative {p1, ... , par(�)}-sequents. The elements of S1∪S2

are called the premises of the rule, and {f: � (p1, ... , par(�))} is called the conclusion of

the rule. An application of {s1, ... , sn}, {s′1, ... , s′m}/{f: � (p1, ... , par(�))} is any inference

step of the following form:

H | σ(s1) ∪ c ... H | σ(sn) ∪ c H | σ(s′1) ∪ c′ ... H | σ(s′m) ∪ c′

H | {f:σ � (p1, ... , par(�)))} ∪ c ∪ c′

where σ is an L-substitution, c is a negative L-sequent, and c′ is an L-sequent. The

premises, conclusion, context sequents, and context hypersequent are defined exactly as

in Definition 7.2.1.

Example 7.2.4. Suppose that ? ∈ ♦1
L, and consider the following canonical left single-

conclusion hypersequent L-rules:

∅, {{f:p1}}/{f: ? p1} {{f:p1}}, ∅/{f: ? p1}
Applications of these rules have respectively the forms:

H | Γ, ϕ⇒
H | Γ, ?ϕ⇒

H | Γ, ϕ⇒ E

H | Γ, ?ϕ⇒ E

In this chapter we shall refer to “canonical right (left) single-conclusion hypersequent

L-rules” simply as “canonical right (left) L-rules”. By “canonical L-rules” we mean either

canonical right L-rules or canonical left L-rules. In addition, we say that a canonical L-

rule r is a rule for � if � is the connective that occurs in the conclusion of r.

Remark 7.2.5. Since both internal and external weakening rules are present in every

hypersequent calculus we study, it is always possible to incorporate weakenings in the

applications of the rules. Thus for example, we could have defined an application of a

canonical right L-rule as an inference step deriving H | σ(s) ∪ c from the L-hypersequents

Hi | σ(si) ∪ ci for every 1 ≤ i ≤ n, where H,H1, ... , Hn are L-hypersequents such that

H1 ∪ ... ∪Hn ⊆ H, c, c1, ... , cn are negative L-sequents such that c1 ∪ ... ∪ cn ⊆ c, and σ is

an L-substitution. A similar definition is possible for the canonical left rules. Henceforth,

we may use freely this kind of applications (which formally might involve additional

applications of the weakening rules).

In Table 7.1, we present all logical rules of the hypersequent system HG for the

standard propositional Gödel logic (see [22]) as canonical rules.5 It is also possible to

introduce new connectives using canonical rules:

5By saying that HG is a system for propositional Gödel logic, we mean that
{{{t:ψ}} | ψ ∈ T } `HG {{t:ϕ}} iff T 
 ϕ in propositional Gödel logic.
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Canonical Rule Application scheme

∅, ∅/{f: ⊥}
H | Γ,⊥⇒ E

{{t:p1}, {t:p2}}/{t:p1 ∧ p2}
H | Γ⇒ ϕ1 H | Γ⇒ ϕ2

H | Γ⇒ ϕ1 ∧ ϕ2

∅, {{f:p1, f:p2}}/{f:p1 ∧ p2}
H | Γ, ϕ1, ϕ2 ⇒ E

H | Γ, ϕ1 ∧ ϕ2 ⇒ E

{{t:p1}}/{t:p1 ∨ p2}
H | Γ⇒ ϕ1

H | Γ⇒ ϕ1 ∨ ϕ2

{{t:p2}}/{t:p1 ∨ p2}
H | Γ⇒ ϕ2

H | Γ⇒ ϕ1 ∨ ϕ2

∅, {{f:p1}, {f:p2}}/{f:p1 ∨ p2}
H | Γ, ϕ1 ⇒ E H | Γ, ϕ2 ⇒ E

H | Γ, ϕ1 ∨ ϕ2 ⇒ E

{{f:p1, t:p2}}/{t:p1 ⊃ p2}
H | Γ, ϕ1 ⇒ ϕ2

H | Γ⇒ ϕ1 ⊃ ϕ2

{{t:p1}}, {{f:p2}}/{f:p1 ⊃ p2}
H | Γ1 ⇒ ϕ1 H | Γ2, ϕ2 ⇒ E

H | Γ1,Γ2, ϕ1 ⊃ ϕ2 ⇒ E

Table 7.1: The Logical Rules of HG
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Example 7.2.6. A primal-implication connective (see [62]) can be introduced with the

following two rules:

{{t:p2}}/{t:p1  p2} {{t:p1}}, {{f:p2}}/{f:p1  p2}
Applications of the left rule are like those of the left rule of implication in HG, while ap-

plications of the right rule allow us to infer a hypersequent of the form H | Γ⇒ ϕ1  ϕ2

from a hypersequent of the form H | Γ⇒ ϕ2.

Example 7.2.7. It is possible to combine the usual right rule for conjunction with the

usual left rule for disjunction, and introduce a new binary connective ∧∨ with the following

rules:

{{t:p1}, {t:p2}}/{t:p1∧∨p2} ∅, {{f:p1}, {f:p2}}/{f:p1∧∨p2}

Applications of the right rule are like those of the right rule of conjunction in HG, while

applications of the left rule are like those of the left rule of disjunction in HG (see

Table 7.1).

We can now define canonical Gödel calculi:

Definition 7.2.8. A canonical Gödel L-calculus consists of all structural rules listed

above (see Page 106), and any finite set of canonical L-rules. The notion of a proof in a

canonical Gödel L-calculus G of an L-hypersequent H from a set H of L-hypersequents

is defined as usual (see Definition 2.2.14). We write H `G H to denote the existence of

such a proof.

To speak about restricted proofs, as needed in order to define and characterize proof-

theoretic, we will consider proof-specifications. These are defined exactly as in Chapter 6

(Definition 6.1.17), with the obvious modifications in the definition of a ρ-proof (reflecting

the transition from sequents to hypersequents). We shall also employ the same notation

and write H `G�ρ H if there exists a ρ-proof in G of H from H, for a given L-proof-

specification ρ. For canonical Gödel calculi, we have the following:

Proposition 7.2.9. Let G be a canonical Gödel L-calculus, and let ρ = 〈L, C,A〉 be an

L-proof-specification. If H `G�ρ H, then H `G�ρ′ H for ρ′ = 〈sub[C] ∪ sub[H], C,A〉.

Proof. The claim is proved by usual induction on the length of the proof in G. Note that

all rules in canonical Gödel L-calculi except for cut have the “local subformula property”

(i.e., for each rule, the premises of its applications consist only of formulas occurring as

subformulas of the corresponding conclusions).

The proof-theoretic properties of (strong) sub-analyticity, (strong) cut-admissibility

and axiom-expansion in canonical Gödel calculi are also defined as for basic calculi (Defi-

nition 6.1.18) with obvious modifications. From the last proposition, it easily follows that
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if a canonical Gödel L-calculus G enjoys strong cut-admissibility (i.e. H `G H implies

that H `G�ρ H for ρ = 〈L, frm[H],L〉), then it is strongly sub-analytic (i.e. H `G H

implies that H `G�ρ H for ρ = 〈sub[H ∪ {H}],L,L〉). In the sequel, we show that these

two properties are actually equivalent for canonical Gödel calculi.

We end this section with two propositions that will turn out to be useful in connection

with the proof of Theorem 7.3.17 below.

Proposition 7.2.10 (Generalized Communication). Let G be a canonical Gödel L-

calculus, and let ρ = 〈F , C,A〉 be an L-proof-specification. For all F -hypersequents

H1, H2, integers n,m ≥ 0, n+m F -sequents s1, ... , sn, s
′
1, ... , s

′
m, and two negative F -

sequents c, c′, the L-hypersequent H1 | H2 | s1 ∪ c′ | ... | sn ∪ c′ | s′1 ∪ c | ... | s′m ∪ c has a

ρ-proof in G from the L-hypersequents H1 | s1 ∪ c | ... | sn ∪ c and H2 | s′1 ∪ c′ | ... | s′m ∪ c′.

Proof. We prove this by induction on n + m. First, when n = 0 or m = 0, the claim

follows by applying external weakening. Assume that n,m > 0, n + m = l and that

the claim holds for every n,m such that n + m < l. By the induction hypothesis,

the following two hypersequents have a ρ-proof in HIF from H1 | s1 ∪ c | ... | sn ∪ c and

H2 | s′1 ∪ c′ | ... | s′m ∪ c′:
H1 | sn ∪ c | H2 | s1 ∪ c′ | ... | sn−1 ∪ c′ | s′1 ∪ c | ... | s′m ∪ c

H1 | H2 | s′m ∪ c′ | s1 ∪ c′ | ... | sn−1 ∪ c′ | s′1 ∪ c | ... | s′m−1 ∪ c
An application of (com) on these two hypersequents provides the desired result.

Proposition 7.2.11. Let G be a canonical Gödel L-calculus, ρ = 〈F , C,A〉 an L-proof-

specification, and r = S1,S2/{f:ϕ} a canonical left L-rule of G, with |S2| > 0. Let σ be

an L-substitution such that frm[σ(S1 ∪ S2)] ∪ {σ(ϕ)} ⊆ F . Let S2 = {s1, ... , sm} and

s0 = {f:σ(ϕ)}. Let c be a negative F -sequent and H an F -hypersequent. Denote by H1

the set {H | c ∪ σ(s)}s∈S1 . Then, for every n1, ... , nm ≥ 0, F -hypersequent H ′ such that

H ⊆ H ′, and n1 + ...+ nm F -sequents s1
1, ... , s

1
n1
, ... , sm1 , ... , s

m
nm

,

H ′ | c ∪ s1
1 ∪ s0 | ... | c ∪ s1

n1
∪ s0 | ... | c ∪ sm1 ∪ s0 | ... | c ∪ smnm

∪ s0

has a ρ-proof in G from

H1 ∪ {H ′ | si1 ∪ σ(si) | ... | sini
∪ σ(si)}1≤i≤m.

Proof. First, if ni = 0 for some 1 ≤ i ≤ m, the claim follows by applying external weaken-

ing onH ′. Next, we prove the claim for the case that n1 = n2 = ... = nm = 1, by induction

on the size S of the set {s1
1, ... , s

m
1 }. If S = 1, then one application of r suffices. Now let

S ≥ 2, and assume that the claim holds for sets of size S − 1. Let s1
1, ... , s

m
1 be F -sequents

sets such that |{s1
1, ... , s

m
1 }| = S, and let H ′ be some F -hypersequent such that H ⊆ H ′.

Let G0 = H ′ | c ∪ s1
1 ∪ s0 | ... | c ∪ sm1 ∪ s0, and for every 1 ≤ i ≤ m, Gi = H ′ | si1 ∪ σ(si).

Let i1, i2 be two indices such that si11 6= si21 , and let I1 = {1 ≤ i ≤ m | si1 = si11 } and
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I2 = {1 ≤ i ≤ m | si1 = si21 }. For every j1 ∈ I1 and j2 ∈ I2, we have that (using one ap-

plication of (com)):

{Gj1 , Gj2} `G�ρ H
′ | si11 ∪ σ(sj2) | si21 ∪ σ(sj1).

For every j1 ∈ I1, the induction hypothesis and the availability of external weakening

entail that G0 | si21 ∪ σ(sj1) has a ρ-proof in G from

H1 ∪ {Gj}j 6∈I2 ∪ {H ′ | si11 ∪ σ(sj2) | si21 ∪ σ(sj1)}j2∈I2 .
The induction hypothesis and the availability of external weakening again imply that

G0 has a ρ-proof in G from H1 ∪ {Gj}j 6∈I1 ∪ {G0 | si21 ∪ σ(sj1)}j1∈I1 . Together, we have

H1 ∪ {Gi}1≤i≤m `G�ρ G0.

Next we prove the claim for any n1, ... , nm ≥ 1 by induction on n1 + ...+ nm. As-

sume that n1 + ...+ nm = l and that the claim holds for every n1, ... , nm such that

n1 + ...+ nm < l. Let H ′ be an F -hypersequent that extends H, and let s1
1, ... , s

1
n1
, ... ,

sm1 , ... , s
m
nm

be F -sequents. Let G0 denote the hypersequent

H ′ | c ∪ s1
1 ∪ s0 | ... | c ∪ s1

n1
∪ s0 | ... | c ∪ sm1 ∪ s0 | ... | c ∪ smnm

∪ s0,

and H = {H ′ | si1 ∪ σ(si) | ... | sini
∪ σ(si)}1≤i≤m. For every 1 ≤ i ≤ m, the induction hy-

pothesis and the availability of external weakening entail thatH1∪H `G�ρ G0 | si1∪σ(si).

By the proof for the case n1 = n2 = ... = nm = 1, we have that

H1 ∪ {G0 | si1 ∪ σ(si)}1≤i≤m `G�ρ G0.

Example 7.2.12. Suppose that G includes the left rule ∅, {{f:p1}, {f:p2}}/{f:p1∧∨p2}
(see Example 7.2.7). By Proposition 7.2.11, the following rule (given by a scheme) is

cut-free derivable in G:

H | Γ1
1, ϕ1 ⇒ E1 | ... | Γ1

n1
, ϕ1 ⇒ En1 H | Γ2

1, ϕ2 ⇒ F1 | ... | Γ2
n2
, ϕ2 ⇒ Fn2

H | Γ1
1, ϕ1∧∨ϕ2 ⇒ E1 | ... | Γ1

n1
, ϕ1∧∨ϕ2 ⇒ En1 | Γ2

1, ϕ1∧∨ϕ2 ⇒ F1 | ... | Γ2
n2
, ϕ1∧∨ϕ2 ⇒ Fn2

7.3 Many-Valued Semantics

In this section we provide a method to obtain sound and complete many-valued semantics

for any given canonical Gödel calculus and proof-specification. The semantic structures

introduced for this task are called Gödel valuations. The truth values in these structures

should form a propositional Gödel set, defined as follows:

Definition 7.3.1. A (propositional) Gödel set is a bounded linearly ordered set

V = 〈V,≤〉. We denote by 0V and 1V the maximal and minimal elements (respec-

tively) of V with respect to ≤. The operations minV ,maxV are defined as usual (where

minV ∅ = 1V and maxV ∅ = 0V). For every two elements u1, u2 ∈ V , u1 →V u2 is defined

to be 1V if u1 ≤ u2, and u2 otherwise. The relations ≥, <, and > are also defined in the
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obvious way. We omit the subscript V when it is clear from the context, and sometimes

identify V with the set V (e.g., when referring to the elements of V as elements of V).

Now, (partial) Gödel L-valuations are defined as follows:

Definition 7.3.2. A partial Gödel L-valuation (partial L-Gvaluation, for short) is a

triple 〈V , Dom, v〉, where V is a Gödel set, Dom ⊆ L, and v is a function from Dom to

V×V . A partial L-Gvaluation 〈V , Dom, v〉 with Dom = L is also called an L-Gvaluation.

Notation 7.3.3. Throughout, we identify a partial L-Gvaluation 〈V , Dom, v〉 with its

underlying function v, and denote the Gödel set V by Vv, and the set Dom by Domv.

In addition, given a partial L-Gvaluation v, we denote by vf and vt “the left and right

projections of v”, that is vf(ϕ) = u1 and vt(ϕ) = u2 iff v(ϕ) = 〈u1, u2〉.

There are two main ideas behind the definition of a partial L-Gvaluation above. First,

as in the previous chapters, these semantic structures may not assign truth values to all

formulas. Their exact domain Dom should be determined according to the formulas that

are allowed to appear in ρ-proofs for a given proof-specification ρ. Second, note that

a partial L-Gvaluation v assigns a pair 〈vf(ϕ), vt(ϕ)〉 of truth values to each formula

ϕ ∈ Domv. Intuitively, vf(ϕ) is the value of ϕ when it is “f-labelled” (occurs on the

“left side” of a sequent), and vt(ϕ) is its value when it is “t-labelled” (occurs on the

“right side”). Roughly speaking, to have a complete semantics for proof-specifications in

which (cut) and/or (id) may not be applied on some formula ϕ, we have to “disconnect”

vf(ϕ) and vt(ϕ). Obviously, certain restrictions on the relation between vf(ϕ) and vt(ϕ)

should be put when (cut) and/or (id) are allowed to apply on ϕ (see Definition 7.3.6

below). Before turning to these restrictions, we define the semantic consequence relation

between hypersequents induced by a set of partial L-Gvaluations.

Definition 7.3.4. Let v be a partial L-Gvaluation.

1. Given a Domv-sequent s, vf(s), vt(s) and v(s) denote the element of Vv defined

by:

(a) vf(s) = min{vf(ϕ) | f:ϕ ∈ s}.
(b) vt(s) = max{vt(ϕ) | t:ϕ ∈ s}.
(c) v(s) = vf(s)→ vt(s).

2. v is a model of:

(a) an L-sequent s if s is a Domv-sequent and v(s) = 1.

(b) an L-hypersequent H if H is a Domv-hypersequent and v is a model of some

component s ∈ H.



114 Chapter 7. Canonical Gödel Hypersequent Calculi

(c) a set H of L-hypersequents if it is a model of every Domv-hypersequent H ∈ H.

We write v |= X to denote that v is a model of X (here X is either a sequent, a

hypersequent, or a set of hypersequents).

Note that in order to check whether v |= s, one only needs vf(ϕ) for every formula

ϕ such that f:ϕ ∈ s, and vt(ϕ) for every formula ϕ such that t:ϕ ∈ s. In turn, hyper-

sequents are interpreted as “meta-disjunctions” of sequents. The consequence relation

between hypersequents induced by a set G of partial L-Gvaluations is defined as follows:

Definition 7.3.5. An L-hypersequent H follows from a set H of L-hypersequents with

respect to a set G of partial L-Gvaluations (denoted by: H `G H) if for every v ∈ G:

v |= H whenever v |= H.

As noted above, when (cut) and/or (id) are allowed to apply on some formula ϕ

(according to the proof-specification), we have to “connect” vf(ϕ) and vt(ϕ). Intuitively,

(cut) and (id) have opposite semantic roles – while (cut) forces the “f-value” to be greater

than or equal to the “t-value”, (id) forces the “f-value” to be lower than or equal to the

t-value. This is formulated in the next definition.

Definition 7.3.6. Let ρ = 〈F , C,A〉 be an L-proof-specification. A partial L-Gvaluation

v is called ρ-legal if the following hold:

1. Domv = F .

2. vt(ϕ) ≤ vf(ϕ) for every ϕ ∈ C ∩ F .

3. vf(ϕ) ≤ vt(ϕ) for every ϕ ∈ A ∩ F .

Note that when (cut) and (id) can be used for all formulas (that is: C = A = L), we

require that vf(ϕ) = vt(ϕ) for every ϕ ∈ Domv. Such Gvaluations will be called normal:

Definition 7.3.7. A partial L-Gvaluation v is called normal if vf(ϕ) = vt(ϕ) for ev-

ery ϕ ∈ L. For normal partial L-Gvaluation v, we may write v(ϕ) instead of vf(ϕ)

(equivalently, vt(ϕ)).

Next, we turn to the semantic effect of the canonical rules included in the given canon-

ical Gödel calculus. Roughly speaking, the idea here is that each rule for a connective �
induces a function from (V×V)ar(�) to V . By applying these functions on the truth values

of ϕ1, ... , ϕar(�), one obtain bounds on the truth value of �(ϕ1, ... , ϕar(�)). The functions

induced by the right canonical rules for � provide lower bounds on vt(�(ϕ1, ... , ϕar(�))),

while those induced by the left rules for � are used as upper bounds on vf(�(ϕ1, ... , ϕar(�))).

Below we precisely formulate this idea.
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Notation 7.3.8. Let v be a partial L-Gvaluation. Given a finite set S of Domv-sequents,

v(S) = min{v(s) | s ∈ S} and vf(S) = max{vf(s) | s ∈ S}.

Definition 7.3.9. Let � be an n-ary connective of L, V a Gödel set, and r a canonical

L-rule for �. �rV is a function from (V × V)n to V defined by:

�rV(〈uf1, ut1〉, ... , 〈ufn, utn〉) =

v(S) r = S/{t:ϕ}

v(S1)→ vf(S2) r = S1,S2/{f:ϕ}
where v is the partial L-Gvaluation defined by Vv = V , Domv = {p1, ... , pn}, and

v(pi) = 〈ufi , uti 〉 for every 1 ≤ i ≤ n.

Example 7.3.10. Suppose that ∧ ∈ ♦2
L, and consider the usual rules:

(t:∧) {{t:p1}, {t:p2}}/{t:p1 ∧ p2} (f:∧) ∅, {{f:p1, f:p2}}/{f:p1 ∧ p2}
Let V be a Gödel set, and 〈uf1, ut1〉, 〈uf2, ut2〉 ∈ V×V . We calculate ∧(t:∧)

V (〈uf1, ut1〉, 〈uf2, ut2〉),
and ∧(f:∧)

V (〈uf1, ut1〉, 〈uf2, ut2〉). Let v be the partial L-Gvaluation defined by Vv = V ,

Domv = {p1, p2}, and v(pi) = 〈ufi , uti 〉 for 1 ≤ i ≤ 2. We have

v({t:p1}) = vf({t:p1})→ vt({t:p1}) = 1→ vt(p1) = vt(p1) = ut1.

Similarly, v({t:p2}) = ut2. Thus

∧(t:∧)
V (〈uf1, ut1〉, 〈uf2, ut2〉) = v({{t:p1}, {t:p2}}) = min{ut1, ut2}.

In addition, v(∅) = 1, and

vf({{f:p1, f:p2}}) = vf({f:p1, f:p2}) = min{vf(p1), vf(p2)} = min{uf1, uf2}.
Therefore,

∧(f:∧)
V (〈uf1, ut1〉, 〈uf2, ut2〉) = v(∅)→ vf({{f:p1, f:p2}}) = min{uf1, uf2}.

Now, if we replace (f:∧) by ∅, {{f:p1}, {f:p2}}/{f:p1∧ p2} (see Example 7.2.7) we obtain

∧(f:∧)
V (〈uf1, ut1〉, 〈uf2, ut2〉) = v(∅)→ vf({{f:p1}, {f:p2}}) = max{uf1, uf2}.

Example 7.3.11. Suppose that ⊃∈ ♦2
L, and consider the usual rules:

(t: ⊃) {{f:p1, t:p2}}/{t:p1 ⊃ p2} (f: ⊃) {{t:p1}}, {{f:p2}}/{f:p1 ⊃ p2}
Let V be a Gödel set, and 〈uf1, ut1〉, 〈uf2, ut2〉 ∈ V×V . We calculate ⊃(t:⊃)

V (〈uf1, ut1〉, 〈uf2, ut2〉),
and ⊃(f:⊃)

V (〈uf1, ut1〉, 〈uf2, ut2〉). Let v be the partial L-Gvaluation defined by Vv = V ,

Domv = {p1, p2}, and v(pi) = 〈ufi , uti 〉 for 1 ≤ i ≤ 2. Then:

⊃(t:⊃)
V (〈uf1, ut1〉, 〈uf2, ut2〉) =v({{f:p1, t:p2}}) = vf({f:p1, t:p2})→ vt({f:p1, t:p2}) =

=vf(p1)→ vt(p2) = uf1 → ut2

⊃(f:⊃)
V (〈uf1, ut1〉, 〈uf2, ut2〉) =v({{t:p1}})→ vf({{f:p2}}) = vt(p1)→ vf(p2) = ut1 → uf2

Now, if we replace (t: ⊃) by {{t:p2}}/{t:p1 ⊃ p2} (see Example 7.2.6) we obtain

⊃(t:⊃)
V (〈uf1, ut1〉, 〈uf2, ut2〉) = v({{t:p2}}) = 1→ vt(p2) = ut2
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Note that the calculation of �rV requires only applying “atomic Gödel functions”,

namely min, max, 0, 1, and Gödel implication. These functions enforce restrictions on

Gvaluations as follows:

Definition 7.3.12. A partial L-Gvaluation v is called r-legal:

• for a canonical right rule r = S/{t: � (p1, ... , pn)} if for every L-substitution σ such

that σ({p1, ... , pn, �(p1, ... , pn)}) ⊆ Domv:

�rVv(v(σ(p1)), ... , v(σ(pn))) ≤ vt(σ(�(p1, ... , pn))).

• for a canonical left rule r = S1,S2/{f: � (p1, ... , pn)} if for every L-substitution σ

such that σ({p1, ... , pn, �(p1, ... , pn)}) ⊆ Domv:

vf(σ(�(p1, ... , pn))) ≤ �rVv(v(σ(p1)), ... , v(σ(pn))).

Note that the right rules for � impose restrictions on vt(σ(�(p1, ... , pn))), while the

left rules for � restrict vf(σ(�(p1, ... , pn))).

Example 7.3.13. Let v be a ρ-legal partial L-Gvaluation for ρ = 〈F , C,A〉. Below we

present the condition for v to be r-legal for the canonical rules presented in the examples

above. Note that the condition on the right should hold for every L-substitution σ such

that {σ(p1 � p2), σ(p1), σ(p2)} ⊆ F where � is the connective in the corresponding rule.

Canonical Rule Semantic Condition

(t:∧) {{t:p1}, {t:p2}}/{t:p1 ∧ p2} min{vt(σ(p1)), vt(σ(p2))} ≤ vt(σ(p1 ∧ p2))

(f:∧) ∅, {{f:p1, f:p2}}/{f:p1 ∧ p2} vf(σ(p1 ∧ p2)) ≤ min{vf(σ(p1)), vf(σ(p2))}
(t: ⊃) {{f:p1, t:p2}}/{t:p1 ⊃ p2} vf(σ(p1))→ vt(σ(p2)) ≤ vt(σ(p1 ⊃ p2))

(f: ⊃) {{t:p1}}, {{f:p2}}/{f:p1 ⊃ p2} vf(σ(p1 ⊃ p2)) ≤ vt(σ(p1))→ vf(σ(p2))

(t: ) {{t:p2}}/{t:p1  p2} vt(σ(p2)) ≤ vt(σ(p1  p2))

(f: ) {{t:p1}}, {{f:p2}}/{f:p1  p2} vf(σ(p1  p2)) ≤ vt(σ(p1))→ vf(σ(p2))

(t:∧∨) {{t:p1}, {t:p2}}/{t:p1∧∨p2} min{vt(σ(p1)), vt(σ(p2))} ≤ vt(σ(p1∧∨p2))

(f:∧∨) ∅, {{f:p1}, {f:p2}}/{f:p1∧∨p2} vf(σ(p1∧∨p2)) ≤ max{vf(σ(p1)), vf(σ(p2))}

Now, if we only consider normal (full) L-Gvaluations, these conditions can be simplified

as follows.

Canonical Rule Semantic Condition

(t:∧) {{t:p1}, {t:p2}}/{t:p1 ∧ p2} min{v(ϕ1), v(ϕ2)} ≤ v(ϕ1 ∧ ϕ2)

(f:∧) ∅, {{f:p1, f:p2}}/{f:p1 ∧ p2} v(ϕ1 ∧ ϕ2) ≤ min{v(ϕ1), v(ϕ2)}
(t: ⊃) {{f:p1, t:p2}}/{t:p1 ⊃ p2} v(ϕ1)→ v(ϕ2) ≤ v(ϕ1 ⊃ ϕ2)

(f: ⊃) {{t:p1}}, {{f:p2}}/{f:p1 ⊃ p2} v(ϕ1 ⊃ ϕ2) ≤ v(ϕ1)→ v(ϕ2)

(t: ) {{t:p2}}/{t:p1  p2} v(ϕ2) ≤ v(ϕ1  ϕ2)
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(f: ) {{t:p1}}, {{f:p2}}/{f:p1  p2} v(ϕ1  ϕ2) ≤ v(ϕ1)→ v(ϕ2)

(t:∧∨) {{t:p1}, {t:p2}}/{t:p1∧∨p2} min{v(ϕ1), v(ϕ2)} ≤ v(ϕ1∧∨ϕ2)

(f:∧∨) ∅, {{f:p1}, {f:p2}}/{f:p1∧∨p2} v(ϕ1∧∨ϕ2) ≤ max{v(ϕ1), v(ϕ2)}

In this case the condition in the right should hold for every ϕ1, ϕ2 ∈ L. Recall that for

normal Kvaluations we write v(ϕ) instead of vf(ϕ) (or equivalently vt(ϕ)). Note that

the two rules for ∧ together impose the usual Gödel logic semantics of ∧:

v(ϕ1 ∧ ϕ2) = min{v(ϕ1), v(ϕ2)}.
Similarly, the two rules for ⊃ impose its usual semantics:

v(ϕ1 ⊃ ϕ2) = v(ϕ1)→ v(ϕ2).

Now, the rules for  and ∧∨ together impose the conditions:

v(ϕ2) ≤ v(ϕ1  ϕ2) ≤ v(ϕ1)→ v(ϕ2),

min{v(ϕ1), v(ϕ2)} ≤ v(ϕ1∧∨ϕ2) ≤ max{v(ϕ1), v(ϕ2)}.

In these two cases we obtain non-deterministic semantics since the value assigned to

ϕ1  ϕ2 (similarly, to ϕ1∧∨ϕ2) is not uniquely determined by the value assigned to ϕ1

and ϕ2. A deterministic semantics is obtained only when the lower bound determined

by the right rules is equal to the upper bound determined by the left rules.

Remark 7.3.14. Note that in non-normal (partial) L-Gvaluations, when we may have

vf(�(ϕ1, ... , ϕar(�))) 6= vt(�(ϕ1, ... , ϕar(�))), then the semantics of � is non-deterministic

by definition, since both vf(�(ϕ1, ... , ϕar(�))) and vt(�(ϕ1, ... , ϕar(�))) are restricted only

from one side. Therefore, even when � is a usual connective with ordinary introduction

rules, non-deterministic semantics is employed to handle proof-specifications in which

(cut) and/or (id) are not allowed on formulas of the form �(ϕ1, ... , ϕar(�)).

The following technical lemma will be useful below.

Lemma 7.3.15. Let v be a partial L-Gvaluation, r a canonical L-rule for an n-

ary connective �, and σ an L-substitution such that σ({p1, ... , pn}) ⊆ Domv. Then

�rVv(v(σ(p1)), ... , v(σ(pn)) is equal to:

• v(σ(S)) when r = S/{t: � (p1, ... , pn)} is a right rule.

• v(σ(S1))→ vf(σ(S2)) when r = S1,S2/{f: � (p1, ... , pn)} is a left rule.

We are now ready to identify the set of Gvaluations for which a given canonical Gödel

calculus and a proof-specification are sound and complete.

Definition 7.3.16. Let G be a canonical Gödel L-calculus, and ρ an L-proof-specification.

A partial L-Gvaluation v is called G-legal if it is r-legal for every canonical L-rule r of

G. v is called G�ρ-legal if it is both ρ-legal and G-legal. GG�ρ denotes the set of all

G�ρ-legal partial L-Gvaluations.
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Next, we state the general soundness and completeness theorem connecting `G�ρ and

`GG�ρ . Its proof is given in Section 7.5.

Theorem 7.3.17. For every canonical Gödel L-calculus G, L-proof-specification

ρ = 〈F , C,A〉 where F is closed under subformulas, set H of L-hypersequents, and F -

hypersequent H: H `G�ρ H iff H `GG�ρ H.

For the simpler case without a proof-specification we obtain the following:

Corollary 7.3.18. For every canonical Gödel L-calculus G, `G=`G, where G is the set

of all G-legal normal L-Gvaluations.

Proof. Since 〈L,L,L〉-legal partial L-Gvaluations are exactly normal L-Gvaluations, the

claim directly follows from Theorem 7.3.17.

The following is an immediate corollary of the completeness proof.

Corollary 7.3.19. Let G be a canonical Gödel L-calculus, and ρ = 〈F , C,A〉 an L-

proof-specification. If H 6`G�ρ H, then there exists a G�ρ-legal partial L-Gvaluation v,

which is a model of H but not of H, satisfying |Vv| ≤ 2|F|+ 2.

Proof. Directly follows from the fact that the Gödel set Vv constructed in the complete-

ness proof contains at most 2|F|+ 2 elements (see Section 7.5).

It follows that the semantics of G�ρ-legal partial L-Gvaluations is effective, in the

sense that it naturally induces a procedure to decide whetherH `G�ρ H or not for a given

canonical Gödel L-calculus G, L-proof-specification ρ = 〈F , C,A〉 with finite F , C and

A, finite set H of L-hypersequents and single L-hypersequent H. Note that a syntactic

decision procedure in this case is trivial, since the number of F -hypersequents is bounded

by M = 222|F| . Obviously, one can enumerate all lists of F -hypersequents of size at most

M , and return “true” iff one of them is a ρ-proof in G of H from H. Of-course, the

problem is more interesting when ρ is not given, and one has to decide whether H `G H

or not. We consider this problem in the next section.

Remark 7.3.20. The linearly ordered set of truth values employed in the completeness

proof is countable, and can be embedded into the unit interval [0, 1]. Thus we can fix

V = [0, 1] in the definition of a Gvaluation, and obtain “standard” semantics.

7.4 Applications of the Semantics

In this section we use Theorem 7.3.17 to derive semantic characterizations of strong suba-

analyticity, strong cut-admissibility, and axiom-expansion in canonical Gödel calculi, and
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use them to obtain a general decidability result for these calculi. First, note that the

soundness part of Theorem 7.3.17 can be utilized to prove that certain applications of

identity axioms or cuts are unavoidable, or perhaps to show that in all derivations of

some hypersequent H, a certain formula ϕ appears.

Example 7.4.1. Let H = {{t:(p1 ⊃ p2) ∨ (p2 ⊃ p1)}} and F = sub[H]. We show that

all proofs of H in HG that consist solely of formulas from F include the application

{{f:p1, t:p1}} of (id). Let ρ = 〈F ,F ,F \ {p1}〉. By Theorem 7.3.17, it suffices to provide

a HG�ρ-legal partial L-Gvaluation which is not a model of H. For that we can choose

Vv = [0, 1], Domv = F and:

• vf(p1) = 1, vt(p1) = 0, vf(p2) = vt(p2) = 0.5,

• vf(p1 ⊃ p2) = vt(p1 ⊃ p2) = 0.5,

• vf(p2 ⊃ p1) = vt(p2 ⊃ p1) = 0,

• vf((p1 ⊃ p2) ∨ (p2 ⊃ p1)) = vt((p1 ⊃ p2) ∨ (p2 ⊃ p1)) = 0.5.

It is straightforward to verify that v is a HG�ρ-legal partial L-Gvaluation which is not

a model of H.

Next, we present a simple coherence criterion and prove that it is necessary and suf-

ficient for strong sub-analyticity and strong cut-admissibility in canonical Gödel calculi.

Definition 7.4.2. A set R of canonical L-rules for a connective � ∈ ♦L is called coherent

if S ∪ S1 ∪ S2 is classically inconsistent whenever R contains both S/{t: � (p1, ... , par(�))}
and S1,S2/{f: � (p1, ... , par(�))}. A canonical Gödel L-calculus G is called coherent if for

for each � ∈ ♦L, the set of rules in G for � is coherent.

Example 7.4.3. Clearly, the set of sequents {{t:p2}, {t:p1}, {f:p2}} is classically incon-

sistent. Thus the two rules of  from Example 7.2.6 form a coherent set of rules.

Note that this is exactly the same criterion used for single-conclusion canonical se-

quent systems in [14]. It is easy to verify that HG is coherent. Moreover, all sets of

rules considered in previous examples are coherent. Coherence is a natural requirement

for any canonical Gödel calculus. Indeed, in non-coherent calculi the existence of one

provable hypersequent of the form {{t:ϕ}} and another provable hypersequent of the

form {{f:ϕ}} implies that all (non-empty) hypersequents are provable:

Proposition 7.4.4. Let G be a canonical Gödel L-calculus. If G is not coherent then

{{t:p1}}, {{f:p2}} `G H for every non-empty L-hypersequent H.

Proof. Similar to the proof of Theorem 4.10 in [14] for single conclusion canonical systems.

The fact that G manipulates hypersequents is immaterial here.
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This easily entails that non-coherent calculi do not enjoy strong cut-admissibility.

To see this, take H = {∅}, i.e. the hypersequent consisting solely of the empty sequent.

Obviously, in any canonical Gödel L-calculus there does not exist an 〈L, {p1, p2},L〉-proof

of H from {{t:p1}} and {{f:p2}}. Similarly, it is also clear that there does not exist a

〈{p1, p2},L,L〉-proof of H from {{t:p1}} and {{f:p2}}, and so non-coherent calculi are

not strongly sub-analytic.

Next we show that coherence is sufficient for strong sub-analyticity and strong cut-

admissibility.

Lemma 7.4.5. Let G be a coherent canonical Gödel L-calculus. For every Gödel set V ,

n-ary connective � ∈ ♦L, canonical right and left L-rules rt, rf for � of G (respectively),

and uf1, u
t
1, ... , u

f
n, u

t
n ∈ V such that ufi ≥ uti for every 1 ≤ i ≤ n:

�rtV (〈uf1, ut1〉, ... , 〈ufn, utn〉) ≤ �rfV (〈uf1, ut1〉, ... , 〈ufn, utn〉).

Proof. Suppose that �rtV (〈uf1, ut1〉, ... , 〈ufn, utn〉) > �rfV (〈uf1, ut1〉, ... , 〈ufn, utn〉) for canonical L-

rules rt = S/{t: � (p1, ... , pn)} and rf = S1,S2/{f: � (p1, ... , pn)}. Let v be the partial

L-Gvaluation with Vv = V , Domv = {p1, ... , pn}, and v(pi) = 〈ufi , uti 〉 for every 1 ≤ i ≤ n.

Then, by definition, v(S) > v(S1)→ vf(S2). Hence v(S) > vf(S2) and v(S1) > vf(S2).

Consider the classical valuation c on p1, ... , pn defined by c(pi) = t iff vt(pi) > vf(S2). We

prove that c satisfies every L-sequent in S ∪ S1 ∪ S2, and so G is not coherent.

Let s ∈ S ∪ S1. Since v(S) > vf(S2) and v(S1) > vf(S2), v(s) > vf(S2), and so

vf(s)→ vt(s) > vf(S2). If vt(s) > vf(S2), it follows that t:pi ∈ s for some 1 ≤ i ≤ n

and vt(pi) > vf(S2), and so c(pi) = t. Thus c classically satisfies s. Assume now that

vt(s) ≤ vf(S2). This implies that vf(s) ≤ vt(s). It follows that vf(s) ≤ vf(S2), and so

there exists some f:pi ∈ s such that vf(pi) ≤ vf(S2). Since ufi ≥ uti , v
t(pi) ≤ vf(pi), and

so c(pi) = f . Thus c classically satisfies s.

Now, let s ∈ S2. Obviously, vf(s) ≤ vf(S2). This implies that there exists some

f:pi ∈ s such that vf(pi) ≤ vf(S2). Since ufi ≥ uti , v
t(pi) ≤ vf(pi), and so c(pi) = f .

Again c classically satisfies s.

Theorem 7.4.6. All coherent canonical Gödel L-calculi enjoy strong cut-admissibility.

Proof. Let G be a coherent canonical Gödel L-calculus, H a set of L-hypersequents

and H an L-hypersequent. Let ρ = 〈L,L,A〉 and ρ′ = 〈L, frm[H],A〉. Suppose that

H 0G�ρ′ H. We show that H 6`G�ρ H.6 By Theorem 7.3.17, there is some G�ρ′-legal

6In fact, this proves a stronger claim: H `G�ρ H for ρ = 〈L,L,A〉 implies that H 0G�ρ′ H for

ρ′ = 〈L, frm[H],A〉. Roughly speaking, this means that one never has to introduce new applications
of the identity axioms for eliminating cuts. The usual notion of strong cut-admissibility is obtained by
taking A = L.
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L-Gvaluation q, such that q |= H but q 6|= H. We construct a G�ρ-legal L-Gvaluation

v, such that v |= H but v 6|= H. By Theorem 7.3.17, it then follows that H 6`G�ρ H.

First, we define Vv = Vq. Next, for every ϕ ∈ L, vf(ϕ) and vt(ϕ) are determined as

follows. If qt(ϕ) ≤ qf(ϕ) then vf(ϕ) = qf(ϕ) and vt(ϕ) = qt(ϕ). Otherwise, if ϕ is an

atomic formula, vf(ϕ) = vt(ϕ) = qf(ϕ). Finally, if ϕ is a compound formula of the form

�(ϕ1, ... , ϕar(�)) and qf(ϕ) < qt(ϕ), we define:

vf(ϕ) = vt(ϕ) =


qf(ϕ) vG(ϕ) < qf(ϕ)

vG(ϕ) qf(ϕ) ≤ vG(ϕ) ≤ qt(ϕ)

qt(ϕ) qt(ϕ) < vG(ϕ)

where vG(ϕ) = min{�rVq(v(ϕ1), ... , v(ϕar(�))) | r is a canonical left L-rule for � in G}.
Note that vG(ϕ) depends only on the values assigned to proper subformulas of ϕ, and

hence this construction is well-defined. We first show that v is ρ-legal. Obviously,

vt(ϕ) ≤ vf(ϕ) for every formula ϕ. It remains to prove that vf(ϕ) ≤ vt(ϕ) for every

ϕ ∈ A. To see this, note that the only case in which we have vf(ϕ) 6= vt(ϕ) is when

qt(ϕ) < qf(ϕ). Since q is ρ′-legal, this can only happen for ϕ 6∈ A. Next, we show that v

is G-legal. For this we use the following properties:

1. qf(ϕ) ≤ vf(ϕ) and vt(ϕ) ≤ qt(ϕ) for every formula ϕ.

2. qf(s) ≤ vf(s) and vt(s) ≤ qt(s) for every sequent s.

3. v(s) ≤ q(s) for every sequent s.

4. v(S) ≤ q(S) and qf(S) ≤ vf(S) for every finite set S of sequents.

5. q(S1)→ qf(S2) ≤ v(S1)→ vf(S2) for every finite sets S1,S2 of sequents.

The proofs of these properties easily follow from the definitions (note that if u1 ≤ u2 and

u3 ≤ u4 then u2 → u3 ≤ u1 → u4). Now, we show that v is G-legal.

• Let r = S/{t: � (p1, ... , pn)} be a canonical right L-rule of G, and σ be an L-

substitution. We show that �rVq(v(σ(p1)), ... , v(σ(pn))) ≤ vt(σ(�(p1, ... , pn))). Let

ϕ = σ(�(p1, ... , pn)) and u = �rVq(v(σ(p1)), ... , v(σ(pn))). Since q is G-legal, we

have �rVq(q(σ(p1)), ... , q(σ(pn))) ≤ qt(ϕ). By Lemma 7.3.15, u = v(σ(S)), and

�rVq(q(σ(p1)), ... , q(σ(pn))) = q(σ(S)). Thus if vt(ϕ) = qt(ϕ), the claim follows by

Item 4. Otherwise, the construction of v ensures that vt(ϕ) = max{vG(ϕ), qf(ϕ)}.
Thus vG(ϕ) ≤ vt(ϕ). Now, by Lemma 7.4.5, the coherence of G entails that

u ≤ vG(ϕ).

• Let r = S1,S2/{f: � (p1, ... , pn)} be a canonical left L-rule of G, and σ an L-

substitution. We show that vf(σ(�(p1, ... , pn))) ≤ �rVq(v(σ(p1)), ... , v(σ(pn))). Let

ϕ = σ(�(p1, ... , pn)) and u = �rVq(v(σ(p1)), ... , v(σ(pn))). Since q is G-legal, we have



122 Chapter 7. Canonical Gödel Hypersequent Calculi

qf(ϕ) ≤ �rVq(q(σ(p1)), ... , q(σ(pn))). By Lemma 7.3.15, u = v(σ(S1)) → vf(σ(S2))

and �rVq(q(σ(p1)), ... , q(σ(pn))) = q(σ(S1))→ qf(σ(S2)). Thus if vt(ϕ) = qt(ϕ), then

the claim follows by Item 5. Otherwise, the construction of v ensures that we have

vf(ϕ) = min{vG(ϕ), qt(ϕ)}, and so vf(ϕ) ≤ u.

It remains to show that v |= H but v 6|= H. Let H ′ ∈ H. Since q |= H, there exists some

s ∈ H ′ such that qf(s) ≤ qt(s). Since q is ρ′-legal and frm[s] ⊆ frm[H], qt(ϕ) ≤ qf(ϕ) for

every ϕ ∈ frm[s]. The construction of v ensures that v(ϕ) = q(ϕ) whenever ϕ ∈ frm[s].

Hence, vf(s) ≤ vt(s), and consequently v |= H ′. Finally, we show that v 6|= H. Let s ∈ H.

Since q 6|= H, we have q 6|= s. Thus q(s) < 1. Item 3 above entails that v(s) < 1 as well,

and so v 6|= s.

Example 7.4.7. Since HG is coherent, it enjoys strong cut-admissibility. The extension

of HG with the rules for  and ∧∨ from Examples 7.2.6 and 7.2.7 enjoys strong cut-

admissibility as well.

This leads to the following triple equivalence in canonical Gödel calculi:

Corollary 7.4.8. The following are equivalent for a canonical Gödel L-calculus G:

• G is coherent.

• G is strongly sub-analytic.

• G enjoys strong cut-admissibility.

Proof. Following Proposition 7.2.9, if G enjoys strong cut-admissibility then it is strongly

sub-analytic. In addition, following Proposition 7.4.4, if G is not coherent then it is not

strongly sub-analytic. The third link follows by Theorem 7.4.6.

The decidability of coherent calculi is an easy corollary.

Corollary 7.4.9. Given a coherent canonical Gödel L-calculus G, a finite set H of

L-hypersequents and an L-hypersequent H, it is decidable whether H `G H or not.

Proof. By Corollary 7.4.8, if G is coherent then it is strongly sub-analytic. Thus it suffices

to check whether H `G�ρ H for ρ = 〈sub[H ∪ {H}], sub[H ∪ {H}], sub[H ∪ {H}]〉. This

can be as described in the discussion after Corollary 7.3.19.

Note that the same equivalence of Corollary 7.4.8 holds for the family of canonical

(two-sided) sequent systems [17] and their single-conclusion counterparts [14]. Another

similarity between canonical Gödel calculi and canonical sequent calculi arises when

studying the property of axiom-expansion. Indeed, as shown in Corollary 4.4.8, canonical

sequent calculi exhibit a strong connection between determinism of the semantics of a
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certain connective, and the fact that this connective admits axiom-expansion (see also

[11, 43]). Next, we show that a similar connection exists in canonical Gödel calculi.

Roughly speaking, a connective � is deterministic in a calculus G if for every for-

mula �(ϕ1, ... , ϕar(�)), the truth values assigned to ϕ1, ... , ϕar(�) in G-legal normal L-

Gvaluations uniquely determine the truth value assigned to �(ϕ1, ... , ϕn). Formally, this

property is defined follows:

Definition 7.4.10. Let G be a canonical Gödel L-calculus. An n-ary connective � ∈ ♦L
is deterministic in G if for every Gödel set V and elements u1, ... , un ∈ V , there exist

canonical right and left L-rule rt, rf for � in G (respectively), such that

�rtV (〈u1, u1〉, ... , 〈un, un〉) = �rfV (〈u1, u1〉, ... , 〈un, un〉).

Indeed, if v is a G-legal normal L-Gvaluation, then for every compound formula

ϕ = �(ϕ1, ... , ϕn), v(ϕ) is forced to be greater than or equal to �rV(v(ϕ1), ... , v(ϕn)) for

every right rule r for �, and less than or equal to �rV(v(ϕ1), ... , v(ϕn)) for every left rule

r for �. If the condition above holds, then this leaves exactly one option for v(ϕ) given

v(ϕ1), ... , v(ϕn).

Theorem 7.4.11. Let G be a coherent canonical Gödel L-calculus. A connective admits

axiom-expansion in G iff it is deterministic in G.

Proof. Let � be an n-ary connective, and let ϕ = �(p1, ... , pn). By definition, � admits

axiom-expansion in G iff `G�ρ H for H = {{f:ϕ, t:ϕ}} and ρ = 〈L,L, {p1, ... , pn}〉.

• Suppose that � is deterministic in G. We show that `G�ρ H. By Theorem 7.3.17,

it suffices to show that every G�ρ-legal L-Gvaluation is a model of H. Let v be a

G�ρ-legal L-Gvaluation. Since � is deterministic in G, there are canonical right and

left L-rules rt, rf for � in G, such that �rtV (v(p1), ... , v(pn)) = �rfV (v(p1), ... , v(pn)).

Since v is G-legal, �rfV (v(p1), ... , v(pn)) ≤ vt(ϕ) and vf(ϕ) ≤ �rtV (v(p1), ... , v(pn)). It

follows that vf(ϕ) ≤ vt(ϕ), and so v |= H.

• Suppose that � is not deterministic in G. Hence, there is a Gödel set V and

u1, ... , un ∈ V , such that �rtV (〈u1, u1〉, ... , 〈un, un〉) 6= �rfV (〈u1, u1〉, ... , 〈un, un〉) for

every canonical right and left L-rules rt, rf for � in G. Let F = {p1, ... , pn, ϕ}, and

define a partial L-Gvaluation v by: Vv = V , Domv = F , v(pi) = 〈ui, ui〉 for every

1 ≤ i ≤ n, and

v(ϕ) = 〈min{�rV(v(p1), ... , v(pn)) | r is a canonical left L-rule for � in G},
max{�rV(v(p1), ... , v(pn)) | r is a canonical right L-rule for � in G}〉.

Then our assumption entails that vt(ϕ) 6= vf(ϕ). Let ρ′ = 〈F ,F , {p1, ... , pn}〉. It is

easy to see that v is a G�ρ′-legal partial L-Gvaluation. In particular, vt(ϕ) ≤ vf(ϕ)
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since G is coherent (see Lemma 7.4.5). Hence vt(ϕ) < vf(ϕ), and so v is not a

model of H. By Theorem 7.3.17, 0G�ρ′ H. Now, suppose for contradiction that

`G�ρ H. By the proof of Theorem 7.4.6 (again using the fact that G is coherent),

it follows that `G�ρ1
H for ρ1 = 〈L, ∅, {p1, ... , pn}〉. By Proposition 7.2.9, `G�ρ2

H

for ρ2 = 〈sub[H], ∅, {p1, ... , pn}〉. This contradicts the fact that 0G�ρ′ H.

7.5 Soundness and Completeness Proofs

In this section we prove Theorem 7.3.17. For the rest of this section, let G be a canon-

ical Gödel L-calculus, ρ = 〈F , C,A〉 an L-proof-specification where F is closed under

subformulas, H a set of L-hypersequents, and H0 an F -hypersequent.

Soundness

Suppose that H `G�ρ H0, and so there exists a ρ-proof P in G of H0 from H. Let v

be a G�ρ-legal partial L-Gvaluation, which is a model of H. Using induction on the

length of P , we show that v |= H for every L-hypersequent H appearing in P . It then

follows that v |= H0. Note that since all L-hypersequents in P are F -hypersequents, it

suffices to prove that v is a model of some component s ∈ H for every L-hypersequent H

in P . This trivially holds for the L-hypersequents of H that appear in P . We show that

this property is also preserved by applications in P of the rules of G. Consider such an

application, and assume that v is a model of some component of every premise of this

application. We show that v is also a model of some component of the conclusion:

Weakenings For applications of the weakening rules, this is obvious.

(cut) Suppose that H | s1 ∪ s2 is derived from H | s1 ∪ {f:ϕ} and H | s2 ∪ {t:ϕ} using

(cut) (here s2 must be a negative sequent). Thus ϕ ∈ C. If v |= s for some com-

ponent s ∈ H, then we are done. Otherwise, v |= s1 ∪ {f:ϕ} and v |= s2 ∪ {t:ϕ}.
We show that v |= s1 ∪ s2. By definition, we have vf(s1 ∪ {f:ϕ}) ≤ vt(s1) and

vf(s2) ≤ vt(ϕ). Since ϕ ∈ C, vt(ϕ) ≤ vf(ϕ), and so vf(s2) ≤ vf(ϕ). It follows that

vf(s1 ∪ s2) ≤ vf(s1 ∪ {f:ϕ}). Therefore, vf(s1 ∪ s2) ≤ vt(s1), and so v |= s1 ∪ s2.

(id) Suppose that {{f:ϕ, t:ϕ}} is derived using (id). Thus ϕ ∈ A, and so vf(ϕ) ≤ vt(ϕ).

Consequently, v |= {f:ϕ, t:ϕ}.

(com) Suppose that H | s1 ∪ c2 | s2 ∪ c1 is derived from H | s1 ∪ c1 and H | s2 ∪ c2 using

(com), where c1, c2 are negative sequents. If v |= s for some s ∈ H, then we are done.

Otherwise, v |= s1 ∪ c1 and v |= s2 ∪ c2. We show that v |= s1 ∪ c2 or v |= s2 ∪ c1.
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Our assumption entails that vf(s1 ∪ c1) ≤ vt(s1 ∪ c1) and vf(s2 ∪ c2) ≤ vt(s2 ∪ c2).

By definition, vt(s1 ∪ c1) = vt(s1) and vt(s2 ∪ c2) = vt(s2). Hence, we have both

vf(s1 ∪ c1) ≤ vt(s1) and vf(s2 ∪ c2) ≤ vt(s2). If vf(s1) ≤ vt(s1) then v |= s1 ∪ c2

and we are done. Similarly, if vf(s2) ≤ vt(s2), then v |= s2 ∪ c1 and we are

done. Otherwise, we obtain that vf(c1) ≤ vt(s1) and vf(c2) ≤ vt(s2). Now, if

vt(s1) ≤ vf(c2), we obtain that vf(c1) ≤ vt(s2) and so v |= s2 ∪ c1, and other-

wise (using the fact that ≤ is linear) we have vf(c2) < vt(s1) and so v |= s1 ∪ c2.

Right rules Suppose H | {t:σ(�(p1, ... , par(�)))} ∪ c is derived from {H | σ(s) ∪ c}s∈S ,

using the right rule r = S/{t: � (p1, ... , par(�))} (here c must be a negative se-

quent). If v |= s for some s ∈ H, then we are done. Otherwise, v |= σ(s) ∪ c
for every s ∈ S. Let ϕ = σ(�(p1, ... , par(�))), and suppose for a contradiction that

v 6|= {t:ϕ} ∪ c. Since c is a negative sequent, we have vf(c) > vt(ϕ). Now, since

ϕ ∈ F and F is closed under subformulas, we have also σ({p1, ... , pn}) ⊆ F .

Since v is r-legal we have �rVv(v(σ(p1)), ... , v(σ(par(�)))) ≤ vt(ϕ). By Lemma 7.3.15,

�rVv(v(σ(p1)), ... , v(σ(par(�)))) = v(σ(S)), and so vf(c) > v(σ(S)). By definition,

we have vf(c) > v(σ(s)) = vf(σ(s))→ vt(σ(s)) for some s ∈ S. It follows that

vf(σ(s)) > vt(σ(s)) and vf(c) > vt(σ(s)). But then vf(σ(s) ∪ c) > vt(σ(s) ∪ c), in

contradiction to the fact that v |= σ(s) ∪ c.

Left rules Suppose H | {f:σ(�(p1, ... , par(�)))} ∪ c ∪ c′ is derived from {H | σ(s) ∪ c}s∈S1
and {H | σ(s′i) ∪ c′}s∈S2 , using the left rule r = S1,S2/{f: � (p1, ... , par(�))} (here c

must be a negative sequent). If v |= s for some s ∈ H, then we are done. Oth-

erwise, v |= σ(s) ∪ c for every s ∈ S1, and v |= σ(s) ∪ c′ for every s ∈ S2. Hence:

(1) for every s ∈ S1, either vf(c) ≤ vt(σ(s)) or vf(σ(s)) ≤ vt(σ(s)); and (2) either

vf(c′) ≤ vt(c′), or vf(σ(s)) ≤ vt(c′) for every s ∈ S2. Let ϕ = σ(�(p1, ... , par(�))).

Suppose for a contradiction that v 6|= {f:ϕ} ∪ c ∪ c′. Then by definition we have

vf({f:ϕ} ∪ c ∪ c′) > vt(c′). Therefore: (3) vt(c′) < vf(c) and vt(c′) < vf(c′); and

(4) vt(c′) < vf(ϕ). From (2) and (3) we obtain (5): vf(σ(s)) ≤ vt(c′) for every

s ∈ S2. Now, since ϕ ∈ F and F is closed under subformulas, we have also

σ({p1, ... , pn}) ⊆ F . Since v is r-legal, vf(ϕ) ≤ �rVv(v(σ(p1)), ... , v(σ(par(�)))). Let

x = v(σ(S1))→ vf(σ(S2)). By Lemma 7.3.15, �rVv(v(σ(p1)), ... , v(σ(par(�)))) = x,

and so vf(ϕ) ≤ x. Together with (4), we have that vt(c′) < x. By (5), we obtain

that vf(σ(s)) < x for every s ∈ S2. Let s0 be a sequent in S2 such that vf(s) obtains

a maximal value (i.e. vf(s0) = vf(σ(S2))). In particular, vf(s0) < v(σ(S1))→ vf(s0).

This entails that v(σ(S1)) ≤ vf(s0). Now, (3) and (5) imply that vf(s0) < vf(c).

It then follows that v(σ(S1)) < vf(c). Hence v(σ(s)) < vf(c) for some s ∈ S1.

Equivalently, vf(σ(s))→ vt(σ(s)) < vf(c). This implies that vt(σ(s)) < vf(σ(s))
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and vt(σ(s)) < vf(c). But this contradicts (1) above.

Completeness

Suppose that H 6`G�ρ H0. We construct a G�ρ-legal partial L-Gvaluation v, which is a

model of H, but not of H0.

As the previous completeness proofs, v is constructed using a “maximal” hyperse-

quent. For this purpose, we introduce extended hypersequents:

Definition 7.5.1. An extended L-hypersequent is a (possibly infinite) set of extended

L-sequents.7 Given two extended hypersequents Ω1,Ω2, we write Ω1 v Ω2 (and say that

Ω2 extends Ω1) if for every µ1 ∈ Ω1, there exists µ2 ∈ Ω2 such that µ1 ⊆ µ2.

We shall use the same notations as above for extended hypersequents. For example, we

write Ω | µ instead of Ω ∪ {µ}. An extended F -hypersequent is also defined as expected

(namely, an extended hypersequent that consists only of formulas from F). In addition,

for the rest of this proof call an extended L-hypersequent Ω:

1. finite if |Ω| is finite, and so is |µ| for every µ ∈ Ω.

2. provable if H `G�ρ H for some (ordinary) L-hypersequent H v Ω.

3. unprovable if it is not provable.

4. maximal with respect to an L-formula ϕ if for every µ ∈ Ω and x ∈ £2, the extended

L-hypersequent Ω | µ ∪ {x:ϕ} is provable whenever x:ϕ 6∈ µ.

5. internally maximal if it is maximal with respect to any ϕ ∈ F .

6. maximal with respect to an L-sequent s if Ω | s is provable whenever {s} 6v Ω.

7. externally maximal if it is maximal with respect to any F -sequent.

8. maximal if it is an extended F -hypersequent, unprovable, internally maximal, and

externally maximal.

Less formally, an extended hypersequent Ω is internally maximal if every formula

added on some side of some component of Ω would make it provable. Similarly, Ω is

externally maximal if every sequent added to Ω would make it provable.

Proposition 7.5.2. Let Ω be an extended L-hypersequent.

• Assume that Ω is maximal with respect to a formula ϕ ∈ F . For every µ ∈ Ω:

– If f:ϕ 6∈ µ, then H `G�ρ H | s1 ∪ {f:ϕ} | ... | sn ∪ {f:ϕ} for some L-

hypersequent H v Ω and L-sequents s1, ... , sn ⊆ µ.

7Recall that extended L-sequents are (possibly infinite) set of labelled L-formulas. In particular,
extended L-sequents are not necessarily single-conclusion.
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– If t:ϕ 6∈ µ, then H `G�ρ H | s ∪ {t:ϕ} for some L-hypersequent H v Ω and

negative L-sequent s ⊆ µ.

• Assume that Ω is maximal with respect to an F -sequent s. Then, if {s} 6v Ω, then

H `G�ρ H | s for some L-hypersequent H v Ω.

Proof. Directly follow from our definitions and the availability of the weakening rules.

Next, we show that H0 can be extended to a maximal extended L-hypersequent Ω.

Lemma 7.5.3. Suppose that Ω = µ1 | ... | µn is an unprovable finite extended F -

hypersequent. Let ϕ ∈ F , and let s be an F -sequent. Then there exists an unprovable

finite extended F -hypersequent Ω′, such that:

• Ω′ = µ′1 | ... | µ′n′ , where n′ ∈ {n, n+ 1}, µi ⊆ µ′i for every 1 ≤ i ≤ n.

• Ω′ is maximal with respect to ϕ.

• Ω′ is maximal with respect to s.

Proof. First, if Ω | s is unprovable, let n′ = n + 1 and define µn+1 = s. Otherwise,

let n′ = n. We recursively define a finite sequence of finite extended F -hypersequents,

Ω0 = µ0
1 | ... | µ0

n′ , ... ,Ωn′ = µn
′

1 | ... | µn
′

n′ , in which µij ⊆ µi+1
j for every 1 ≤ j ≤ n′ and

0 ≤ i ≤ n′ − 1. First, define µ0
j = µj for every 1 ≤ j ≤ n′. Let 0 ≤ i ≤ n′ − 1.

Assume that Ωi = µi1 | ... | µin′ is defined. To construct Ωi+1 = µi+1
1 | ... | µi+1

n′ , we take some

maximal set X ⊆ £2 (with respect to set inclusion) for which µi1 | ... | µii+1 ∪ (X:ϕ) | ... | µin′
is unprovable, and define µi+1

i+1 = µii+1∪(X:ϕ), and µi+1
j = µij for every j 6= i+ 1. It is easy

to verify that Ωn′ = µn
′

1 | ... | µn
′

n′ has all of the required properties. For example, we show

that Ωn′ is maximal with respect to ϕ. Let µn
′
i ∈ Ωn′ , and assume that x:ϕ 6∈ µn′i (for

x ∈ £2). This implies that µi−1
1 | ... | µii ∪ {x:ϕ} | ... | µi−1

n′ is provable. Using weakenings,

it easily follows that Ωn′ | µn
′
i ∪ {x:ϕ} is provable.

Lemma 7.5.4. There is some maximal extended L-hypersequent Ω that extends H0.

Proof. Let ϕ0, ϕ1, ... be an enumeration of all F -formulas, in which every formula appears

an infinite number of times. Let s0, s1, ... be an enumeration of all F -sequents (with repe-

titions, if there is only finite number of them). We recursively define an infinite sequence

of unprovable finite extended F -hypersequents, H0 = s0
1 | ... | s0

n0
, H1 = s1

1 | ... | s1
n1
, ..., in

which: (a) n0 ≤ n1 ≤ ... and (b) sij ⊆ si+1
j for every i ≥ 0 and 1 ≤ j ≤ ni. First,

let n0 = n and let s0
1 | ... | s0

n0
be the original F -hypersequent H0. Let i ≥ 0. Assume

Hi = si1 | ... | sini
is defined. By Lemma 7.5.3, there exists an unprovable finite extended

F -hypersequent H ′ such that:

• H ′ = s′1 | ... | s′n′ where n′ ∈ {ni, ni + 1}, and si ⊆ s′i for every 1 ≤ i ≤ ni.
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• H ′ is maximal with respect to ϕi.

• H ′ is maximal with respect to si.

Let ni+1 = n′, and si+1
j = s′j for every 1 ≤ j ≤ ni+1. Note that after every step we have

an unprovable finite extended F -hypersequent, so Lemma 7.5.3 can be applied. Finally,

let N = max{n0, n1, ...} + 1, if such a maximum exists, and infinity otherwise. Let

n(j) = min{i | j ≤ ni} for every 1 ≤ j < N . Define µj = ∪i≥n(j)s
i
j for every 1 ≤ j < N .

Let Ω be the extended F -hypersequent µ1 | µ2 | .... Obviously, Ω extends H0. We prove

that it is maximal:

Unprovability Suppose by way of contradiction that H `G�ρ H for an L-hypersequent

H v Ω. Assume that H = s1 | ... | sn. The construction of Ω ensures that for

every 1 ≤ i ≤ n, there exists ki ≥ 1 such that si ⊆ µki . This entails that for every

1 ≤ i ≤ n, there exists mi ≥ 0 such that si ⊆ smi
ki

. By the construction of the sij’s,

we have that for every 1 ≤ i ≤ n and l ≥ mi, si ⊆ slki . Let m = max{m1, ... ,mn}.
Then, by definition H v Hm. Since H `G�ρ H, it follows that Hm is provable.

But, this contradicts the fact that H0 is unprovable, and that each application of

Lemma 7.5.3 yields an unprovable extended L-hypersequent.

Internal Maximality Let ϕ ∈ F , µj ∈ Ω, and x ∈ £2. Since we included ϕ infinite

number of times in the enumeration of F -formulas, there exists some i ≥ n(j) such

that ϕi = ϕ. Our construction ensures that Hi+1 is maximal with respect to ϕ,

and so if x:ϕ 6∈ si+1
j then Hi+1 | si+1

j ∪{x:ϕ} is provable. Since Hi+1 v Ω, it follows

that if x:ϕ 6∈ µj then Ω | µj ∪ {x:ϕ} is provable.

External Maximality Let s be an F -sequent. Assume that s = si (i ≥ 0), our con-

struction ensures that Hi+1 is maximal with respect to s. Hence, Hi+1 | s is provable

whenever {s} 6v Hi+1. Since Hi+1 v Ω, we have that Ω | s is provable whenever

{s} 6v Ω.

Using the maximal extended L-hypersequent Ω (that extends H0), we are not ready

to construct a G�ρ-legal partial L-Gvaluation v which is a model of H, but not of H0.

For every ϕ ∈ F , define L(ϕ) and R(ϕ) as follows:

L(ϕ) = {µ ∈ Ω | f:ϕ ∈ µ} and R(ϕ) = {µ ∈ Ω | t:ϕ 6∈ µ}.
v is defined as follows:

1. Vv = 〈V,⊆〉, where: V = {L(ϕ) | ϕ ∈ F} ∪ {R(ϕ) | ϕ ∈ F} ∪ {Ω, ∅} (⊆ denotes

set inclusion).

2. Domv = F .

3. For every ϕ ∈ F , v(ϕ) = 〈L(ϕ), R(ϕ)〉.
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First, we show that Vv = 〈V,⊆〉 is indeed a Gödel set (see Definition 7.3.1). Clearly,

⊆ is a partial order on V , Ω is a maximal element, and ∅ is a minimal one. To see that

V is linearly ordered by ⊆, it suffices to prove the following:

1. L(ϕ1) ⊆ L(ϕ2) or L(ϕ2) ⊆ L(ϕ1) for every ϕ1, ϕ2 ∈ F . To see this, suppose for a

contradiction that L(ϕ1) 6⊆ L(ϕ2) and L(ϕ2) 6⊆ L(ϕ1) for some ϕ1, ϕ2 ∈ F . Thus

there exist µ1, µ2 ∈ Ω, such that µ1 ∈ L(ϕ1) \ L(ϕ2) and µ2 ∈ L(ϕ2) \ L(ϕ1). Hence,

f:ϕ1 ∈ µ1, f:ϕ1 6∈ µ2, f:ϕ2 ∈ µ2 and f:ϕ2 6∈ µ1. By Proposition 7.5.2, there exist an

L-hypersequent H1 v Ω and L-sequents s1, ... , sn ⊆ µ1 such that

H `G�ρ H1 | s1 ∪ {f:ϕ2} | ... | sn ∪ {f:ϕ2}.
Similarly, there exist H2 v Ω and s′1, ... , s

′
m ⊆ µ2, such that

H `G�ρ H2 | s′1 ∪ {f:ϕ1} | ... | s′m ∪ {f:ϕ1}.
By Proposition 7.2.10:

H `G�ρ H1 | H2 | s1 ∪ {f:ϕ1} | ... | sn ∪ {f:ϕ1} | s′1 ∪ {f:ϕ2} | ... | s′m ∪ {f:ϕ2}.
But, Ω extends this hypersequent, and this contradicts the fact that Ω is unprovable.

2. R(ϕ1) ⊆ R(ϕ2) or R(ϕ2) ⊆ R(ϕ1) for every ϕ1, ϕ2 ∈ F . To see this, suppose for a

contradiction that R(ϕ1) 6⊆ R(ϕ2) and R(ϕ2) 6⊆ R(ϕ1) for some ϕ1, ϕ2 ∈ F . Thus

there are µ1, µ2 ∈ Ω, such that µ1 ∈ R(ϕ1) \R(ϕ2) and µ2 ∈ R(ϕ2) \R(ϕ1). Hence,

t:ϕ1 6∈ µ1, t:ϕ1 ∈ µ2, t:ϕ2 ∈ µ1 and t:ϕ2 6∈ µ2. By Proposition 7.5.2, there exist L-

hypersequents H1, H2 v Ω and negative L-sequents s1, s2 such that

H `G�ρ H1 | s1 ∪ {t:ϕ1} and H `G�ρ H2 | s2 ∪ {t:ϕ2}.
By applying (com), we obtain

H `G�ρ H1 | H2 | s2 ∪ {t:ϕ1} | s1 ∪ {t:ϕ2}.
Again, since Ω extends this L-hypersequent, this contradicts the fact that Ω is

unprovable.

3. L(ϕ1) ⊆ R(ϕ2) or R(ϕ2) ⊆ L(ϕ1) for every ϕ1 ∈ F and ϕ2 ∈ F . To see this, sup-

pose for a contradiction that L(ϕ1) 6⊆ R(ϕ2) and R(ϕ2) 6⊆ L(ϕ1) for some ϕ1 ∈ F
and ϕ2 ∈ F . Let µ1, µ2 ∈ Ω, such that µ1 ∈ L(ϕ1) \R(ϕ2) and µ2 ∈ R(ϕ2) \ L(ϕ1).

Hence, f:ϕ1 ∈ µ1, f:ϕ1 6∈ µ2, t:ϕ2 ∈ µ1 and t:ϕ2 6∈ µ2. By Proposition 7.5.2, there

exist L-hypersequents H1, H2 v Ω, L-sequents s1, ... , sn ⊆ µ2 and a negative L-

sequent s′ ⊆ µ2, such that

H `G�ρ H1 | s1 ∪ {f:ϕ1} | ... | sn ∪ {f:ϕ1} and H `G�ρ H2 | s′ ∪ {t:ϕ2}.
By Proposition 7.2.10, H `G�ρ H1 | H2 | s1 ∪ s′ | ... | sn ∪ s′ | {f:ϕ1, t:ϕ2}. Again,

this contradicts the fact that Ω is unprovable.

Now, it is easy to verify that v is a model of H but not of H0:
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• Let H be an F -hypersequent in H. Since Ω is unprovable, H 6v Ω. Thus there

exists some L-sequent s ∈ H such that s 6⊆ µ for every µ ∈ Ω. This implies that for

every µ ∈ Ω, either µ 6∈ L(ϕ) for some ϕ such that f:ϕ ∈ s, or µ ∈ R(ϕ) for some ϕ

such that t:ϕ ∈ s. It follows that for every µ ∈ Ω, we have µ 6∈ vf(s) or µ ∈ vt(s).
Thus vf(s) ⊆ vt(s), and so v |= s. Consequently, v |= H.

• Let s ∈ H0. Since H0 v Ω, there exists µ ∈ Ω such that s ⊆ µ. Hence µ ∈ L(ϕ) for

every ϕ such that f:ϕ ∈ s, and µ 6∈ R(ϕ) for every ϕ such that t:ϕ ∈ s. It follows

that µ ∈ vf(s) and µ 6∈ vt(s). Therefore, vf(s) 6⊆ vt(s), and so v 6|= s. Consequently,

v 6|= H0.

It remains to show that v is G�ρ-legal. First, we show that it is ρ-legal. By definition

Domv = F . In addition:

• Let ϕ ∈ C ∩ F . Assume for a contradiction that vt(ϕ) 6⊆ vf(ϕ), and thus there ex-

ists some µ ∈ Ω such that µ ∈ R(ϕ) but µ 6∈ L(ϕ). Thus t:ϕ 6∈ µ and f:ϕ 6∈ µ. By

Proposition 7.5.2, there exist L-hypersequentsH1, H2 v Ω, L-sequents s1, ... , sn ⊆ µ

and a negative L-sequent s′ ⊆ µ, such that H `G�ρ H1 | s1 ∪ {f:ϕ} | ... | sn ∪ {f:ϕ}
and H `G�ρ H2 | s′ ∪ {t:ϕ}. By n consecutive applications of (cut) (on ϕ, which is

an element of C), we obtain H `G�ρ H1 | H2 | s1 ∪ s′ | ... | sn ∪ s′, but this contra-

dicts the fact that Ω is unprovable.

• Let ϕ ∈ A ∩ F . Thus H `G�ρ {{f:ϕ, t:ϕ}} (by applying (id) with ϕ, which is

an element of A). Since Ω is unprovable, either f:ϕ 6∈ µ or t:ϕ 6∈ µ for every

µ ∈ Ω. Equivalently, for every µ ∈ Ω, either µ 6∈ L(ϕ) or µ ∈ R(ϕ). It follows

that L(ϕ) ⊆ R(ϕ).

To show that v is G-legal, we first prove that the following hold:

(a) For every F -sequent s, if vf(s) ⊆ vt(s) then there exists an L-hypersequent H ′ v Ω

such that H `G�ρ H
′ | s.

Proof. Suppose that there does not exist H ′ v Ω such that H `G�ρ H
′ | s. Then

Proposition 7.5.2 implies that {s} v Ω. Hence s ⊆ µ for some µ ∈ Ω. By definition,

µ ∈ L(ϕ) for every ϕ such that f:ϕ ∈ s, and µ 6∈ R(ϕ) for ϕ such that t:ϕ ∈ s. It

follows that µ ∈ vf(s) and µ 6∈ vt(s).

(b) For every F -sequent s, if µ ∈ v(s), then there exist an L-hypersequent H ′ v Ω, and

a negative L-sequent s′ ⊆ µ, such that H `G�ρ H
′ | s ∪ s′.

Proof. Suppose that µ ∈ v(s) = vf(s)→ vt(s). Now, if vf(s) ⊆ vt(s), then the

claim follows by (a) (take s′ = ∅). Otherwise, µ ∈ vt(s). Hence there is some
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ϕ ∈ L such that t:ϕ ∈ s and µ ∈ R(ϕ). Thus t:ϕ 6∈ µ. By (possibly) using weak-

ening, Proposition 7.5.2 implies that there exist an L-hypersequent H ′ v Ω, and a

negative L-sequent s′ ⊆ µ, such that H `G�ρ H
′ | s ∪ s′.

(c) For every negative F -sequent s, if µ 6∈ vf(s) then there exist an L-hypersequent

H ′ v Ω and L-sequents s1, ... , sn ⊆ µ such that H `G�ρ H
′ | s ∪ s1 | ... | s ∪ sn.

Proof. Suppose that µ 6∈ vf(s). Thus there exists some ϕ ∈ L such that f:ϕ ∈ s
and µ 6∈ L(ϕ). Hence, f:ϕ 6∈ µ. The claim follows from Proposition 7.5.2 (possibly

by using weakenings).

Next, we show that v is r-legal for each canonical L-rule r of G:

• Let r = S/{t: � (p1, ... , par(�))} be a right canonical L-rule of G, and σ an L-

substitution, such that σ({p1, ... , pn})∪{ϕ} ⊆ F , where ϕ = σ(�(p1, ... , par(�))). Us-

ing Lemma 7.3.15, it suffices to prove that v(σ(S)) ⊆ R(ϕ). Let µ ∈ v(σ(S)). Sup-

pose that S = {s1, ... , sn}. Since µ ∈ v(σ(S)), (b) entails that for every 1 ≤ i ≤ n,

there exist an L-hypersequent Hi v Ω and a negative L-sequent s′i ⊆ µ, such that

H `G�ρ Hi | s′i ∪ σ(si). By applying the rule r, we obtain that

H `G�ρ H1 | ... | Hn | s′1 ∪ ... ∪ s′n ∪ {t:ϕ}.
The fact that Ω is unprovable then entails that t:ϕ 6∈ µ, and so µ ∈ R(ϕ).

• Let r = S1,S2/{f: � (p1, ... , par(�))} be a left canonical L-rule of G, and σ an L-

substitution, such that σ({p1, ... , pn}) ∪ {ϕ} ⊆ F , where ϕ = σ(�(p1, ... , par(�))).

Using Lemma 7.3.15, it suffices to prove that L(ϕ) ⊆ v(σ(S1))→ vf(σ(S2)). Let

µ ∈ Ω and suppose that µ 6∈ v(σ(S1))→ vf(σ(S2)). Hence, v(σ(S1)) 6⊆ vf(σ(S2))

and µ 6∈ vf(σ(S2)). Let µ′ ∈ v(σ(S1)) such that µ′ 6∈ vf(σ(S2)). Suppose that

S1 = {s1, ... , sn} and S2 = {s′1, ... , s′m}. We have the following:

(1) Since µ′ ∈ v(σ(S1)), we have µ′ ∈ v(σ(si)) for every 1 ≤ i ≤ n. (b) entails

that for every 1 ≤ i ≤ n, there exist an L-hypersequent Hi v Ω, and a neg-

ative L-sequent ci ⊆ µ′, such that H `G�ρ Hi | ci ∪ σ(si). The availability

of weakenings entail that H `G�ρ H1 | c ∪ σ(si) for every 1 ≤ i ≤ n, where

H = H1 | ... | Hn and c = c1 ∪ ... ∪ cn.

(2) Since µ′ 6∈ vf(σ(S2)), µ′ 6∈ vf(σ({ψ | f:ψ ∈ s′i})) for every 1 ≤ i ≤ m. (c) en-

tails that for every 1 ≤ i ≤ m, there exist an L-hypersequent H ′i v Ω and L-

sequents si1, ... , s
i
ni
⊆ µ′ such that H `G�ρ H

′
i | si1 ∪ σ(s′i) | ... | sini

∪ σ(s′i). The

availability of weakenings entail thatH `G�ρ H
′ | si1 ∪ σ(s′i) | ... | sini

∪ σ(s′i) for

every 1 ≤ i ≤ m, where H ′ = H ′1 | ... | H ′m.
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(3) Similarly, the fact that µ 6∈ vf(σ(S2)) entails that for every 1 ≤ i ≤ m, there

exist an L-hypersequent H ′′i v Ω and L-sequents ci1, ... , c
i
n′i
⊆ µ for which we

have H `G�ρ H
′′
i | ci1 ∪ σ(s′i) | ... | cin′i ∪ σ(s′i). The availability of weakenings

entail that H `G�ρ H
′′
i | ci1 ∪ σ(s′i) | ... | cin′i ∪ σ(s′i) for every 1 ≤ i ≤ m, where

H ′′ = H ′′1 | ... | H ′′m.

Let H∗ = H | H ′ | H ′′. From (1) and (2), by Proposition 7.2.11 we obtain that the

following L-hypersequent has a ρ-proof in G of H:

H∗ | c ∪ s1
1 ∪ {f:ϕ} | ... | c ∪ s1

n1
∪ {f:ϕ} | ... | c ∪ sm1 ∪ {f:ϕ} | ... | c ∪ smnm

∪ {f:ϕ}.
Similarly, from (1) and (3), by Proposition 7.2.11 we obtain that the following

L-hypersequent has a ρ-proof in G of H:

H∗ | c ∪ c1
1 ∪ {f:ϕ} | ... | c ∪ c1

n′1
∪ {f:ϕ} | ... | c ∪ cm1 ∪ {f:ϕ} | ... | c ∪ cmn′m ∪ {f:ϕ}.

By Proposition 7.2.10, it follows that the following hypersequent has a ρ-proof in

G of H:

H∗ | c ∪ s1
1 | ... | c ∪ s1

n1
| ... | c ∪ sm1 | ... | c ∪ smnm

|
c1

1 ∪ {f:ϕ} | ... | c1
n′1
∪ {f:ϕ} | ... | cm1 ∪ {f:ϕ} | ... | cmn′m ∪ {f:ϕ}.

Now, if f:ϕ ∈ µ, then Ω extends this L-hypersequent, and this contradicts the fact

that Ω is unprovable. Therefore, f:ϕ 6∈ µ, and consequently µ 6∈ L(ϕ).



Chapter 8

Calculus for First-Order Gödel Logic

So far we have considered logics and calculi only at the propositional level. However, the

ideas and methods described in the previous chapters are applicable for first-order calculi

as well. In this chapter we demonstrate our methods for the hypersequent calculus HIF

for standard first-order Gödel logic (standard means that the real interval [0, 1] can be

used as the underlying set of truth values).1 HIF, introduced in [30], is obtained from

HG (the original hypersequent calculus for propositional Gödel logic, see Chapter 7) by

adding standard (hypersequential versions of) rules for the quantifiers ∀ and ∃. It was

proved in [30] that HIF is sound and complete for standard first-order Gödel logic by

showing its equivalence to an Hilbert system for this logic (see [63]). Furthermore, it was

shown in [30] and [22] that HIF admits cut-elimination.2 As a corollary, one obtains

Herbrand theorem for the prenex fragment of this logic [76].

In this chapter we obtain alternative semantic proofs for these facts, by using the ideas

and techniques from Chapter 7. First, we briefly present standard first-order Gödel logic

(from a many-valued semantic point of view), and the hypersequent calculus HIF. Then

we prove the soundness of HIF for standard first-order Gödel logic. The completeness

proof is tied together with cut-admissibility and involves two stages: (i) We present

a non-deterministic semantics and show its completeness for the cut-free fragment of

HIF; (ii) It is shown that from every non-deterministic counter-model, one can extract

a usual counter-model. From these two facts together, it easily follows that HIF enjoys

cut-admissibility, and that it is complete for standard first-order Gödel logic.

Note that unlike previous chapters, this chapters studies one specific calculus for a

1Note that Gödel logic is the only fundamental fuzzy logic whose first-order version is recursively
axiomatizable [76].

2In fact, the first syntactic proof in [30] of cut-elimination was erroneous. A corrected syntactic proof
appear in [22]. There has also been a gap in the proof given in [4] for HG in its handling of the case of
disjunction.
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particular logic, aiming to demonstrate the usefulness of semantic tools in studying first-

order calculi. It should be also possible to define and study general canonical rules for

quantifiers in this context as done in [18, 98]. This chapter also serves as a preparation

for the next one, where we extend of HIF with rules for second-order quantifiers. Cut-

admissibility for HIF itself can be derived as a corollary of the results of the next chapter.

However, to make our presentation more accessible we first include here the full proof for

HIF.

Remark 8.0.5. The method of proving cut-admissibility in this chapter is similar to

what we did for (coherent) canonical Gödel hypersequent calculi in Chapter 7. Indeed,

a general cut-admissibility theorem (Theorem 7.4.6) was proven in Chapter 7 by (uni-

formly) extracting a G-legal L-Gvaluation from a G�〈L, ∅,L〉-legal L-Gvaluation. The

non-deterministic semantics of the cut-free fragment of HIF developed in this chapter is

a natural first-order version of the semantics obtained in Chapter 7 for cut-free canonical

Gödel hypersequent calculi (i.e., using the proof-specification 〈L, ∅,L〉).

Publications Related to this Chapter

The results of this chapter were included in [16] and [72]. Nevertheless, our method

here is completely different (and it allows generalization for second-order). In [16, 72]

we extended the results of [10] concerning the propositional calculus HG to the first-

order calculus HIF. As in [10] this was done by proving the completeness of the cut-free

part of HIF for its Kripke-style semantics (thereby proving both completeness of the

calculus and the admissibility of the cut rule in it). In this chapter we take a novel

approach which is very close to the methods of Chapter 7. In particular, we consider

many-valued semantics rather than Kripke-style one. Note also that [16] introduced a

multiple-conclusion calculus for first-order Gödel logic that is not included here.

8.1 Preliminaries

In what follows, L1 denotes an arbitrary first-order language, defined by:

Definition 8.1.1. A first-order language consists of the following:

1. Infinitely many variables ν1, ν2, .... We use the metavariables x, y, z (with or without

subscripts) for variables.

2. A propositional constant ⊥.

3. Binary connectives ∧,∨,⊃. We use � as a metavariable for the binary connectives.

4. Quantifiers ∀ and ∃. We use Q as a metavariable for the quantifiers.
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5. An arbitrary set of constant symbols. The metavariable c is used to range over

constant symbols.

6. An arbitrary set of function symbols. The metavariable f is used to range over

them.

7. An arbitrary set of predicate symbols. The metavariable p is used to range over

them.

8. Parentheses ′(′ and ′)′.

Definition 8.1.2. The set of L1-terms consists of: (i) all variables of L1; (ii) all constant

symbols of L1; and (iii) if f is an n-ary function symbol of L1 and t1, ... , tn are L1-terms

then f(t1, ... , tn) is an L1-term. We use t (with or without subscripts) as a metavariable

for L1-terms. The set of variables occurring in an L1-term t is defined as usual, and

denoted by Fv[t].

Following the convention of Girard in [58], we define a first-order formula as an

equivalence class of what we call concrete formulas, so that two formulas that differ

only by the names of their bound variables are considered the same.3 This is convenient

for handling the bureaucracy of free and bound variables. Moreover, it simplifies the

non-deterministic semantics below (see Remark 8.5.7).

Definition 8.1.3. Concrete L1-formulas are inductively defined as follows:

1. p(t1, ... , tn) is a concrete L1-formula for every predicate symbol p of arity n and

L1-terms t1, ... , tn.

2. ⊥ is a concrete L1-formula.

3. If Φ1 and Φ2 are concrete L1-formulas, so are (Φ1 ∧Φ2), (Φ1 ∨Φ2), and (Φ1 ⊃ Φ2).

4. If Φ is a concrete L1-formula, and x is a variable of L1, then (∀xΦ) and (∃xΦ) are

concrete L1-formulas.

We use Φ (with or without subscripts) as a metavariable for concrete L1-formulas. Free

and bound variables in concrete L1-formulas are defined as usual. We denote by Fv[Φ],

the set of variables occurring free in a concrete L1-formula Φ. Alpha-equivalence between

concrete L1-formulas is defined as usual (renaming of bound variables). We denote by [Φ]α

the set of all concrete L1-formulas which are alpha-equivalent to Φ (i.e. the equivalence

class of Φ under alpha-equivalence). cp[Φ], the complexity of a concrete L1-formula Φ

is the sum of the numbers of occurrences of quantifiers, connectives (including ⊥), and

atomic concrete formulas (formulas of the form p(t1, ... , tn)) in Φ.

3Since [58] does not provide all the technical details for this convention, we do it here.
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Definition 8.1.4. An L1-formula is an equivalence class of concrete L1-formulas under

alpha-equivalence. We mainly use ϕ, ψ (with or without subscripts) as metavariables for

L1-formulas. The set of free variables and the complexity of an L1-formula are defined

using representatives, i.e. for an L1-formula ϕ, Fv[ϕ] = Fv[Φ] and cp[ϕ] = cp[Φ] for

some Φ ∈ ϕ.

In the last definition and henceforth, it is easy to verify that all notions defined using

representatives are well-defined.

Definition 8.1.5. We define two operations on L1-formulas:

• For � ∈ {∧,∨,⊃}, and L1-formulas ϕ1 and ϕ2:

(ϕ1 � ϕ2) = [(Φ1 � Φ2)]α for some Φ1 ∈ ϕ1 and Φ2 ∈ ϕ2.

• For Q ∈ {∀, ∃}, a variable x of L1, and an L1-formula ϕ:

(Qxϕ) = [(QxΦ)]α for some Φ ∈ ϕ.

The next proposition allows us to use inductive definitions and to prove claims by

induction on complexity of formulas:

Proposition 8.1.6. Exactly one of the following holds for every L1-formula ϕ:

• cp[ϕ] = 1 and exactly one of the following holds:

– ϕ = {p(t1, ... , tn)} for some n-ary predicate symbol p of L1, and L1-terms

t1, ... , tn.

– ϕ = {⊥}.

• ϕ = (ϕ1 �ϕ2) for some � ∈ {∧,∨,⊃}, and unique L1-formulas ϕ1 and ϕ2 such that

cp[ϕ1] < cp[ϕ] and cp[ϕ2] < cp[ϕ].

• For every variable x 6∈ Fv[ϕ], ϕ = (Qxψ) for some Q ∈ {∀,∃}, and unique L1-
formula ψ such that cp[ψ] < cp[ϕ].

Substitutions are defined as follows:

Definition 8.1.7. Let t be an L1-term and x a variable of L1.

1. Given an L1-term t′, t′{t/x} is inductively defined by:

t′{t/x} =


t t′ = x

t′ t′ = y for y 6= x, or t′ = c

f(t1{t/x}, ... , tn{t/x}) t′ = f(t1, ... , tn)
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2. Given an L1-formula ϕ, ϕ{t/x} is inductively defined by:

ϕ{t/x} =


{p(t1{t/x}, ... , tn{t/x})} ϕ = {p(t1, ... , tn)}

ϕ ϕ = {⊥}

(ϕ1{t/x} � ϕ2{t/x}) ϕ = (ϕ1 � ϕ2)

(Qyψ{t/x}) ϕ = (Qyψ) for y 6∈ Fv[t] ∪ {x}

Note that the above substitution operations are well-defined. In particular, the choice

of the variable y is immaterial.

8.2 Standard First-Order Gödel Logic

In this section we briefly present standard first-order Gödel logic from a (many-valued)

semantic point of view (see, e.g., [63, 76] for more detailed presentations). The first

component of the semantics is the set of truth values. These should form a Gödel set:

Definition 8.2.1. A (standard) Gödel set V = 〈V,≤〉 is defined just like a propositional

Gödel set (see Definition 7.3.1), with the additional restriction that V is a complete totally

ordered set. The operations infV and supV are defined as usual.

Next, the semantic structures include a domain and an interpretation function defined

as follows:

Definition 8.2.2. A domain is a non-empty set D. Given a domain D, an 〈L1,D〉-
interpretation is a function I assigning an element in D to every constant symbol of L1,
and a function in Dn → D to every n-ary function symbol of L1.

To interpret predicate symbols we use fuzzy subsets:

Definition 8.2.3. Given a Gödel set V , and some non-empty set D, a function D from

D to V is called a fuzzy subset of D over V .

Predicate symbols are naturally interpreted as fuzzy subsets of tuples of elements of

D.

Definition 8.2.4. An L1-structure is a triple W = 〈V ,D, I, P 〉, where:

1. V is a Gödel set.

2. D is a domain.

3. I is an 〈L1,D〉-interpretation.

4. P is a function assigning a fuzzy subset of Dn over V to every n-ary predicate

symbol of L1.
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As usual, an additional function is used for interpreting the free variables.

Definition 8.2.5. Let D be a domain.

1. An 〈L1,D〉-assignment is a function assigning elements of D to the variables of L1.
2. Given an 〈L1,D〉-interpretation I and an 〈L1,D〉-assignment σ, σI is the function

assigning elements of D to all L1-terms, recursively defined by:

• σI [c] = I[c] for every constant symbol c of L1.
• σI [x] = σ[x] for every variable x of L1.
• σI [f(t1, ... , tn)] = I[f ](σI [t1], ... , σI [tn]) for every n-ary function symbol f of

L1 and n L1-terms t1, ... , tn.

3. Let σ be an 〈L1,D〉-assignment. Given a variable x of L1 and d ∈ DI , we denote

by σx:=d the 〈L1,D〉-assignment that is identical to σ except for σx:=d[x] = d. This

notation is naturally extended to several distinct variables (e.g. σν1:=d1,ν2:=d2).

Lemma 8.2.6. Let D be a domain, σ an 〈L1,D〉-assignment, t an L1-term, and x a

variable of L1. For every L1-term t′: σI [t′{t/x}]] = σIx:=σI [t][t
′].

Proof. By usual induction on the structure of t′.

We can now define the truth value assigned by a given structure to an arbitrary

formula with respect to some assignment. This definition generalizes in a natural way

the usual recursive definition used in classical higher-order logics, where instead of the

usual truth tables we use their counterparts of Gödel logic: ∧ corresponds to min, ∨ to

max, and the implication ⊃ is interpreted as the → operation. For the quantifiers, we

take inf and sup. Since the set of truth values is complete by definition, inf and sup are

always defined.

Definition 8.2.7. LetW = 〈V ,D, I, P 〉 be an L1-structure. For every L1-formula ϕ and

〈L1,D〉-assignment σ, W [ϕ, σ] is the element of V inductively defined as follows:

W [ϕ, σ] =



P [p][σI [t1], ... , σI [tn]] ϕ = {p(t1, ... , tn)}

0 ϕ = {⊥}

min{W [ϕ1, σ],W [ϕ2, σ]} ϕ = (ϕ1 ∧ ϕ2)

max{W [ϕ1, σ],W [ϕ2, σ]} ϕ = (ϕ1 ∨ ϕ2)

W [ϕ1, σ]→W [ϕ2, σ] ϕ = (ϕ1 ⊃ ϕ2)

infd∈DW [ψ, σx:=d] ϕ = (∀xψ)

supd∈DW [ψ, σx:=d] ϕ = (∃xψ)
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It can be verified that the choice of x in the last definition is immaterial, andW [ϕ, σ]

is well-defined. The following usual lemmas will be needed below:

Lemma 8.2.8. Let W = 〈V ,D, I, P 〉 be an L1-structure, x a variable of L1, and d an

element of D. Then W [ϕ, σx:=d] = W [ϕ, σ] for every L1-formula ϕ such that x 6∈ Fv[ϕ],

and 〈L1,D〉-assignment σ.

Proof. After proving the claim for L1-terms (that σIx:=d[t] = σI [t] for every L1-term such

that x 6∈ Fv[t], and 〈L1,D〉-assignment σ), the claim is obtained by usual induction on

the complexity of ϕ.

Lemma 8.2.9. Let W = 〈V ,D, I, P 〉 be an L1-structure, t an L1-term, and x a variable

of L1. For every L1-formula ϕ, and 〈L1,D〉-assignment σ:

W [ϕ, σx:=σI [t]] =W [ϕ{t/x}, σ].

Proof. We prove the claim by induction on the complexity of ϕ. First, suppose that

cp[ϕ] = 1, and let σ be an 〈L1,D〉-assignment. Exactly one of the following holds:

• ϕ = {⊥}. In this case the claim obviously holds.

• ϕ = {p(t1, ... , tn)}. In this case, ϕ{t/x} = {p(t1{t/x}, ... , tn{t/x})}. Thus:

W [ϕ{t/x}, σ] = P [p][σI [t1{t/x}], ... , σI [tn{t/x}]].
By Lemma 8.2.6, P [p][σI [t1{t/x}], ... , σI [tn{t/x}] = P [p][σIx:=σI [t][t1], ... , σIx:=σI [t][tn]].

By definition, this is equal to W [ϕ, σx:=σI [t]].

Next, suppose that cp[ϕ] > 1, and that the claim holds for L1-formulas of lower com-

plexity. Let σ be an 〈L1,D〉-assignment. Exactly one of the following holds:

• ϕ = (ϕ1 � ϕ2) for some � ∈ {∧,∨,⊃}, and L1-formulas ϕ1 and ϕ2 such that

cp[ϕ1] < cp[ϕ] and cp[ϕ2] < cp[ϕ]. By definition, ϕ{t/x} = (ϕ1{t/x} � ϕ2{t/x}). We

continue with � =⊃ (the proof is similar for ∧ and ∨). By the induction hypothesis,

W [ϕ{t/x}, σ] =W [ϕ1{t/x}, σ]→W [ϕ2{t/x}, σ] =W [ϕ1, σx:=σI [t]]→W [ϕ2, σx:=σI [t]].

By definition, this is equal to W [ϕ, σx:=σI [t]].

• ϕ = (Qyψ) for some Q ∈ {∀,∃}, variable y 6∈ {x} ∪ Fv[t] of L1, and L1-formula

ψ such that cp[ψ] < cp[ϕ]. By definition, ϕ{t/x} = (Qyψ{t/x}). Continuing

with Q = ∀ (∃ is similar), we have W [ϕ{t/x}, σ] = infd∈DW [ψ{t/x}, σy:=d]. By

the induction hypothesis, W [ψ{t/x}, σy:=d] = W [ψ, σy:=d,x:=σI [t]] for every d ∈ D
(note that y 6= x), and so W [ϕ{t/x}] = infd∈DW [ψ, σy:=d,x:=σI [t]]. By definition,

infd∈DW [ψ, σy:=d,x:=σI [t]] =W [ϕ, σx:=σI [t]].
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Finally, we define standard first-order Gödel logic. For simplicity, unlike in the previ-

ous chapters, we identify a logic with its set of theorems and do not consider consequence

relations.

Definition 8.2.10. For an L1-formula ϕ, we write 
GöL1 ϕ if W [ϕ, σ] = 1 for every

L1-structure W = 〈V ,D, I, P 〉 and 〈L1,D〉-assignment σ. GöL1 is the logic consisting of

all formulas ϕ such that 
GöL1 ϕ.

8.3 The Hypersequent Calculus HIF

In this section we present the hypersequent calculus HIF for GöL1 from [30] (adapted

to our definitions, where formulas are equivalence classes of concrete formulas). (single-

conclusion) L1-sequents and L1-hypersequents are defined exactly as in Chapter 7. HIF

is obtained by augmenting the calculus HG (see Chapter 7, and Table 7.1 in particular),

with the following rules for first-order quantifiers:

(f:∀)
H | Γ, ϕ{t/x} ⇒ E

H | Γ, (∀xϕ)⇒ E
(t:∀)

H | Γ⇒ ϕ

H | Γ⇒ (∀xϕ)

(f:∃)
H | Γ, ϕ⇒ E

H | Γ, (∃xϕ)⇒ E
(t:∃)

H | Γ⇒ ϕ{t/x}
H | Γ⇒ (∃xϕ)

Applications of the rules (t:∀) and (f:∃) must obey the eigenvariable condition: x is

not a free variable in the lower hypersequent.

Below, we write `HIF H to denote that an L1-hypersequent H is provable in HIF,

and `cfHIF H to denote that H is provable in HIF without applying (cut). Several

clarifications should be noted:

1. The above rules are formulated by schemes using metavariables. For example, an

L1-hypersequent H1 can be derived from an L1-hypersequent H2 by applying the

rule (f:∀) iff H1 = H ∪ {Γ⇒ (∀xϕ)} and H2 = H ∪ {Γ ∪ ϕ{t/x} ⇒ E} for some

L1-hypersequent H, finite set Γ of L1-formulas, variable x of L1, L1-formula ϕ,

L1-term t, and singleton or empty set E of L1-formulas.

2. Since formulas are equivalence classes, the rules (t:∀), (f:∃) could be written as

well as:

(t:∀)
H | Γ⇒ ϕ{y/x}
H | Γ⇒ (∀xϕ)

(f:∃)
H | Γ, ϕ{y/x} ⇒ E

H | Γ, (∃xϕ)⇒ E

where y is not a free variable in the lower hypersequent.

The following standard lemma establishes the admissibility of substitution:
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Lemma 8.3.1. If `HIF H, then `HIF H{y/x} for every variables x, y of L1, such that

y 6∈ Fv[H]. The same holds for `cfHIF.

Next, the rule (f:∃) can be generalized as follows.

Proposition 8.3.2. For every n ≥ 0, L1-hypersequent H, L1-sequents s1, ... , sn, L1-
formula ϕ, and variable x 6∈ Fv[H | s1 | ... | sn]: if `HIF H | s1 ∪ {f:ϕ} | ... | sn ∪ {f:ϕ}
then `HIF H | s1 ∪ {f:(∃xϕ)} | ... | sn ∪ {f:(∃xϕ)}. The same holds for `cfHIF.

Proof. We use induction on n. The claim is trivial for n = 0. Now assume that the

claim holds for n − 1, we prove it for n. Let H be an L1-hypersequent, s1, ... , sn L1-
sequents, ϕ an L1-formula, and x a variable of L1 such that x 6∈ Fv[H | s1 | ... | sn]. Let

H0 = H | s1 ∪ {f:ϕ} | ... | sn ∪ {f:ϕ}. Suppose that `HIF H0. Let y be a variable of L1

such that y 6∈ Fv[H0]. By Lemma 8.3.1, `HIF H0{y/x}. Using a generalized version of

(com) (see Proposition 7.2.10), the following L1-hypersequent is cut-free derivable from

H0 and H0{y/x}: {H | sn ∪ {f:ϕ} | s1 ∪ {f:ϕ{y/x}} | ... | sn−1 ∪ {f:ϕ{y/x}} (to see this,

take H1 = H | sn∪{f:ϕ} and H2 = H | s1∪{f:ϕ{y/x}} | ... | sn−1∪{f:ϕ{y/x}}). By an ap-

plication of (f:∃), we obtain: H | sn ∪ {f:(∃xϕ)} | s1 ∪ {f:ϕ{y/x}} | ... | sn−1 ∪ {f:ϕ{y/x}}.
The induction hypothesis entails that `HIF H | s1 ∪ {f:(∃xϕ)} | ... | sn ∪ {f:(∃xϕ)}. Since

cuts were not involved in this proof, the proof for `cfHIF is exactly the same.

8.4 Soundness

In this section we prove the soundness of HIF for GöL1 . The following definition is the

first-order version of Definition 7.3.4.

Definition 8.4.1. Let W = 〈V ,D, I, P 〉 be an L1-structure.

1. Given an L1-sequent s and an 〈L1,D〉-assignment σ,Wf[s, σ],Wt[s, σ] andW [s, σ]

are defined as follow:

(a) Wf[s, σ] = min{W [ϕ, σ] | f:ϕ ∈ s}.
(b) Wt[s, σ] = max{W [ϕ, σ] | t:ϕ ∈ s}.
(c) W [s, σ] =Wf[s, σ]→Wt[s, σ].

2. An 〈L1,D〉-assignment σ is a model (with respect to W) of:

(a) an L1-sequent s (denoted by: W , σ |= s) if W [s, σ] = 1.

(b) an L1-hypersequent H (denoted by: W , σ |= H) if W , σ |= s for some s ∈ H.

3. W is a model of an L1-hypersequent H if W , σ |= H for every 〈L1,D〉-assignment

σ.
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Theorem 8.4.2. Let H be an L1-hypersequent. If `HIF H, then every L1-structure is

a model of H.

Proof. Let W = 〈V ,D, I, P 〉 be an L1-structure, where V = 〈V,≤〉. It suffices to prove

soundness of each possible application of a rule of HIF. For the weakening rules, (cut),

(com), and (id) this is as in Section 7.5. We do here several other cases and leave the

rest to the reader:

(t: ⊃) Suppose that H | s ∪ {t:(ϕ1 ⊃ ϕ2)} is derived from H | s ∪ {f:ϕ1, t:ϕ2} using

(t: ⊃) (here s must be a negative L1-sequent). Let σ be an 〈L1,D〉-assignment. If

W , σ |= s′ for some s′ ∈ H, then we are done. Otherwise, W , σ |= s ∪ {f:ϕ1, t:ϕ2}.
Thus, eitherW [ϕ1, σ] ≤ Wf[s, σ] andW [ϕ1, σ] ≤ W [ϕ2, σ], orWf[s, σ] ≤ W [ϕ2, σ].

In both cases, it follows that Wf[s, σ] ≤ W [ϕ1, σ] → W [ϕ2, σ]. By definition,

W [ϕ1, σ] → W [ϕ2, σ] = W [ϕ1 ⊃ ϕ2, σ]. It follows that W , σ |= s ∪ {t:(ϕ1 ⊃ ϕ2)},
and so W , σ |= H | s ∪ {t:(ϕ1 ⊃ ϕ2)}.

(f: ⊃) Suppose that H | s′ ∪ s ∪ {f:(ϕ1 ⊃ ϕ2 ⇒ E is derived from H | s′ ∪ {t:ϕ1} and

H | s ∪ {f:ϕ2} using (f: ⊃) (here s′ must be a negative L1-sequent). Let σ be

an 〈L1,D〉-assignment. If W , σ |= s′′ for some s′′ ∈ H, then we are done. Oth-

erwise, W , σ |= s′ ∪ {t:ϕ1} and W , σ |= s ∪ {f:ϕ2}. Let u1 = Wf[s′ ∪ s, σ] and

u2 = Wt[s, σ]. If u1 ≤ u2, then W , σ |= Γ, (ϕ1 ⊃ ϕ2)⇒ E, and we are done. Oth-

erwise, we have u1 ≤ W [ϕ1, σ], W [ϕ2, σ] ≤ u2, and so W [ϕ2, σ] < W [ϕ1, σ]. It

follows that

W [(ϕ1 ⊃ ϕ2), σ] =W [ϕ1, σ]→W [ϕ2, σ] =W [ϕ2, σ] ≤ u2.

Consequently, W , σ |= s′ ∪ s ∪ {f:(ϕ1 ⊃ ϕ2)} in this case as well.

(t:∀) Suppose that H = H ′ | s ∪ {t:(∀xϕ)} is derived from H ′ | s ∪ {t:ϕ} using (t:∀)
(where x 6∈ Fv[H], and s is a negative L1-sequent). Assume that W is not a

model of H. Thus there exists an 〈L1,D〉-assignment σ, such that W , σ 6|= H.

Hence, W , σ 6|= s′ for every s′ ∈ H ′, and W , σ 6|= s ∪ {t:(∀xϕ)}. Thus we have

Wf[s, σ] >W [(∀xϕ), σ]. It follows that Wf[s, σ] >W [ϕ, σx:=d] for some d ∈ D.

Since x 6∈ Fv[s], by Lemma 8.2.8 we have that W [ψ, σx:=d] = W [ψ, σ] for every ψ

that occurs in s. It follows that W , σx:=d 6|= s∪{t:ϕ}. Moreover, since x 6∈ Fv[H ′],

again using by Lemma 8.2.8, we obtain thatW , σx:=d 6|= s′ for every s′ ∈ H ′. Hence,

W , σx:=d 6|= H ′ | s ∪ {t:ϕ}, and consequently W is not a model of H ′ | s ∪ {t:ϕ}.

(f:∀) Suppose thatH = H ′ | s ∪ {f:(∀xϕ)} is derived fromH ′ | s ∪ {f:ϕ{t/x}} using (f:∀).
Assume that W , σ 6|= H for some 〈L1,D〉-assignment σ. Hence, W , σ 6|= s′ for ev-

ery s′ ∈ H ′, and W , σ 6|= s ∪ {f:(∀xϕ)}. Let u = Wt[s, σ]. The assumption that

W , σ 6|= s∪{f:(∀xϕ)} entails thatWf[s, σ] > u andW [(∀xϕ), σ] > u. By definition,
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W [(∀xϕ), σ] = infd∈DW [ϕ, σx:=d]. Thus W [ϕ, σx:=d] > u for every d ∈ D. In par-

ticular, W [ϕ, σx:=σI [t]] > u. Lemma 8.2.9 implies that W [ϕ{t/x}, σ] > u. It follows

that W , σ 6|= s ∪ {f:ϕ{t/x}}. Hence W is not a model of H ′ | s ∪ {f:ϕ{t/x}}.

Soundness for GöL1 is an obvious corollary:

Corollary 8.4.3. For every L1-formula ϕ, if `HIF {{t:ϕ}} then 
GöL1 ϕ.

Proof. Follows from Theorem 8.4.2, since for every L1-structure W = 〈V ,D, I, P 〉 and

〈L1,D〉-assignment σ: σ is a model of {{t:ϕ}} with respect to W iff W [ϕ, σ] = 1.

8.5 Complete Non-deterministic Semantics

In this section we present a non-deterministic semantics for which the cut-free fragment

of HIF is complete. This semantics will be used in the next section, where we show that

ordinary counter-models can be extracted out of non-deterministic ones. As corollaries,

we will obtain the completeness of HIF for the (usual) semantics described above, and

the fact that (cut) is admissible in HIF.

The non-deterministic semantics is based on quasi-L1-structures. The idea behind

these structures is similar to what we had in Chapter 7 for accommodating systems in

which (cut) is not available (i.e. for the proof-specification 〈L, ∅,L〉). Thus quasi-L1-
structures assign two truth values to each formula – one for its “f-labelled” occurrences,

and one for its “t-labelled” ones (see Page 113).

Definition 8.5.1. Let V = 〈V,≤〉 be a Gödel set. Given some non-empty set D, a

function D from D to {〈uf, ut〉 ∈ V × V | uf ≤ ut} is called a quasi fuzzy subset of D
over V .

Definition 8.5.2. A quasi-L1-structure is a tuple Q = 〈V ,D, I, P, v〉, where:

1. V , D, and I are defined as in L1-structures (Definition 8.2.4).

2. P is a function assigning a quasi fuzzy subset of Dn over V to every n-ary predicate

symbol of L1.
3. v is a function assigning a pair in {〈uf, ut〉 ∈ V × V | uf ≤ ut} to every ordered

pair of the form 〈ϕ, σ〉, where ϕ is an L1-formula and σ is an 〈L1,D〉-assignment,

such that v[ϕ, σx:=d] = v[ϕ{y/x}, σy:=d] for every variable x, variable y 6∈ Fv[ϕ], and

d ∈ D.

Note that quasi-structures include a function v that assigns truth values to every

formula. This is related to the fact that the semantics is non-deterministic. Thus, in
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contrast to (ordinary) structures, in quasi structures the values of the atomic formulas

do not uniquely determine the values of all compound formulas. The function v is then

used to ”store“ the values of the compound formulas. Obviously, in order to be able to

extract an ordinary counter-model out of a quasi-structure, further conditions should be

imposed:

Notation 8.5.3. For each function F whose range is {〈uf, ut〉 ∈ V × V | uf ≤ ut}
(e.g. the functions P [p] for every predicate symbol p and v from Definition 8.5.2), we

denote by F f and F t the functions obtained from F by taking only the left and the right

components (respectively). For instance, for every ϕ and σ, vf[ϕ, σ] is the left component

of the pair v[ϕ, σ].

Definition 8.5.4. Let Q = 〈V ,D, I, P, v〉 be a quasi-L1-structure. For every L1-formula

ϕ and 〈L1,D〉-assignment σ, vQ[ϕ, σ] is the pair defined as follows:

vQ[ϕ, σ] =



P [p][σI [t1], ... , σI [tn]] ϕ = {p(t1, ... , tn)}

〈0, 0〉 ϕ = {⊥}

〈min{vf[ϕ1, σ], vf[ϕ2, σ]},min{vt[ϕ1, σ], vt[ϕ2, σ]}〉 ϕ = (ϕ1 ∧ ϕ2)

〈max{vf[ϕ1, σ], vf[ϕ2, σ]},max{vt[ϕ1, σ], vt[ϕ2, σ]}〉 ϕ = (ϕ1 ∨ ϕ2)

〈vt[ϕ1, σ]→ vf[ϕ2, σ], vf[ϕ1, σ]→ vt[ϕ2, σ]〉 ϕ = (ϕ1 ⊃ ϕ2)

〈infd∈D v
f[ψ, σx:=d], infd∈D v

t[ψ, σx:=d]〉 ϕ = (∀xψ)

〈supd∈D v
f[ψ, σx:=d], supd∈D v

t[ψ, σx:=d]〉 ϕ = (∃xψ)

The condition on v in Definition 8.5.2 ensures that Q is well-defined, namely that the

choice of x is immaterial. It is straightforward to verify that vQ[ϕ, σ]f ≤ vQ[ϕ, σ]t for

every L1-formula ϕ and 〈L1,D〉-assignment σ (for ⊃, note that if u1 ≤ u2 and u3 ≤ u4

then u2 → u3 ≤ u1 → u4).

Notation 8.5.5. Let V = 〈V,≤〉 be a Gödel set. For u ∈ V and a pair 〈uf, ut〉 ∈ V × V
with uf ≤ ut, we write u ∈ 〈uf, ut〉 if uf ≤ u ≤ ut. For two pairs 〈uf1, ut1〉, 〈uf2, ut2〉 in

{〈uf, ut〉 ∈ V × V | uf ≤ ut}, we write 〈uf1, ut1〉 ⊆ 〈uf2, ut2〉 if uf1 ≥ uf2 and ut1 ≤ ut2.

Definition 8.5.6. A quasi-L1-structure Q = 〈V ,D, I, P, v〉 is called legal if we have

vQ[ϕ, σ] ⊆ v[ϕ, σ] for every L1-formula ϕ and 〈L1,D〉-assignment σ.

We can now demonstrate the non-deterministic nature of the semantics. For in-

stance, consider an L1-formula of the form (ϕ1 ∧ ϕ2). Suppose that v[ϕ1, σ] = 〈uf1, ut1〉
and v[ϕ2, σ] = 〈uf2, ut2〉. All we require from v[(ϕ1 ∧ ϕ2), σ] is that

〈min{uf1, uf2},min{ut1, ut2}〉 ⊆ v[(ϕ1 ∧ ϕ2), σ].
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In other words, every pair 〈uf, ut〉 such that uf ≤ min{uf1, uf2} and min{ut1, ut2} ≤ ut can

be chosen as a value for v[(ϕ1 ∧ ϕ2), σ]. Thus, in contrast to ordinary structures, here

the values of 〈ϕ1, σ〉 and 〈ϕ2, σ〉 do not uniquely determine the value of 〈(ϕ1 ∧ ϕ2), σ〉.

Remark 8.5.7. Since formulas are defined to be alpha equivalence classes of concrete

formulas, we do not have to explicitly enforce that two alpha-equivalent formulas obtain

the same value. Previous works on non-deterministic semantics for languages with quan-

tifiers, such as [18], studied structures in which truth values are non-deterministically

assigned to concrete formulas. In this case, additional restrictions are needed.

The notion of model for quasi-L1-structures is a natural first-order version of what we

had for Gvaluations in Chapter 7 (see Definition 7.3.4):

Definition 8.5.8. Let Q = 〈V ,D, I, P, v〉 be a quasi-L1-structure.

1. Given an L1-sequent s and an 〈L1,D〉-assignment σ, Qf[s, σ], Qt[s, σ] and Q[s, σ]

are defined as follow:

(a) Qf[s, σ] = min{vf[ϕ, σ] | f:ϕ ∈ s}.
(b) Qt[s, σ] = max{vt[ϕ, σ] | t:ϕ ∈ s}.
(c) Q[s, σ] = Qf[s, σ]→ Qt[s, σ].

2. An 〈L1,D〉-assignment σ is a model (with respect to Q) of:

(a) an L1-sequent s (denoted by: Q, σ |= s) if Q[s, σ] = 1.

(b) an L1-hypersequent H (denoted by: Q, σ |= H) if Q, σ |= s for some s ∈ H.

3. Q is a model of an L1-hypersequent H if Q, σ |= H for every 〈L1,D〉-assignment σ.

Now we can state the main completeness theorem.

Theorem 8.5.9. Suppose that 6`cfHIF H0 for some L1-hypersequent H0. Then there exists

a legal quasi-L1-structure that is not a model of H0.

The rest of this section is devoted to prove this theorem. First, we introduce the two

main ingredients of this proof: maximal extended hypersequents and Herbrand domains.

Maximal Extended Hypersequents

As in Chapter 7, maximal extended L1-hypersequents will play a crucial role in the

completeness proof below. These are defined exactly as in Section 7.5, but here we add

one more requirement:
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Definition 8.5.10. An extended L1-sequent µ admits the witness property if the follow-

ing hold for every L1-formula ϕ, and variable x of L1:

1. If t:(∀xϕ) ∈ µ, then t:ϕ{y/x} ∈ µ for some variable y of L1.
2. If f:(∃xϕ) ∈ µ, then f:ϕ{y/x} ∈ µ for some variable y of L1.

An extended L1-hypersequent Ω admits the witness property if every µ ∈ Ω admits the

witness property. Ω is called maximal if it is unprovable, internally maximal, externally

maximal, and it admits the witness property (see Section 7.5).4

As in Section 7.5, the following hold:

Proposition 8.5.11. Let Ω be an extended L1-hypersequent.

• Assume that Ω is maximal with respect to an L1-formula ϕ. For every µ ∈ Ω:

– If f:ϕ 6∈ µ, then `cfHIF H | s1 ∪ {f:ϕ} | ... | sn ∪ {f:ϕ} for some L1-hypersequent

H v Ω and L1-sequents s1, ... , sn ⊆ µ.

– If t:ϕ 6∈ µ, then `cfHIF H | s ∪ {t:ϕ} for some L1-hypersequent H v Ω and neg-

ative L1-sequent s ⊆ µ.

• Assume that Ω is maximal with respect to an L1-sequent s. Then, if {s} 6v Ω, then

there exists an L1-hypersequent H v Ω such that `cfHIF H | s.

Lemma 8.5.12. Every unprovable L1-hypersequent can be extended to a maximal ex-

tended L1-hypersequent.

Proof. The proof proceeds similarly to the proof of Lemma 7.5.4. To obtain an extended

L1-hypersequent that admits the witness property, we add another step in the definition

of Hi+1, based on the following claim:

Let Ω = µ1 | ... | µn be an unprovable finite extended L1-hypersequent. Then there

exists an unprovable finite extended L1-hypersequent Ω′ of the form µ′1 | ... | µ′n, such that

µi ⊆ µ′i for every 1 ≤ i ≤ n, and Ω′ admits the witness property.

To prove this claim describe an extension of Ω to Ω′. This extension is done in steps.5

In every step, we take some extended L1-sequent µ ∈ Ω, and proceed as follows:

• If µ contains a labelled formula of the form t:(∀xϕ), we take a variable y of L1,
which is not free in the current hypersequent, and add t:ϕ{y/x} to µ.

4Obviously, instead of H `G�ρ H that we had in the definition of “provable extended hypersequent”

in Section 7.5 , we should have `cfHIF H for the present case.
5Formally, this extension should be defined inductively, but the intention should be clear.
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• If µ contains a labelled formula of the form f:(∃xϕ), we take a variable y of L1,
which is not free in the current hypersequent, and add f:ϕ{y/x} to µ.

We continue this procedure until the obtained extended L1-hypersequent admits the

witness property. Note that since the number of formulas in Ω is finite, and the complexity

of the formulas which are added is decreasing, this procedure would terminate after a

finite number of steps. Ω′ is the finite extended L1-hypersequent obtained from Ω by

this procedure. We show that every such extension keeps the extended L1-hypersequent

unprovable (and thus Ω′ is unprovable):

• Suppose that an unprovable extended L1-hypersequent Ω1 contains an extended

L1-sequent µ, that contains a labelled formula of the form t:(∀xϕ). Let Ω2 be

the extended L1-hypersequent obtained from Ω1 by adding t:ϕ{y/x} to µ, where

y is a variable which does not occur in Fv[Ω1]. Assume for contradiction that Ω2

is provable. Hence there exist an L1-hypersequent H v Ω2, and a negative L1-
sequent s′ ⊆ µ, such that `cfHIF H | s′ ∪ {t:ϕ{y/x}}. By applying (t:∀), we obtain

`cfHIF H | s′ ∪ {t:(∀xϕ)}. This contradicts the fact the Ω1 is unprovable.

• Suppose that an unprovable extended L1-hypersequent Ω1 contains an extended

L1-sequent µ, that contains a labelled formula of the form f:(∃xϕ). Let Ω2 be

the extended L1-hypersequent obtained from Ω1 by adding f:ϕ{y/x} to µ, where

y is a variable which does not occur in Fv[Ω1]. Assume for contradiction that

Ω2 is provable. Hence `cfHIF H | s′1 ∪ {f:ϕ{y/x}} | ... | s′n ∪ {f:ϕ{y/x}} for some L1-
hypersequent H v Ω2, and L1-sequents s′1, ... , s

′
n ⊆ µ. Proposition 8.3.2 entails

that `cfHIF H | s′1 ∪ {f:(∃xϕ)} | ... | s′n ∪ {f:(∃xϕ)}. This contradicts the fact the Ω1

is unprovable.

The Herbrand Domain

Definition 8.5.13. The Herbrand domain for L1, denoted by DL1 , is the domain con-

sisting of all L1-terms. The Herbrand interpretation for L1, denoted by IL
1

, is the

〈L1,DL1〉-interpretation defined by: I[c] = c for every constant symbol c of L1, and

I[f ] = λt1, ... , tn ∈ DL
1

.f(t1, ... , tn) for every n-ary function symbol f of L1.

Below, given an 〈L1,DL1〉-assignment σ and an L1-term t, we write σ[t] instead of

σIL1 [t] (see Definition 8.2.5). In addition, 〈L1,DL1〉-assignments are extended to apply

on L-formulas. Roughly speaking, every occurrence of a free variable x in a formula ϕ is

replaced in σ[ϕ] by σ[x]. Formally, this is defined as follows.
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Definition 8.5.14. Let ϕ be an L1-formula, and σ an 〈L1,DL1〉-assignment. The set of

free variables of the pair 〈ϕ, σ〉 (denoted by Fv[〈ϕ, σ〉]) consists of the variables of σ[x]

for every variable x ∈ Fv[ϕ].

Definition 8.5.15. 〈L1,DL1〉-assignments are extended to L1-formulas, according to the

following inductive definition:

σ[ϕ] =


{p(σ[t1], ... , σ[tn])} ϕ = {p(t1, ... , tn)}

{⊥} ϕ = {⊥}

(σ[ϕ1] � σ[ϕ2]) ϕ = (ϕ1 � ϕ2)

(Qxσx:=x[ψ]) ϕ = (Qxψ) for x 6∈ Fv[〈ϕ, σ〉]

Note that the choice of x in the last definition is immaterial, and thus σ[ϕ] is well-

defined. The following technical lemmas are needed in the completeness proof.

Lemma 8.5.16. Let t be an L1-term.

1. σx:=t[t
′] = σy:=t[t

′{y/x}] for every L1-term t′, 〈L1,DL1〉-assignment σ, and variables

x, y such that y 6∈ Fv[t′].

2. σx:=t[ϕ] = σy:=t[ϕ{y/x}] for every L1-formula ϕ, 〈L1,DL1〉-assignment σ, and vari-

ables x, y such that y 6∈ Fv[ϕ].

Proof. This first claim is proved by induction on the structure of t′:

• Suppose that t′ = c for some constant symbol c of L1, or t′ = z for some variable

z 6∈ {x, y}. Then t′{y/x} = t′, and σx:=t[t
′] = σy:=t[t

′].

• Suppose that t′ = x. Then σx:=t[t
′] = t, and σy:=t[t

′{y/x}] = σy:=t[y] = t.

• Suppose that t′ = f(t1, ... , tn) for some n-ary function symbol f of L1, and L1-
terms t1, ... , tn. Then, σx:=t[t

′] = f(σx:=t[t1], ... , σx:=t[tn]). By the induction hy-

potheses this term equals f(σy:=t[t1{y/x}], ... , σy:=t[tn{y/x}]), which in turn equals

σy:=t[f(t1, ... , tn){y/x}].

Next, we prove the second claim in the lemma by induction on the complexity of ϕ. First,

suppose that cp[ϕ] = 1. Let σ be an 〈L1,DL1〉-assignment, and x, y variables such that

y 6∈ Fv[ϕ]. Exactly one of the following holds:

• ϕ = {p(t1, ... , tn)} for some n-ary predicate symbol p of L1 and L1-terms t1, ... , tn.

Then, by definition σx:=t[ϕ] = {p(σx:=t[t1], ... , σx:=t[tn])}. Since y 6∈ Fv[ti] for every

1 ≤ i ≤ n, this formula equals {p(σy:=t[t1{y/x}], ... , σy:=t[tn{y/x}])}, which is, by

definition, σy:=t[ϕ{y/x}].
• ϕ = {⊥}. Then, σx:=t[ϕ] = {⊥} = σy:=t[ϕ{y/x}].



8.5. Complete Non-deterministic Semantics 149

Next, suppose that cp[ϕ] > 1, and that the claim holds for L1-formulas of lower complex-

ity. Let σ be an 〈L1,DL1〉-assignment, and x, y variables such that y 6∈ Fv[ϕ]. Exactly

one of the following holds:

• ϕ = (ϕ1 �ϕ2) for � ∈ {∧,∨,⊃} and L1-formulas ϕ1 and ϕ2 such that cp[ϕ1] < cp[ϕ]

and cp[ϕ2] < cp[ϕ]. Then, σx:=t[ϕ] = (σx:=t[ϕ1] � σx:=t[ϕ2]). By the induction

hypothesis, this L1-formula is equal to (σy:=t[ϕ1{y/x}] � σy:=t[ϕ2{y/x}]). And, by

definition, this is equal to σy:=t[ϕ{y/x}].
• ϕ = (Qzψ) for Q ∈ {∀,∃}, L1-formula ψ such that cp[ψ] < cp[ϕ], and variable

z 6∈ {x, y} ∪ σ[ϕ] ∪ Fv[t]. Then, σx:=t[ϕ] = (Qzσx:=t,z:=z[ψ]). By the induction

hypothesis, this L1-formula is equal to (Qzσy:=t,z:=z[ψ{y/x}]). And this is (by defi-

nition) equal to σy:=t[(Qzψ{y/x})], which is equal to σy:=t[ϕ{y/x}].

Lemma 8.5.17. Let t be an L1-term.

1. σx:=z[t
′]{t/z} = σx:=t[t

′] for every L1-term t′, 〈L1,DL1〉-assignment σ, and variables

x, z such that z 6∈ Fv[σ[t′]].

2. σx:=z[ϕ]{t/z} = σx:=t[ϕ] for every L1-formula ϕ, 〈L1,DL1〉-assignment σ, and vari-

ables x, z such that z 6∈ Fv[σ[ϕ]].

Proof. The first claim is proved by induction on the structure of t′:

• Suppose that t′ = c for some constant symbol c of L1. Then:

σx:=z[t
′]{t/z} = IL

1

[c]{t/z} = c{t/z} = c = IL
1

[c] = σx:=t[t
′].

• Suppose that t′ = y for a variable y 6= x. Then σx:=z[t
′]{t/z} = σ[y]{t/z}. Since

z 6∈ Fv[σ[y]], we have σ[y]{t/z} = σ[y]. The claim follows since σ[y] = σx:=t[y].

• Suppose that t′ = x. Then, σx:=z[t
′]{t/z} = z{t/z} = t = σx:=t[x].

• Suppose that t′ = f(t1, ... , tn) for some n-ary function symbol f of L1, and L1-terms

t1, ... , tn. Then,

σx:=z[t
′]{t/z} = f(σx:=z[t1], ... , σx:=z[tn]){t/z} = f(σx:=z[t1]{t/z}, ... , σx:=z[tn]{t/z}).

By the induction hypotheses this term equals f(σx:=t[t1], ... , σx:=t[tn]), which in turn

equals σx:=t[t
′].

Next, we prove the second claim in the lemma by induction on the complexity of ϕ. First,

suppose that cp[ϕ] = 1. Let σ be an 〈L1,DL1〉-assignment, and x, z variables such that

z 6∈ Fv[σ[ϕ]]. Exactly one of the following holds:

• ϕ = {p(t1, ... , tn)} for some n-ary predicate symbol p of L1, and L1-terms t1, ... , tn.

Then, by definition

σx:=z[ϕ]{t/z} = {p(σx:=z[t1], ... , σx:=z[tn])}{t/z} =

= {p(σx:=z[t1]{t/z}, ... , σx:=z[tn]{t/z})}.



150 Chapter 8. Calculus for First-Order Gödel Logic

Since z 6∈ Fv[σ[ti]] for every 1 ≤ i ≤ n, the claim above for terms entails that this

formula equals {p(σx:=t[t1], ... , σx:=t[tn])}, which is, by definition, σx:=t[ϕ].

• ϕ = {⊥}. Then, σx:=z[ϕ]{t/z} = {⊥} = σx:=t[ϕ].

Next, suppose that cp[ϕ] > 1, and that the claim holds for L1-formulas of lower complex-

ity. Let σ be an 〈L1,DL1〉-assignment, and x, z variables such that z 6∈ Fv[σ[ϕ]]. Exactly

one of the following holds:

• ϕ = (ϕ1 �ϕ2) for � ∈ {∧,∨,⊃} and L1-formulas ϕ1 and ϕ2 such that cp[ϕ1] < cp[ϕ]

and cp[ϕ2] < cp[ϕ]. Then, σx:=x[ϕ]{t/x} = (σx:=z[ϕ1]{t/z} � σx:=z[ϕ2]{t/z}). By the

induction hypothesis, this L1-formula is equal to (σx:=t[ϕ1] � σx:=t[ϕ2]). And, by

definition, this is equal to σx:=t[ϕ].

• ϕ = (Qyψ) for Q ∈ {∀,∃}, L1-formula ψ such that cp[ψ] < cp[ϕ], and variable

y 6∈ Fv[t] ∪ {x, z} ∪ Fv[σ[ϕ]]. Then,

σx:=z[ϕ]{t/z} = (Qyσx:=z,y:=y[ψ]){t/z} = (Qyσx:=z,y:=y[ψ]{t/z}).
By the induction hypothesis, this L1-formula is equal to (Qyσx:=t,y:=y[ψ]). And this

is (by definition) equal to σx:=t[ϕ].

Proof of Theorem 8.5.9

Suppose that 6`cfHIF H0. The availability of external and internal weakenings ensures that

H0 is unprovable. By Lemma 8.5.12, there exists a maximal extended L1-hypersequent

Ω∗ such that H0 v Ω∗. We use Ω∗ to construct a counter-model for H0 in the form of a

quasi-L1-structure Q = 〈V ,D, I, P, v〉.
First, we define a bounded linearly ordered set V0, that will be used to construct

(using the Dedekind-MacNeille completion) the Gödel set V . For every L1-formula ϕ we

define:

L[ϕ] = {µ ∈ Ω∗ | f:ϕ ∈ µ}, R[ϕ] = {µ ∈ Ω∗ | t:ϕ 6∈ µ}.

Let V0 = 〈V0,⊆〉, where

V0 = {L(ϕ) | ϕ is an L1-formula} ∪ {R(ϕ) | ϕ is an L1-formula} ∪ {Ω∗, ∅}.
Clearly, V is partially ordered set, bounded by 0 = ∅ and 1 = Ω∗. The proof that V is

linearly ordered by ⊆ proceeds exactly as in Section 7.5. Now, since V0 might not be

complete, we consider its Dedekind-MacNeille completion V = 〈V,⊆〉 defined by:

V = {Π ⊆ V0 | (Π↑)↓ = Π}
where Π↑ = {Ω ∈ V0 | Ω′ ⊆ Ω for all Ω′ ∈ Π} and Π↓ = {Ω ∈ V0 | Ω ⊆ Ω′ for all Ω′ ∈ Π}.
V is a bounded complete linearly ordered set (see [76]), and thus it forms a Gödel set.

Note that using ⊆ as the order relation, min and max are sets intersection and sets union
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(respectively). In addition, the function η : V0 → V defined by η(Ω) = {Ω}↓ is injective

and it satisfies the following properties:6

• {∅} = η(∅).
• For every Ω,Ω′ ∈ V0:

– Ω ⊆ Ω′ iff η(Ω) ⊆ η(Ω′).

– η(Ω) ∩ η(Ω′) = η(Ω ∩ Ω′).

– η(Ω) ∪ η(Ω′) = η(Ω ∪ Ω′).

– η(Ω)→ η(Ω′) = η(Ω→ Ω′)

• For every Ω ∈ V0 and Π ⊆ V0:

– If Ω ⊆
⋂

Ω′∈Π Ω′, then η(Ω) ⊆ infΩ′∈Π η(Ω′).

– If
⋂

Ω′∈Π Ω′ ⊆ Ω, then infΩ′∈Π η(Ω′) ⊆ η(Ω).

– If Ω ⊆
⋃

Ω′∈Π Ω′, then η(Ω) ⊆ supΩ′∈Π η(Ω′).

– If
⋃

Ω′∈Π Ω′ ⊆ Ω, then supΩ′∈Π η(Ω′) ⊆ η(Ω).

The proofs of these properties are straightforward (note that the linearity of V0 is needed

in some of them).

Henceforth, we will identify the elements of V0 of the form {Ω}↓ with the (unique) corre-

sponding element Ω, and freely use the properties above.

Next, for every formula ϕ, let Ω∗[ϕ] be the pair defined by: Ω∗[ϕ] = 〈L[ϕ], R[ϕ]〉.
Note that Ω∗[ϕ] ∈ {〈uf, ut〉 ∈ V × V | uf ⊆ ut} for every L1-formula ϕ. Indeed, in the

presence of (id), either f:ϕ 6∈ µ or t:ϕ 6∈ µ for every µ ∈ Ω and L1-formula ϕ (other-

wise, {{f:ϕ, t:ϕ}} v Ω, contradicting the fact that Ω is unprovable), and consequently,

L[ϕ] ⊆ R[ϕ]. Let D be the Herbrand domain for L1, I the Herbrand interpretation for

L1, and define P and v as follows:

• For every n-ary predicate symbol p of L1, P [p] = λt1, ... , tn ∈ D.Ω∗[{p(t1, ... , tn)}].
• For every L1-formula ϕ and 〈L1,D〉-assignment σ, v[ϕ, σ] = Ω∗[σ[ϕ]].

It is easy to verify the condition on v from Definition 8.5.2. Indeed, Lemma 8.5.16 ensures

that if y 6∈ Fv[ϕ], then for every L1-term we have σx:=t[ϕ] = σy:=t[ϕ{y/x}]. This implies

that v[ϕ, σx:=t] = v[ϕ{y/x}, σy:=t] for every t ∈ D.

We show that Q is not a model of H0. Consider the 〈L1,D〉-assignment σid defined

by σid[x] = x for every variable x of L1. Let s ∈ H0. Since H0 v Ω∗, there exists some

µ ∈ Ω∗, such that s ⊆ µ. We claim that µ ∈ vf[ϕ, σid] whenever f:ϕ ∈ s, and µ 6∈ vt[ϕ, σid]
whenever t:ϕ ∈ s. To see this, it suffices to note that σid[ϕ] = ϕ for every L1-formula ϕ.

This fact follows from the definition of σid[ϕ]. Consequently, vf[ϕ, σid] 6⊆ vt[ϕ, σid], and

so Q, σid 6|= s.

6All operations notations from Definition 8.2.1 are adopted to the set V0 in the obvious way.
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It remains to prove thatQ is legal, namely that vQ[ϕ, σ] ⊆ v[ϕ, σ] for every L1-formula

ϕ and 〈L1,D〉-assignment σ. Let ϕ be an L1-formula, and σ an 〈L1,D〉-assignment. Then,

exactly one of the following holds:

• ϕ = {p(t1, ... , tn)} for some n-ary predicate symbol p of L1, and L1-terms t1, ... , tn.

Then, by definition:

vQ[ϕ, σ] = P [p][σ[t1], ... , σ[tn]] = Ω∗[{p(σ[t1], ... , σ[tn])}] = Ω∗[σ[ϕ]] = v[ϕ, σ].

• ϕ = {⊥}. Then, vQ[ϕ, σ] = 〈∅, ∅〉. To see that vQ[ϕ, σ] ⊆ v[ϕ, σ], it suffices to note

that vf[ϕ, σ] = ∅. This follows from the fact that f:σ[ϕ] = f:{⊥} 6∈ µ for every

µ ∈ Ω∗. (Otherwise, {{f:{⊥}}} ⊆ Ω∗, but `cfHIF {{f:{⊥}}} by applying the rule

(f: ⊥).)

• ϕ = (ϕ1 ∧ ϕ2) for some L1-formulas ϕ1 and ϕ2. Then:

vQ[ϕ, σ] = 〈vf[ϕ1, σ] ∩ vf[ϕ2, σ], vt[ϕ1, σ] ∩ vt[ϕ2, σ]〉.
We first prove that vf[ϕ, σ] ⊆ vf[ϕ1, σ]∩vf[ϕ2, σ]. Let µ 6∈ vf[ϕ1, σ] (µ 6∈ vf[ϕ2, σ] is

symmetric). Thus f:σ[ϕ1] 6∈ µ. We show that µ 6∈ vf[ϕ, σ]. By Proposition 8.5.11,

since f:σ[ϕ1] 6∈ µ, there exist an L1-hypersequent H1 v Ω∗, and L1-sequents

s1, ... , sn ⊆ µ, such that `cfHIF H1 | s1 ∪ {f:σ[ϕ1]} | ... | sn ∪ {f:σ[ϕ1]}. The avail-

ability of weakening and (f:∧) entails that `cfHIF H for

H = H1 | s1 ∪ {f:(σ[ϕ1] ∧ σ[ϕ2])} | ... | sn ∪ {f:(σ[ϕ1] ∧ σ[ϕ2])}.
Since Ω∗ is unprovable, H 6v Ω∗, and thus f:(σ[ϕ1] ∧ σ[ϕ2]) 6∈ µ. By definition,

(σ[ϕ1] ∧ σ[ϕ2]) = σ[ϕ]. It follows that µ 6∈ vf[ϕ, σ].

Next, we prove that vt[ϕ1, σ] ∩ vt[ϕ2, σ] ⊆ vt[ϕ, σ]. Let µ ∈ vt[ϕ1, σ] ∩ vt[ϕ2, σ].

Then we have t:σ[ϕ1] 6∈ µ and t:σ[ϕ2] 6∈ µ. By Proposition 8.5.11, there exist

L1-hypersequents H1, H2 v Ω∗, and negative L1-sequents s1, s2 ⊆ µ, such that

`cfHIF H1 | s1 ∪ {t:σ[ϕ1]} and `cfHIF H2 | s2 ∪ {t:σ[ϕ2]}. The availability of (t:∧)

entails that `cfHIF H for H = H1 | H2 | s1 ∪ s2 ∪ {t:(σ[ϕ1] ∧ σ[ϕ2])}. Since Ω∗

is unprovable, H 6v Ω∗, and thus t:σ[ϕ] = t:(σ[ϕ1] ∧ σ[ϕ2]) 6∈ µ. It follows that

µ ∈ vt[ϕ, σ].

• ϕ = (ϕ1 ∨ ϕ2) for some L1-formulas ϕ1 and ϕ2. Then:

vQ[ϕ, σ] = 〈vt[ϕ1, σ] ∪ vt[ϕ2, σ], vf[ϕ1, σ] ∪ vf[ϕ2, σ]〉.

We first prove that vf[ϕ, σ] ⊆ vf[ϕ1, σ]∪ vf[ϕ2, σ]. Let µ 6∈ vf[ϕ1, σ] ∪ vf[ϕ2, σ]. We

prove that µ 6∈ vf[ϕ, σ]. Our assumption entails that f:σ[ϕ1] 6∈ µ and f:σ[ϕ2] 6∈ µ.

By Proposition 8.5.11, there exist L1-hypersequents H1, H2 v Ω∗, and L1-sequents

s1, ... , sn, s
′
1, ... , s

′
m ⊆ µ, such that `cfHIF H1 | s1 ∪ {f:σ[ϕ1]} | ... | sn ∪ {f:σ[ϕ1]} and
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`cfHIF H2 | s′1 ∪ {f:σ[ϕ2]} | ... | s′m ∪ {f:σ[ϕ2]}. As in the proof of Proposition 7.2.11,

it is possible to use (com) and (f:∨) to obtain that `cfHIF H for

H = H1 | H2 | s1 ∪ {f:(σ[ϕ1] ∨ σ[ϕ2])} | ... | sn ∪ {f:(σ[ϕ1] ∨ σ[ϕ2])}
| s′1 ∪ {f:(σ[ϕ1] ∨ σ[ϕ2])} | ... | s′m ∪ {f:(σ[ϕ1] ∨ σ[ϕ2])}.

Since Ω∗ is unprovable, H 6v Ω∗, and thus f:(σ[ϕ1] ∨ σ[ϕ2]) 6∈ µ. By definition,

(σ[ϕ1] ∨ σ[ϕ2]) = σ[ϕ]. It follows that µ 6∈ vf[ϕ, σ].

Next, we prove that vt[ϕ1, σ] ∪ vt[ϕ2, σ] ⊆ vt[ϕ, σ]. Let µ ∈ vt[ϕ1, σ], and so

t:σ[ϕ1] 6∈ µ (the case that µ ∈ vt[ϕ2, σ] is symmetric). By Proposition 8.5.11,

there exist an L1-hypersequent H1 v Ω∗, and a negative L1-sequent s ⊆ µ, such

that `cfHIF H1 | s ∪ {t:σ[ϕ1]}. The availability of weakening and (t:∨) entails that

`cfHIF H for H = H1 | s∪ {t:(σ[ϕ1]∨ σ[ϕ2])}. Since Ω∗ is unprovable, H 6v Ω∗, and

thus t:σ[ϕ] = t:(σ[ϕ1] ∨ σ[ϕ2]) 6∈ µ. It follows that µ ∈ vt[ϕ, σ].

• ϕ = (ϕ1 ⊃ ϕ2) for some L1-formulas ϕ1 and ϕ2. Then:

vQ[ϕ, σ] = 〈vf[ϕ1, σ]→ vt[ϕ2, σ], vt[ϕ1, σ]→ vf[ϕ2, σ]〉.
We first prove that vf[ϕ, σ] ⊆ vt[ϕ1, σ]→ vf[ϕ2, σ]. Let µ 6∈ vt[ϕ1, σ]→ vf[ϕ2, σ].

Then, vt[ϕ1, σ] 6⊆ vf[ϕ2, σ] and µ 6∈ vf[ϕ2, σ]. Let µ′ ∈ Ω∗ such that µ′ ∈ vt[ϕ1, σ],

and µ′ 6∈ vf[ϕ2, σ]. Hence, t:σ[ϕ1] 6∈ µ′ and f:σ[ϕ2] 6∈ µ′. By Proposition 8.5.11,

there exist L1-hypersequents H1, H2 v Ω∗, a negative L1-sequent s′ ⊆ µ′, and L1-
sequents s′1, ... , s

′
n ⊆ µ′, such that `cfHIF H1 | s′ ∪ {t:σ[ϕ1]}, and

`cfHIF H2 | s′1 ∪ {f:σ[ϕ2]} | ... | s′n ∪ {f:σ[ϕ2]}.
By n consecutive applications of (f: ⊃) (note that (σ[ϕ1] ⊃ σ[ϕ2]) = σ[ϕ]), we

obtain that

`cfHIF H1 | H2 | s′ ∪ s′1 ∪ {f:σ[ϕ]} | ... | s′ ∪ s′n ∪ {f:σ[ϕ]}. (8.1)

Since µ 6∈ vf[ϕ2, σ], we also have f:σ[ϕ2] 6∈ µ. Proposition 8.5.11 entails that there

also exist L1-hypersequent H3 v Ω∗, and L1-sequents s1, ... , sm ⊆ µ, such that

`cfHIF H3 | s1 ∪ {f:σ[ϕ2]} | ... | sm ∪ {f:σ[ϕ2]}. By another m applications of (f: ⊃),

we obtain that

`cfHIF H1 | H3 | s′ ∪ s1 ∪ {f:σ[ϕ]} | ... | s′ ∪ sm ∪ {f:σ[ϕ]}. (8.2)

Using a generalized version of (com) (see Proposition 7.2.10) we obtain from (8.1)

and (8.2) above:

`cfHIF H1 | H2 | H3 | s′ ∪ s′1 | ... | s′ ∪ s′n | s1 ∪ {f:σ[ϕ]} | ... | sm ∪ {f:σ[ϕ]}.
Now, if f:σ[ϕ] ∈ µ, then Ω∗ extends this hypersequent, and this contradicts the fact

that Ω∗ is unprovable. Therefore, f:σ[ϕ] 6∈ µ, and consequently µ 6∈ vf[σ[ϕ]].

Next, we prove that vf[ϕ1, σ] → vt[ϕ2, σ] ⊆ vt[ϕ, σ]. Suppose that µ 6∈ vt[ϕ, σ],

and so t:σ[ϕ] ∈ µ. To show that µ 6∈ vf[ϕ1, σ] → vt[ϕ2, σ], we first show that
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µ 6∈ vt[ϕ2, σ] and then we show that vf[ϕ1, σ] 6⊆ vt[ϕ2, σ]:

1. Assume for contradiction that µ ∈ vt[ϕ2, σ], and thus t:σ[ϕ2] 6∈ µ. Then by

Proposition 8.5.11, there exist an L1-hypersequent H v Ω∗, and a negative

L1-sequent s ⊆ µ, such that `cfHIF H | s ∪ {t:σ[ϕ2]}. By applying internal

weakening we obtain `cfHIF H | s ∪ {f:σ[ϕ1], t:σ[ϕ2]}. Using (t: ⊃) we obtain

`cfHIF H | s ∪ {t:σ[ϕ]}. This contradicts the fact that Ω∗ is unprovable (be-

cause H | s ∪ {t:σ[ϕ]} v Ω∗).

2. Note that the fact that Ω∗ is unprovable and the availability of (t: ⊃) also

entail that 6`cfHIF H | {f:σ[ϕ1], t:σ[ϕ2]}. Therefore, Proposition 8.5.11 entails

that {f:σ[ϕ1], t:σ[ϕ2]} v Ω∗. Thus there is an extended L1-sequent µ′ ∈ Ω∗,

such that f:σ[ϕ1] ∈ µ′ and t:σ[ϕ2] ∈ µ′. Consequently, µ′ ∈ vf[ϕ1, σ] and

µ′ 6∈ vt[ϕ2, σ]. Hence vf[ϕ1, σ] 6⊆ vt[ϕ2, σ].

• ϕ = (∃xψ) for some variable x 6∈ Fv[σ[ϕ]] and L1-formula ψ. Then:

vQ[ϕ, σ] = 〈sup
t∈D

vt[ψ, σx:=t], sup
t∈D

vf[ψ, σx:=t]〉.

We first prove that vf[ϕ, σ] ⊆ supt∈D v
f[ψ, σx:=t]. Suppose that µ ∈ vf[ϕ, σ]. Thus

f:σ[ϕ] ∈ µ. By definition, σ[ϕ] = (∃xσx:=x[ψ]). Since Ω∗ admits the witness

property, there exists a variable y of L1, such that f:σx:=x[ψ]{y/x} ∈ µ. By

Lemma 8.5.17, σx:=x[ψ]{y/x} = σx:=y[ψ]. It follows that µ ∈ vf[ψ, σx:=y], and there-

fore µ ∈
⋃
t∈D v

f[ψ, σx:=t].

Next, we prove that supt∈D v
t[ψ, σx:=t] ⊆ vt[ϕ, σ]. Let µ ∈

⋃
t∈D v

t[ψ, σx:=t]. Thus

µ ∈ vt[ψ, σx:=t] for some t ∈ D. By definition, t:σx:=t[ψ] 6∈ µ. By Lemma 8.5.17,

σx:=t[ψ] = σx:=x[ψ]{t/x}. By Proposition 8.5.11, `cfHIF H | s ∪ {t:σx:=x[ψ]{t/x}} for

some L1-hypersequent H v Ω∗, and negative L1-sequent s ⊆ µ. By an applica-

tion of (t:∃), we obtain `cfHIF H | s ∪ {t:(∃xσx:=x[ψ])}. Since Ω∗ is unprovable,

t:(∃xσx:=x[ψ]) 6∈ µ. By definition, (∃xσx:=x[ψ]) = σ[ϕ]. It follows that µ ∈ vt[ϕ, σ].

• The case ϕ = (∀xψ) is handled similarly.

8.6 Completeness for the Ordinary Semantics

In this section we use the complete semantics of quasi-structures to prove the complete-

ness of HIF for the (ordinary) structures of first-order Gödel logic. To do so, we show

that from every legal quasi-structure which is a counter-model of some hypersequent H,

it is possible to extract an (ordinary) structure, which is also not a model of H.
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Theorem 8.6.1. Let Q = 〈V ,D, I, P, v〉 be a legal quasi-L1-structure. There exists an

L1-structure W = 〈V ,D, I, P ′〉, such that W [ϕ, σ] ∈ v[ϕ, σ] for every L1-formula ϕ and

〈L1,D〉-assignment σ.

Proof. Define P ′ by P ′[p] = P [p]f for every predicate symbol p. We prove that the L1-
structure W = 〈V ,D, I, P ′〉 satisfies the requirement in the theorem. Let V = 〈V,≤〉.
We use induction on the complexity of ϕ to show that W [ϕ, σ] ∈ v[ϕ, σ] for every L1-
formula ϕ and 〈L1,D〉-assignment σ. Note that since Q is legal, it suffices to show that

W [ϕ, σ] ∈ vQ[ϕ, σ] for every L1-formula ϕ and 〈L1,D〉-assignment σ. First, suppose that

cp[ϕ] = 1, and let σ be an 〈L1,D〉-assignment. Exactly one of the following holds:

• ϕ = {p(t1, ... , tn)} for some n-ary predicate symbol p of L1, and L1-terms t1, ... , tn.

By definition,W [ϕ, σ] = P ′[p][σI [t1], ... , σI [tn]] = P [p]f[σI [t1]], ... , σI [tn]]] ∈ vQ[ϕ, σ].

• ϕ = {⊥}. Then by definition, W [ϕ, σ] = 0 ∈ 〈0, 0〉 = vQ[ϕ, σ].

Next, suppose that cp[ϕ] > 1, and that the claim holds for L1-formulas of lower com-

plexity. Let σ be an 〈L1,D〉-assignment. Exactly one of the following holds:

• ϕ = (ϕ1∧ϕ2) for L1-formulas ϕ1 and ϕ2 such that cp[ϕ1] < cp[ϕ] and cp[ϕ2] < cp[ϕ].

By the induction hypothesis,

W [ϕ1, σ] ∈ 〈vf[ϕ1, σ], vt[ϕ1, σ]〉 and W [ϕ2, σ] ∈ 〈vf[ϕ2, σ], vt[ϕ2, σ]〉.
Hence,

min{W [ϕ1, σ],W [ϕ2, σ]} ∈ 〈min{vf[ϕ1, σ], vf[ϕ2, σ]},min{vt[ϕ1, σ], vt[ϕ2, σ]}〉,
and so W [ϕ, σ] ∈ vQ[ϕ, σ].

• ϕ = (ϕ1∨ϕ2) for L1-formulas ϕ1 and ϕ2 such that cp[ϕ1] < cp[ϕ] and cp[ϕ2] < cp[ϕ].

This case is similar to the previous case (replace min by max).

• ϕ = (ϕ1 ⊃ ϕ2) for L1-formulas ϕ1 and ϕ2 such that cp[ϕ1] < cp[ϕ] and cp[ϕ2] < cp[ϕ].

By the induction hypothesis,

W [ϕ1, σ] ∈ 〈vf[ϕ1, σ], vt[ϕ1, σ]〉 and W [ϕ2, σ] ∈ 〈vf[ϕ2, σ], vt[ϕ2, σ]〉.
Since u1 ≤ u′ ≤ u2 and u3 ≤ u′′ ≤ u4 imply that u2 → u3 ≤ u′ → u′′ ≤ u1 → u4, we

obtain that: W [ϕ1, σ] → W [ϕ2, σ] ∈ 〈vt[ϕ1, σ]→ vf[ϕ2, σ], vf[ϕ1, σ]→ vt[ϕ2, σ]〉,
and so W [ϕ, σ] ∈ vQ[ϕ, σ].

• ϕ = (Qxψ) for some Q ∈ {∀,∃}, variable x of L1, and L1-formula ψ such that

cp[ψ] < cp[ϕ]. We continue with Q = ∀ (the proof is similar for ∃). By the

induction hypothesis, for every d ∈ D, W [ψ, σx:=d] ∈ v[ψ, σx:=d]. Hence,

W [ϕ, σ] = inf
d∈D
W [ψ, σx:=d] ∈ 〈 inf

d∈D
vf[ψ, σx:=d], inf

d∈D
vt[ψ, σx:=d]〉 = vQ[ϕ, σ].

Corollary 8.6.2. If 6`cfHIF H, then there exists an L1-structure which is not a model of

H.
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Proof. Suppose that 6`cfHIF H. Then, by Theorem 8.5.9, there exists a legal quasi-L1-
structure Q = 〈V ,D, I, P, v〉, which is not a model of H. This implies that there exists

an 〈L1,D〉-assignment σ, such that Q, σ 6|= s for every s ∈ H. Let W = 〈V ,D, I, P ′〉 be

an L1-structure satisfying the requirement in Theorem 8.6.1. We show that W , σ 6|= H.

Let s ∈ H. Since Q, σ 6|= s, we have Qf[s, σ] > Qt[s, σ]. The fact that W [ϕ, σ] ∈ v[ϕ, σ]

for every ϕ entails thatWf[ϕ, σ] ≥ vf[ϕ, σ] andWt[ϕ, σ] ≤ vt[ϕ, σ] for every ϕ. It follows

that Wf[s, σ] >Wt[s, σ], and so W , σ 6|= s.

Corollary 8.6.3. For every L1-formula ϕ, if 
GöL1 ϕ then `HIF {{t:ϕ}}.

Finally, we automatically obtain the admissibility of the cut rule:

Corollary 8.6.4. If an L1-hypersequent is provable in HIF then it is provable in HIF

without applying (cut).

Proof. Note that if an L1-hypersequent H is provable in HIF, then every L1-structure

is a model of H. By Corollary 8.6.2, this implies that `cfHIF H.

Remark 8.6.5. While we allowed any Gödel set to serve as the set of truth values in

L1-structures, we could equivalently take the real interval [0, 1]. Obviously, soundness for

[0, 1] is a particular instance. Completeness for [0, 1] can be obtained by embedding the

set V0 in the proof of Theorem 8.5.9 into the rational numbers in [0, 1], and continuing

the proof with V = [0, 1].



Chapter 9

Calculus for Second-Order Gödel

Logic

Fuzzy logics, and Gödel logic in particular, have a wide variety of applications, as they

provide a reasonable model of certain very common vagueness phenomena. Both their

propositional and first-order versions are well-studied by now (see, e.g., [63]). Clearly,

for many interesting applications (see, e.g., [38] and Section 5.5.2 in Chapter I of [45]),

propositional and first-order fuzzy logics do not suffice, and one has to use higher-order

versions. These are much less developed (see, e.g., [95] and [45]), especially from the

proof-theoretic perspective. Evidently, higher-order fuzzy logics deserve a proof-theoretic

study, with the aim of providing a basis for automated deduction methods, as well as a

complimentary point of view in the investigation of these logics.

In this chapter we study the extension of HIF with usual rules for second-order

quantifiers. These consist of the single-conclusion hypersequent version of the rules for

introducing the second-order quantifiers in the ordinary sequent calculus for classical

logic (see, e.g., [58, 90]). We denote by HIF2 the extension of HIF with these rules.

To the best of our knowledge, this system is studied here for the first time. Our main

results is that HIF2 is sound and complete for second-order Gödel logic, and that (cut)

is admissible in HIF2. It should be noted that like in the case of second-order classical

logic, the obtained calculus characterizes Henkin-style second-order Gödel logic. Thus

second-order quantifiers range over a domain (of fuzzy sets) that is directly specified

in the second-order structure, and this domain should admit full comprehension. This

is in contrast to what is called the standard semantics, where second-order quantifiers

range over all subsets of the universe. Hence HIF2 is practically a system for two-sorted

first-order Gödel logic together with the comprehension axiom (see also [37]).

Our approach in proving cut-admissibility for HIF2 is (of-course) semantic, and it is

similar to the one taken in Chapter 8 for HIF. Note that unlike in first-order calculi,

157
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usual syntactic arguments for cut-elimination dramatically fail for the rules of second-

order quantifiers. Thus the first proof of cut-admissibility for the extension of LK with

rules for second-order quantifiers was also semantic (see also the discussion in Chapter 1,

page 8).

Publications Related to this Chapter

The material in this chapter was not published before.

9.1 Preliminaries

For the simplicity of the presentation, we follow [58] and restrict ourselves to simplified

second-order languages, in which the second-order part of the signature consists only of

one predicate symbol ε (with the intuitive meaning of set inclusion). This is formulated

in the next definition.

Definition 9.1.1. A simple second-order language is obtained by augmenting a first-

order language (see Definition 8.1.1) with the following:

1. Infinitely many set variables χ1, χ2, .... We use the metavariables X, Y, Z (with or

without subscripts) for set variables. To avoid confusion, we shall refer the variables

ν1, ν2, ... of the underlying first-order language as individual variables.

2. Set quantifiers ∀s and ∃s. We use Qs as a metavariable for the set quantifiers. We

shall refer the quantifiers ∀,∃ of the underlying first-order language as individual

quantifiers, and usually denote them by ∀i and ∃i.
3. An arbitrary set of set constant symbols. The metavariable C are is to range over set

constant symbols. We shall refer the constant symbols of the underlying first-order

language as individual constant symbols.

4. A predicate symbol ε with two places, the first for individuals and the second for

sets.

In what follows, L2 denotes an arbitrary simple second-order language.

Definition 9.1.2. The set of L2-terms consists of first-order L2-terms and second-order

L2-terms. First-order L2-terms are defined as in Definition 8.1.2, while second-order

L2-terms consists of all set variables of L2 and all set constant symbols of L2. We use

T (with or without subscripts) as a metavariable for second-order L2-terms. The set

of (individual) variables occurring in a first-order L2-term t is defined as usual, and

denoted by Fv[t]. Similarly, the set of set variables occurring in a second-order L2-term
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T is denoted by Fv[T ]. Substitutions in first-order L2-terms (denoted by t′{t/x}) are

defined as in Definition 8.1.7.

Definition 9.1.3. Concrete L2-formulas are defined as for a first-order language (Defi-

nition 8.1.3), with the following additions:

1. (tεT ) is a concrete L2-formula for every first-order L2-term t and second-order

L2-term T .

2. If Φ is a concrete L2-formula, and X is a set variable of L2, then (∀sXΦ) and

(∃sXΦ) are concrete L2-formulas.

Fv[Φ], [Φ]α, and cp[Φ] for a concrete L2-formula Φ, are defined as in first-order lan-

guages (Definition 8.1.3), where concrete L2-formulas of the form (tεT ) are also consid-

ered as atomic concrete formulas, whose complexity is 1. As for first-order language, L2-
formulas are defined as equivalence classes of concrete L2-formulas (see Definition 8.1.4),

and Fv[ϕ] and cp[ϕ] for an L2-formula ϕ are defined exactly as for L1-formulas (using

representatives). Similarly, (ϕ1 �ϕ2) for L2-formulas ϕ1, ϕ2 and � ∈ {∧,∨,⊃}, as well as

(Qixϕ) for L2-formula ϕ and Qi ∈ {∀i,∃i} are defined as in Definition 8.1.5. In addition,

we define the following:

Definition 9.1.4. For Qs ∈ {∀s,∃s}, a set variable X of L2, and an L2-formula ϕ:

(QsXϕ) = [(QsXΦ)]α for some Φ ∈ ϕ.

Proposition 9.1.5. Exactly one of the following holds for every L2-formula ϕ:

• cp[ϕ] = 1 and exactly one of the following holds:

– ϕ = {p(t1, ... , tn)} for some n-ary predicate symbol p of L2,and first-order

L2-terms t1, ... , tn.

– ϕ = {(tεT )} for some first-order L2-term t, and second-order L2-term T .

– ϕ = {⊥}.

• ϕ = (ϕ1 �ϕ2) for some � ∈ {∧,∨,⊃}, and unique L2-formulas ϕ1 and ϕ2 such that

cp[ϕ1] < cp[ϕ] and cp[ϕ2] < cp[ϕ].

• For every individual variable x 6∈ Fv[ϕ], ϕ = (Qixψ) for some Qi ∈ {∀i,∃i}, and

unique L2-formula ψ such that cp[ψ] < cp[ϕ].

• For every set variable X 6∈ Fv[ϕ], ϕ = (QsXψ) for some Qs ∈ {∀s, ∃s}, and unique

L2-formula ψ such that cp[ψ] < cp[ϕ].

Substitution operations are defined as follows:
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Definition 9.1.6. Let t be a first-order L2-term, and x an individual variable of L2.
Given an L2-formula ϕ, ϕ{t/x} is inductively defined by:

ϕ{t/x} =



{p(t1{t/x}, ... , tn{t/x})} ϕ = {p(t1, ... , tn)}

{(t′{t/x}εT )} ϕ = {(t′εT )}

ϕ ϕ = {⊥}

(ϕ1{t/x} � ϕ2{t/x}) ϕ = (ϕ1 � ϕ2)

(Qiyψ{t/x}) ϕ = (Qiyψ) for y 6∈ Fv[t] ∪ {x}

(QsY ψ{t/x}) ϕ = (QsY ψ)

Definition 9.1.7. Let T be a second-order L2-term, and X a set variable of L2. Given

an L2-formula ϕ, ϕ{T/X} is inductively defined by:

ϕ{T/X} =



ϕ ϕ = {p(t1, ... , tn)}

ϕ ϕ = {(tεT ′)} for T ′ 6= X

{(tεT )} ϕ = {(tεX)}

ϕ ϕ = {⊥}

(ϕ1{T/X} � ϕ2{T/X}) ϕ = (ϕ1 � ϕ2)

(Qiyψ{T/X}) ϕ = (Qiyψ)

(QsY ψ{T/X}) ϕ = (QsY ψ) for Y 6∈ Fv[T ] ∪ {X}

Note that the above substitution operations are well-defined. In particular, the choice

of the variables y and Y is immaterial.

9.2 Henkin-style Second-Order Gödel Logic

In this section we precisely define Henkin-style second-order Gödel logic, via a semantic

presentation. These definitions naturally extend the usual definitions of Henkin-style

second-order classical logic, by replacing the usual two truth values True and False by

any bounded complete linearly ordered set of truth values. From a different angle, these

definitions naturally extend (standard) first-order Gödel logic (presented in Chapter 8)

by adding an additional collection of fuzzy sets, over which the set quantifiers range.

Definition 9.2.1. A domain D for a Gödel set V consists of:

• A non-empty set, called individuals domain and denoted by Di.
• A non-empty collection of fuzzy subsets of Di over V (see Definition 8.2.3), called

sets domain and denoted by Ds.
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Given a domain D, an 〈L2,D〉-interpretation I consists of:

• A function assigning an element in Di to every individual constant symbol of L2,
and a function in Din → Di to every n-ary function symbol of L2. We call this

function individuals interpretation, and denote it by Ii.

• A function assigning a fuzzy subset in Ds to every set constant symbol of L2. We

call this function sets interpretation, and denote it by Is.

Note that Di is a (first-order) domain, and Ii is an 〈L1,D〉-interpretation (see Defi-

nition 8.2.2). Next, we define L2-structures exactly like we defined L1-structures (Defi-

nition 8.2.4), based on the new notions of domain and interpretation.

Definition 9.2.2. An L2-structure is a triple W = 〈V ,D, I, P 〉, where:

1. V is a Gödel set.

2. D is a domain for V .

3. I is an 〈L2,D〉-interpretation.

4. P is a function assigning a fuzzy subset of Dni over V to every n-ary predicate

symbol of L2.

Assignments are also defined as their first-order counterparts (Definition 8.2.5):

Definition 9.2.3. Let D be a domain.

1. An 〈L2,D〉-assignment is a function assigning an element of Di to every individual

variable of L2, and an element of Ds to every set variable of L2.

2. Given an 〈L2,D〉-interpretation I and an 〈L2,D〉-assignment σ, σI is the function

assigning elements of Di and Ds to L2-terms, recursively defined by:

• σI [c] = Ii[c] for every individual constant symbol c of L2.
• σI [x] = σ[x] for every individual variable x of L2.
• σI [f(t1, ... , tn)] = Ii[f ](σI [t1], ... , σI [tn]) for every n-ary function symbol f of

L2 and n first-order L2-terms t1, ... , tn.

• σI [C] = Is[C] for every set constant symbol C of L2.
• σI [X] = σ[X] for every set variable X of L2.

3. Let σ be an 〈L2,D〉-assignment. Given an individual variable x of L2 and d ∈ Di, we

denote by σx:=d the 〈L2,D〉-assignment that is identical to σ except for σx:=d[x] = d.

Similarly, given a set variableX of L2, andD ∈ Ds, we denote by σX:=D the 〈L2,D〉-
assignment that is identical to σ except for σX:=D[X] = D. These notations are

naturally extended to several distinct variables (e.g. σν1:=d1,ν2:=d2,χ1:=D).
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Next, we generalize Definition 8.2.7 for L2-structures.

Definition 9.2.4. LetW = 〈V ,D, I, P 〉 be an L2-structure. For every L2-formula ϕ and

〈L2,D〉-assignment σ, W [ϕ, σ] is the element of V inductively defined as follows:

W [ϕ, σ] =



P [p][σI [t1], ... , σI [tn]] ϕ = {p(t1, ... , tn)}

σI [T ][σI [t]] ϕ = {(tεT )}

0 ϕ = {⊥}

min{W [ϕ1, σ],W [ϕ2, σ]} ϕ = (ϕ1 ∧ ϕ2)

max{W [ϕ1, σ],W [ϕ2, σ]} ϕ = (ϕ1 ∨ ϕ2)

W [ϕ1, σ]→W [ϕ2, σ] ϕ = (ϕ1 ⊃ ϕ2)

infd∈Di
W [ψ, σx:=d] ϕ = (∀ixψ)

supd∈Di
W [ψ, σx:=d] ϕ = (∃ixψ)

infD∈DsW [ψ, σX:=D] ϕ = (∀sXψ)

supD∈Ds
W [ψ, σX:=D] ϕ = (∃sXψ)

Again, it can be verified that the choice of x and X in the last definition is immaterial.

Note that the last definition establishes the connection between the predicate symbol ε,

and the (fuzzy) set inclusion. The truth value assigned to a formula of the form {(tεT )}
with respect to an assignment σ is equal to the membership degree of σI [t] in the fuzzy

subset σI [T ].

The following usual lemma will be needed below (the proof is similar to the proof of

Lemma 8.2.8).

Lemma 9.2.5. Let W = 〈V ,D, I, P 〉 be an L2-structure.

1. Let x be an individual variable of L2 and d an element of Di. For every L2-formula

ϕ such that x 6∈ Fv[ϕ], and 〈L2,D〉-assignment σ: W [ϕ, σx:=d] =W [ϕ, σ].

2. Let X be a set variable of L2 and D an element of Ds. For every L2-formula ϕ

such that X 6∈ Fv[ϕ], and 〈L2,D〉-assignment σ: W [ϕ, σX:=D] =W [ϕ, σ].

Next, we define Henkin-style second-order Gödel logic. This amounts to the set of

tautologies induced by the structures defined above with the additional restriction of

comprehension. Thus, as done in Henkin-style classical second-order logic, we require

that all (fuzzy) subsets of the universe that can be captured by some formula, are indeed

included in the domain of (fuzzy) subsets. Structures satisfying this property (namely,

admit the comprehension axiom) are called comprehensive.

Definition 9.2.6. Let W = 〈V ,D, I, P 〉 be an L2-structure. Given an L2-formula ϕ, an

individual variable x of L2, and an 〈L2,D〉-assignment σ, we denote by W [ϕ, σ, x] the
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fuzzy subset of Di over V defined by λd ∈ Di.W [ϕ, σx:=d]. W is called comprehensive if

W [ϕ, σ, x] ∈ Ds for every ϕ, x, and σ.

Definition 9.2.7. For an L2-formula ϕ, we write 
GöL2 ϕ if W [ϕ, σ] = 1 for every

comprehensive L2-structure W = 〈V ,D, I, P 〉 and 〈L2,D〉-assignment σ. GöL2 is the

logic consisting of all formulas ϕ such that 
GöL2 ϕ.

Example 9.2.8. It is easy to see that the comprehension axiom scheme is valid in GöL2 ,

i.e.


GöL2 (∃sX(∀ix((ϕ ⊃ {(xεX)}) ∧ ({(xεX)} ⊃ ϕ))))

for every L2-formula ϕ, set variable X 6∈ Fv[ϕ], and individual variable x. Indeed, let

W = 〈V ,D, I, P 〉 be a comprehensive L2-structure, and σ be an 〈L2,D〉-assignment. By

definition, W [ϕ, σ, x] ∈ Ds. Thus

W [(∃sX(∀ix((ϕ ⊃ {(xεX)}) ∧ ({(xεX)} ⊃ ϕ)))), σ] ≥
W [(∀ix((ϕ ⊃ {(xεX)}) ∧ ({(xεX)} ⊃ ϕ))), σX:=W[ϕ,σ,x]].

By definition, for every d ∈ Di we have:

W [{(xεX)}), σX:=W[ϕ,σ,x],x:=d] =W [ϕ, σ, x][d] =W [ϕ, σx:=d].

Since X 6∈ Fv[ϕ],

W [(ϕ ⊃ {(xεX)}), σX:=W[ϕ,σ,x],x:=d] =W [ϕ, σx:=d]→W [ϕ, σx:=d] = 1,

and similarly,

W [({(xεX)} ⊃ ϕ), σX:=W[ϕ,σ,x],x:=d] = 1.

It follows that

W [((ϕ ⊃ {(xεX)}) ∧ ({(xεX)} ⊃ ϕ)), σX:=W[ϕ,σ,x],x:=d] = min{1, 1} = 1.

Since this holds for every d ∈ Di, we have:

inf
d∈Di

W [((ϕ ⊃ {(xεX)}) ∧ ({(xεX)} ⊃ ϕ)), σX:=W[ϕ,σ,x],x:=d] = 1.

Consequently,

W [(∃sX(∀ix((ϕ ⊃ {(xεX)}) ∧ ({(xεX)} ⊃ ϕ)))), σ] = 1.

9.3 The Hypersequent Calculus HIF2

In this section we present a hypersequent calculus HIF2 for GöL2 . HIF2 is obtained

by augmenting the hypersequent calculus HIF for standard first-order Gödel logic (pre-

sented in Section 8.3) with rules for second-order quantifiers. These are the hypersequent

versions of the sequent rules used for classical logic (see the calculus L2K in [58]). They

have the same structure of the rules for individual quantifiers, where instead of using first-

order terms in (f:∀) and (t:∃), one uses abstraction terms (abstracts for short). Abstracts
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are syntactic objects of the form {◦x | ϕ◦} that intuitively represent sets of individuals.

Note that abstracts are just a syntactic tool for formulating the rules of the set quanti-

fiers. Derivations in the calculus still consists solely of hypersequents, and no abstracts

are mentioned in them. As we did for formulas, we first define concrete abstracts, and

abstracts are defined as alpha-equivalence classes of concrete ones.

Definition 9.3.1. A concrete L2-abstract is an expression of the form {◦x | Φ◦}, where x

is an individual variable of L2, and Φ is a concrete L2-formula. Alpha-equivalence be-

tween concrete L2-abstracts is defined as usual (where x is considered bound in {◦x | Φ◦}),
and [{◦x | Φ◦}]α is standing for the set of all concrete L2-abstracts which are alpha-

equivalent to {◦x | Φ◦}. An L2-abstract is an equivalence class of concrete L2-abstracts

under alpha-equivalence. We mainly use τ as a metavariable for L2-abstracts. The set

of free variables of an L2-abstract is defined using representatives, i.e. for an L2-abstract

τ , Fv[τ ] = Fv[{◦x | Φ◦}] for some {◦x | Φ◦} ∈ τ .

Definition 9.3.2. Given an individual variable x of L2 and an L2-formula ϕ, {◦x | ϕ◦} is

the L2-abstract [{◦x | Φ◦}]α for some Φ ∈ ϕ.

Proposition 9.3.3. For every L2-abstract τ and individual variable x 6∈ Fv[τ ], there

exists a unique L2-formula ϕ, such that τ = {◦x | ϕ◦}.

Definition 9.3.4. Let τ be an L2-abstract, and t a first-order L2-term. τ [t] is defined

to be the L2-formula ϕ{t/x} for some individual variable x and L2-formula ϕ, such that

τ = {◦x | ϕ◦}.

It is easy to see that τ [t] is well-defined, as it does not depend on the choice of x.

Definition 9.3.5. Let τ be an L2-abstract and X a set variable of L2. Given an L2-
formula ϕ, ϕ{τ/X} is inductively defined by:

ϕ{τ/X} =



ϕ ϕ = {p(t1, ... , tn)}, ϕ = {(tεT )} for T 6= X,ϕ = {⊥}

τ [t] ϕ = {(tεX)}

(ϕ1{τ/X} � ϕ2{τ/X}) ϕ = (ϕ1 � ϕ2)

(Qiyψ{τ/X}) ϕ = (Qiyψ) for y 6∈ Fv[τ ]

(QsY ψ{τ/X}) ϕ = (QsY ψ) for Y 6∈ Fv[τ ] ∪ {X}

Note that the this substitution operation is well-defined. In particular, the choice of

the variables y and Y is immaterial.

Example 9.3.6. For ϕ = (∀iν1({(ν1εχ1)} ⊃ (∃sχ2{(ν1εχ2)}))), and τ = {◦ν2 | {p(ν2, ν2)}◦},
we have ϕ{τ/χ1} = (∀iν1({p(ν1, ν1)} ⊃ (∃sχ2{(ν1εχ2)}))).
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The following lemmas will be useful in the sequel.

Notation 9.3.7. For a second-order L2-term T , the L2-abstract {◦ν1 | {(ν1εT )}◦} is de-

noted by Tabs.

Lemma 9.3.8. Let T be a second-order L2-term. For every L2-formula ϕ and set variable

X of L2, ϕ{Tabs/X} = ϕ{T/X}.

Proof. By usual induction on the complexity of ϕ.

Lemma 9.3.9. Let τ be an L2-abstract, t, t′ first-order L2-terms, and x an individual

variable such that x 6∈ Fv[τ ]. Then, τ [t′]{t/x} = τ [t′{t/x}].

Proof. It is straightforward to prove that ϕ{t′/y}{t/x} = ϕ{t′{t/x}/y} for every L2-formula

ϕ, first-order L2-terms t and t′, and individual variables x and y, such that x 6∈ Fv[ϕ].

The claim then easily follows from our definitions.

Using abstracts, the rule schemes for the second-order quantifiers in HIF2 are given

by:

(f:∀s)
H | Γ, ϕ{τ/X} ⇒ E

H | Γ, (∀sXϕ)⇒ E
(t:∀s)

H | Γ⇒ ϕ

H | Γ⇒ (∀sXϕ)

(f:∃s)
H | Γ, ϕ⇒ E

H | Γ, (∃sXϕ)⇒ E
(t:∃s)

H | Γ⇒ ϕ{τ/X}
H | Γ⇒ (∃sXϕ)

where X must not be a free variable in the lower hypersequent in applications of the

rules (t:∀s) and (f:∃s).

Below, we write `HIF2 H to denote that an L2-hypersequent H is provable in HIF2,

and `cfHIF2 H to denote that H is provable in HIF2 without applying (cut).

Since formulas are equivalence classes, the rules (t:∀s), and (f:∃s) could be written

as well as:

(t:∀s)
H | Γ⇒ ϕ{Y/X}
H | Γ⇒ (∀sXϕ)

(f:∃s)
H | Γ, ϕ{Y/X} ⇒ E

H | Γ, (∃sXϕ)⇒ E

where Y must not be a free variable in the lower hypersequent.

Remark 9.3.10. Note that rules given by the schemes

H | Γ, ϕ{T/X} ⇒ E

H | Γ, (∀sXϕ)⇒ E

H | Γ⇒ ϕ{T/X}
H | Γ⇒ (∃sXϕ)

,

where T is a second-order L2-term, are particular instances of (f:∀s) and (t:∃s), obtained

by choosing τ = Tabs (see Lemma 9.3.8).
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9.4 Soundness

In this section we prove the soundness of HIF2 for GöL2 . Definition 8.4.1 (defining when

a L1-structure is a model of an L1-hypersequent etc.) is adopted for L2-structures as is.

Theorem 9.4.1. Let H be an L2-hypersequent. If `HIF2 H, then every comprehensive

L2-structure is a model of H.

Soundness for GöL2 is an obvious corollary (see Corollary 8.4.3):

Corollary 9.4.2. For every L2-formula ϕ, if `HIF2 {{t:ϕ}}, then 
GöL2 ϕ.

Theorem 9.4.1 is proved in the usual way, by induction on the length of the derivation

in HIF2. We use the following technical lemmas:

Lemma 9.4.3. Let W = 〈V ,D, I, P 〉 be an L2-structure, t a first-order L2-term, and x

an individual variable of L2. For every L2-formula ϕ, and 〈L2,D〉-assignment σ:

W [ϕ, σx:=σI [t]] =W [ϕ{t/x}, σ].

Proof. The claim is proved by induction on the complexity of ϕ, similarly to the proof

of Lemma 8.2.9 for the first-order case. We do here the case ϕ = {(t′εT )}. Let σ be an

〈L2,D〉-assignment. Then ϕ{t/x} = {(t′{t/x}εT )}. ThusW [ϕ{t/x}, σ] = σI [T ][σI [t′{t/x}]].
By Lemma 8.2.6 (adapted to second-order languages), σI [t′{t/x}] = σx:=σI [t][t

′]. Now

σI [T ] = σIx:=σ[t][T ], and so σI [T ][σI [t′{t/x}]] = σIx:=σ[t][T ][σIx:=σ[t][t
′]]. By definition, this is

equal to W [ϕ, σx:=σ[t]].

Lemma 9.4.4. LetW = 〈V ,D, I, P 〉 be an L2-structure, τ an L2-abstract, x 6∈ Fv[τ ] an

individual variable, and X a set variable. For every L2-formula ϕ and 〈L2,D〉-assignment

σ: if W [τ [x], σ, x] ∈ Ds then W [ϕ{τ/X}, σ] =W [ϕ, σX:=W[τ [x],σ,x]].

Proof. If X 6∈ Fv[ϕ], then ϕ{τ/X} = ϕ and in this case the claim follows by Lemma 9.2.5.

Suppose otherwise. We prove the claim by induction on the complexity of ϕ. Suppose

that cp[ϕ] = 1. Let σ be an 〈L2,D〉-assignment, and let D0 = W [τ [x], σ, x]. Sup-

pose that D0 ∈ Ds. Since X ∈ Fv[ϕ], ϕ = {(tεX)} for some first-order L2-term

t. In this case, ϕ{τ/X} = τ [t]. By Lemma 9.3.9, τ [t] = τ [x{t/x}] = τ [x]{t/x}. Thus

W [ϕ{τ/X}, σ] = W [τ [x]{t/x}, σ]. By Lemma 9.4.3, W [τ [x]{t/x}, σ] = W [τ [x], σx:=σI [t]].

By definition, W [τ [x], σx:=σI [t]] = D0[σI [t]] =W [ϕ, σX:=D0 ].

Next, suppose that cp[ϕ] > 1, and that the claim holds for L2-formulas of lower

complexity. Let σ be an 〈L2,D〉-assignment, and again let D0 = W [τ [x], σ, x]. Suppose

that D0 ∈ Ds. Exactly one of the following holds:
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• ϕ = (ϕ1 � ϕ2) for some � ∈ {∧,∨,⊃}, and L2-formulas ϕ1 and ϕ2 such that

cp[ϕ1] < cp[ϕ] and cp[ϕ2] < cp[ϕ]. By definition, ϕ{τ/X} = (ϕ1{τ/X} � ϕ2{τ/X}).
We continue with � =⊃ (the proof is similar for ∧ and ∨). Thus,

W [ϕ{τ/X}, σ] =W [ϕ1{τ/X}, σ]→ [ϕ2{τ/X}, σ].

By the induction hypothesis (and the case in which X 6∈ Fv[ϕ]), we have both

W [ϕ1{τ/X}, σ] =W [ϕ1, σX:=D0 ] andW [ϕ2{τ/X}, σ] =W [ϕ2, σX:=D0 ]. By definition,

W [ϕ1, σX:=D0 ]→W [ϕ2, σX:=D0 ] =W [ϕ, σX:=D0 ].

• ϕ = (Qiyψ) for some Qi ∈ {∀i,∃i}, individual variable y 6∈ {x} ∪ Fv[τ ] of L2, and

L2-formula ψ such that cp[ψ] < cp[ϕ]. By definition, ϕ{τ/X} = (Qiyψ{τ/X}). We

continue with Qi = ∀i (the proof is similar for ∃i). Thus,

W [ϕ{τ/X}, σ] = inf
d∈Di

W [ψ{τ/X}, σy:=d].

Now, using Lemma 9.2.5, we have D0 = W [τ [x], σy:=d, x] for every d ∈ Di (since

y 6∈ Fv[τ [x]]). Therefore, infd∈Di
W [ψ{τ/X}, σy:=d] = infd∈Di

W [ψ, σy:=d,X:=D0 ] by

the induction hypothesis. By definition, infd∈Di
W [ψ, σy:=d,X:=D0 ] =W [ϕ, σX:=D0 ].

• ϕ = (QsY ψ) for some Qs ∈ {∀s, ∃s}, set variable Y 6∈ {X} ∪ Fv[τ ] of L2, and

L2-formula ψ such that cp[ψ] < cp[ϕ]. By definition, ϕ{τ/X} = (QsY ψ{τ/X}). We

continue with Qs = ∀s (the proof is similar for ∃s). Thus,

W [ϕ{τ/X}, σ] = inf
D∈Ds

W [ψ{τ/X}, σY :=D].

Now, using Lemma 9.2.5, we have D0 = W [τ [x], σY :=D, x] for every D ∈ Ds (since

Y 6∈ Fv[τ [x]]). Therefore, infD∈DsW [ψ{τ/X}, σY :=D] = infD∈DsW [ψ, σY :=D,X:=D0 ]

by the induction hypothesis (note that Y 6= X). By definition,

inf
D∈Ds

W [ψ, σY :=D,X:=D0 ] =W [ϕ, σX:=D0 ].

Proof of Theorem 9.4.1. Let W = 〈V ,D, I, P 〉 be an L2-structure, where V = 〈V,≤〉. It

suffices to prove soundness of each possible application of a rule of HIF2. For the rules

of HIF, this is done as in the proof of Theorem 8.4.2. We prove here the soundness of

(f:∀s), and leave the other three new rules to the reader:

Suppose thatH = H ′ | s ∪ {f:(∀sXϕ)} is derived fromH ′ | s ∪ {f:{τ/X}} using (f:∀s).
Assume that W , σ 6|= H for some 〈L2,D〉-assignment σ. Hence, W , σ 6|= s′ for ev-

ery s′ ∈ H ′, and W , σ 6|= s ∪ {f:(∀sXϕ)}. Let u = Wt[s, σ]. The assumption that

W , σ 6|= s∪ {f:(∀sXϕ)} entails that Wf[s, σ] > u, and W [(∀sXϕ), σ] > u. By definition,

W [(∀sXϕ), σ] = infD∈DsW [ϕ, σX:=D]. Thus W [ϕ, σX:=D] > u for every D ∈ Ds. Let x

be an individual variable such that x 6∈ Fv[τ ], and let D0 = W [τ [x], σ, x]. Since W is

comprehensive, D0 ∈ Ds, and in particular,W [ϕ, σX:=D0 ] > u. Lemma 9.4.4 implies that

W [ϕ{τ/X}, σ] > u. It follows that W , σ 6|= s ∪ {f:ϕ{τ/X}}. Consequently, W is not a

model of H ′ | s ∪ {f:ϕ{τ/X}}.
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9.5 Complete Non-deterministic Semantics

In this section we present a non-deterministic semantics for which the cut-free fragment

of HIF2 is complete. As for HIF in the previous chapter, this semantics will be used in

the next section, where we show that ordinary counter-models can be extracted out of

non-deterministic ones.

Definition 9.5.1. A quasi-domain D consists of:

• A non-empty set, called individuals domain and denoted by Di.
• A non-empty set, called sets domain and denoted by Ds.

Given a quasi-domain D, an 〈L2,D〉-interpretation I consists of:

• A function assigning an element in Di to every individual constant symbol of L2,
and a function in Din → Di to every n-ary function symbol of L2. We call this

function individuals interpretation, and denote it by Ii.

• A function assigning an element of Ds to every set constant symbol of L2. We call

this function sets interpretation, and denote it by Is.

〈L2,D〉-assignments are defined for quasi-domains exactly as for domains (see Defi-

nition 9.2.3). Note that the elements of Ds in quasi-domains may not be fuzzy subsets.

This allows us to compose Ds out of abstracts (as done in the completeness proof). In-

stead, as defined below, the interpretation function P of a quasi-L2-structure assigns a

(quasi) fuzzy subset of Di over V to every element of Ds.

Definition 9.5.2. A quasi-L2-structure is a tuple Q = 〈V ,D, I, P, v〉, where:

1. V is a Gödel set.

2. D is a quasi-domain.

3. I is an 〈L2,D〉-interpretation.

4. P is a function assigning a quasi fuzzy subset of Dni over V to every n-ary predicate

symbol of L2, and a quasi fuzzy subset of Di over V to every element of Ds (see

Definition 8.5.1).

5. v is a function assigning a pair in {〈uf, ut〉 ∈ V × V | uf ≤ ut} to every ordered

pair of the form 〈ϕ, σ〉, where ϕ is an L2-formula and σ is an 〈L2,D〉-assignment,

such that the following hold:

(a) For every two individual variables x, y such that y 6∈ Fv[ϕ], and every d ∈ Di:
v[ϕ, σx:=d] = v[ϕ{y/x}, σy:=d].

(b) For every two set variables X, Y such that Y 6∈ Fv[ϕ], and every D ∈ Ds:
v[ϕ, σX:=D] = v[ϕ{Y/X}, σY :=D].
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Next, we define which quasi-L2-structures are considered legal.

Definition 9.5.3. Let Q = 〈V ,D, I, P, v〉 be a quasi-L2-structure. For every L2-formula

ϕ and 〈L2,D〉-assignment σ, vQ[ϕ, σ] is the pair defined as follows:

vQ[ϕ, σ] =



P [p][σI [t1], ... , σI [tn]] ϕ = {p(t1, ... , tn)}

P [σI [T ]][σI [t]] ϕ = {(tεT )}

〈0, 0〉 ϕ = {⊥}

〈min{vf[ϕ1, σ], vf[ϕ2, σ]},min{vt[ϕ1, σ], vt[ϕ2, σ]}〉 ϕ = (ϕ1 ∧ ϕ2)

〈max{vf[ϕ1, σ], vf[ϕ2, σ]},max{vt[ϕ1, σ], vt[ϕ2, σ]}〉 ϕ = (ϕ1 ∨ ϕ2)

〈vt[ϕ1, σ]→ vf[ϕ2, σ], vf[ϕ1, σ]→ vt[ϕ2, σ]〉 ϕ = (ϕ1 ⊃ ϕ2)

〈infd∈Di
vf[ψ, σx:=d], infd∈Di

vt[ψ, σx:=d]〉 ϕ = (∀ixψ)

〈supd∈Di
vf[ψ, σx:=d], supd∈Di

vt[ψ, σx:=d]〉 ϕ = (∃ixψ)

〈infD∈Ds v
f[ψ, σX:=D], infD∈Ds v

t[ψ, σX:=D]〉 ϕ = (∀sXψ)

〈supD∈Ds
vf[ψ, σX:=D], supD∈Ds

vt[ψ, σX:=D]〉 ϕ = (∃sXψ)

Conditions (a) and (b) in Definition 9.5.2 ensure that Q is well-defined, namely that

the choice of x andX is immaterial. It is straightforward to verify that vfQ[ϕ, σ] ≤ vtQ[ϕ, σ]

for every L2-formula ϕ and 〈L2,D〉-assignment σ.

Definition 9.5.4. A quasi-L2-structure Q = 〈V ,D, I, P, v〉 is called legal if we have

vQ[ϕ, σ] ⊆ v[ϕ, σ] for every L2-formula ϕ and 〈L2,D〉-assignment σ.

We adapt the definition of comprehensive structures to quasi-structures, keeping in

mind that the function P interprets the elements of Ds as quasi fuzzy sets.

Definition 9.5.5. A quasi-L2-structure Q = 〈V ,D, I, P, v〉 is called comprehensive if for

every L2-formula ϕ, individual variable x, and 〈L2,D〉-assignment σ, there exist some

D ∈ Ds such that P [D] = λd ∈ Di.v[ϕ, σx:=d].

The notion of model for quasi-L2-structures is defined exactly as in the first-order

case (Definition 8.5.8). In turn, the main completeness theorem is given by:

Theorem 9.5.6. Suppose that 6`cfHIF2 H0, for some L2-hypersequent H0. Then there

exists a legal comprehensive quasi-L2-structure which is not a model of H0.

The rest of this section is devoted to prove this theorem.
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The Herbrand Quasi-Domain

A main ingredient in the completeness proof below is the Herbrand quasi-domain. It is

defined as follows:

Definition 9.5.7. The Herbrand quasi-domain for L2, denoted by DL2 , is the quasi-

domain whose individuals domainDL2i consists of all first-order L2-terms, and sets domain

DL2s consists of all L2-abstracts. The Herbrand interpretation for L2, denoted by IL2 , is

the 〈L2,DL2〉-interpretation defined by: Ii[c] = c for every individual constant symbol

c of L2, Ii[f ] = λt1, ... , tn ∈ Di.f(t1, ... , tn) for every n-ary function symbol f of L2, and

Is[C] = Cabs = {◦ν1 | {(ν1εC)}◦} for every set constant symbol C of L2.

Below, given an 〈L2,DL2〉-assignment σ and a first-order (second-order) L2-term t (T ),

we write σ[t] (σ[T ]) instead of σIL2 [t] (σIL2 [T ]). In addition, 〈L2,DL2〉-assignments are

extended to apply on L-formulas. Roughly speaking, every occurrence of a free variable

x or X in a formula ϕ is replaced in σ[ϕ] by σ[x] or σ[X]. Formally, this is defined as

follows.

Definition 9.5.8. Let ϕ be an L2-formula, and σ an 〈L2,DL2〉-assignment. The set of

free variables of the pair 〈ϕ, σ〉 (denoted by Fv[〈ϕ, σ〉]) consists of the variables of σ[x] for

every individual variable x ∈ Fv[ϕ], and the free variables of σ[X] for every set variable

X ∈ Fv[ϕ].

Definition 9.5.9. 〈L2,DL2〉-assignments are extended to L2-formulas, according to the

following inductive definition:

σ[ϕ] =



{p(σ[t1], ... , σ[tn])} ϕ = {p(t1, ... , tn)}

σ[T ][σ[t]] ϕ = {(tεT )}

{⊥} ϕ = {⊥}

(σ[ϕ1] � σ[ϕ2]) ϕ = (ϕ1 � ϕ2)

(Qixσx:=x[ψ]) ϕ = (Qixψ) for x 6∈ Fv[〈ϕ, σ〉]

(QsXσX:=Xabs
[ψ]) ϕ = (QsXψ) for X 6∈ Fv[〈ϕ, σ〉]

Note that the choice of x and X in the last definition is immaterial, and thus σ[ϕ] is

well-defined. The following properties of the Herbrand quasi-domain are needed in the

completeness proof.

Lemma 9.5.10. Let t be a first-order L2-term and τ an L2-abstract.

1. For every L2-formula ϕ, 〈L2,DL2〉-assignment σ, and individual variables x, y such

that y 6∈ Fv[ϕ], σx:=t[ϕ] = σy:=t[ϕ{y/x}].
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2. For every L2-formula ϕ, 〈L2,DL2〉-assignment σ, and set variables X, Y such that

Y 6∈ Fv[ϕ], σX:=τ [ϕ] = σY :=τ [ϕ{Y/X}].

Proof. First, as in Lemma 8.5.16, it is straightforward to show that for every first-

order L2-terms t′ and t, 〈L2,DL2〉-assignment σ, and individual variables x, y such that

y 6∈ Fv[t′], σx:=t[t
′] = σy:=t[t

′{y/x}].
Next, we prove the first claim in the lemma by induction on the complexity of ϕ. We

include here only the cases that are special for second-order language (the other cases

are handled as in the proof of Lemma 8.5.16). Let σ be an 〈L2,DL2〉-assignment, and

x, y individual variables such that y 6∈ Fv[ϕ]. Consider the following cases:

• ϕ = {(t′εT )} for some first-order L2-term t′, and second-order L2-term T . Then,

σx:=t[ϕ] = σx:=t[T ][σx:=t[t
′]]. Since y 6∈ Fv[t′], this equals σx:=t[T ][σy:=t[t

′{y/x}]].
Since x and y does not occur in T , this is equal to σy:=t[T ][σy:=t[t

′{y/x}]]. By

definition, this formula is equal to σy:=t[{(t′{y/x}εT )}], which is σy:=t[{(t′εT )}{y/x}].
• ϕ = (QsXψ) for Qs ∈ {∀s,∃s}, L2-formula ψ such that cp[ψ] < cp[ϕ], and set

variable X 6∈ Fv[σ[ϕ]]. Then, σx:=t[ϕ] = (QsXσx:=t,X:=Xabs
[ψ]). By the induction

hypothesis, this L2-formula is equal to (QsXσy:=t,X:=Xabs
[ψ{y/x}]). And this is (by

definition) equal to σy:=t[(Q
sXψ{y/x})], which in turn equals σy:=t[(ϕ{y/x}].

Next, we prove the second claim in the lemma. Suppose that X ∈ Fv[ϕ] (otherwise,

we have σX:=τ [ϕ] = σ[ϕ] = σY :=τ [ϕ{Y/X}]). We use induction on the complexity of ϕ.

First, suppose that cp[ϕ] = 1. Let σ be an 〈L2,DL2〉-assignment, and X, Y set variables

such that Y 6∈ Fv[ϕ]. Assume that X ∈ Fv[ϕ]. Thus we have ϕ = {(tεX)} for some

first-order L2-term t. Then, σX:=τ [ϕ] = τ [σX:=τ [t]]. Since X and Y do not occur in

t, this is equal to τ [σY :=τ [t]], which in turn equals σY :=τ [ϕ{Y/X}]. Next, suppose that

cp[ϕ] > 1, and that the claim holds for L2-formulas of lower complexity. Let σ be an

〈L2,DL2〉-assignment, and X, Y set variables such that Y 6∈ Fv[ϕ]. Exactly one of the

following holds:

• ϕ = (ϕ1 �ϕ2) for � ∈ {∧,∨,⊃} and L2-formulas ϕ1 and ϕ2 such that cp[ϕ1] < cp[ϕ]

and cp[ϕ2] < cp[ϕ]. Then, σX:=τ [ϕ] = (σX:=τ [ϕ1] � σX:=τ [ϕ2]). By the induc-

tion hypothesis (and the case in which X 6∈ Fv[ϕ]), this L2-formula is equal to

(σY :=τ [ϕ1{Y/X}]�σY :=τ [ϕ2{Y/X}]). And, by definition, this is equal to σY :=τ [ϕ{Y/X}].
• ϕ = (Qixψ) for Qi ∈ {∀i,∃i}, L2-formula ψ such that cp[ψ] < cp[ϕ], and individual

variable x 6∈ Fv[τ ] ∪ Fv[σ[ϕ]]. Then, σX:=τ [ϕ] = (QixσX:=τ,x:=x[ψ]). By the induc-

tion hypothesis, this L2-formula is equal to (QixσY :=τ,x:=x[ψ{Y/X}]). And this is

(by definition) equal to σY :=τ [ϕ{Y/X}].
• ϕ = (QsZψ) for Qs ∈ {∀s,∃s}, L2-formula ψ such that cp[ψ] < cp[ϕ], and set

variable Z 6∈ Fv[τ ]∪{X, Y }∪Fv[σ[ϕ]]. Then, σX:=τ [ϕ] = (QsZσX:=τ,Z:=Zabs
[ψ]). By
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the induction hypothesis, this L2-formula is equal to (QsZσY :=τ,Z:=Zabs
[ψ{Y/X}]).

And this is (by definition) equal to σY :=τ [ϕ{Y/X}].

Lemma 9.5.11. Let t be a first-order L2-term and τ an L2-abstract.

1. For every L2-formula ϕ, 〈L2,DL2〉-assignment σ, and individual variables x, z such

that z 6∈ Fv[σ[ϕ]], σx:=z[ϕ]{t/z} = σx:=t[ϕ].

2. For every L2-formula ϕ, 〈L2,DL2〉-assignment σ, and set variable X 6∈ Fv[σ[ϕ]],

σX:=Xabs
[ϕ]{τ/X} = σX:=τ [ϕ].

Proof. First, as in Lemma 8.5.17, it is straightforward to show that for every first-

order L2-terms t′ and t, 〈L2,DL2〉-assignment σ, and individual variables x, z such that

z 6∈ Fv[σ[t′]], σx:=z[t
′]{t/z} = σx:=t[t

′].

Next, we prove the first claim in the lemma by induction on the complexity of ϕ. We

include here only the cases that are special for second-order language (the other cases

are handled as in the proof of Lemma 8.5.17). Let σ be an 〈L2,DL2〉-assignment, and

x, z individual variables such that z 6∈ Fv[σ[ϕ]]. Consider the following cases:

• ϕ = {(t′εT )} for some first-order L2-term t′, and second-order L2-term T . Then,

σx:=z[ϕ]{t/z} = σx:=z[T ][σx:=z[t
′]]{t/z} = σ[T ][σx:=z[t

′]]{t/z}. By Lemma 9.3.9, since

z 6∈ Fv[σ[T ]], this formula equals σ[T ][σx:=z[t
′]{t/z}]. Since z 6∈ Fv[σ[t′]], the proof

above for terms entails that this formula equals σ[T ][σx:=t[t
′]]. Since x does not

occur in T , this is equal to σx:=t[T ][σx:=t[t
′]], which is, by definition, σx:=t[ϕ].

• ϕ = (QsXψ) for Qs ∈ {∀s,∃s}, L2-formula ψ such that cp[ψ] < cp[ϕ], and set

variable X 6∈ Fv[σ[ϕ]]. Then,

σx:=z[ϕ]{t/z} = (QsXσx:=z,X:=Xabs
[ψ]){t/z} = (QiXσx:=z,X:=Xabs

[ψ]{t/z}).
By the induction hypothesis, this L2-formula is equal to (Qiyσx:=t,X:=Xabs

[ψ]). And

this is (by definition) equal to σx:=t[ϕ].

Next, we prove the second claim in the lemma. First, if we have X 6∈ Fv[ϕ], then

σX:=Xabs
[ϕ] = σ[ϕ] = σX:=τ [ϕ]. Since X 6∈ Fv[σ[ϕ]], we also have σ[ϕ]{τ/X} = σ[ϕ] as

well. Suppose now that X ∈ Fv[ϕ]. We use induction on the complexity of ϕ. First,

suppose that cp[ϕ] = 1. Let σ be an 〈L2,DL2〉-assignment, and let X 6∈ Fv[σ[ϕ]]. Since

X ∈ Fv[ϕ], we must have ϕ = {(tεX)} for some first-order L2-term t. Then,

σX:=Xabs
[ϕ]{τ/X} = Xabs[σ[t]]{τ/X} = {(σ[t]εX)}{τ/X} = τ [σ[t]] = σX:=τ [ϕ].

Next, suppose that cp[ϕ] > 1, and that the claim holds for L2-formulas of lower

complexity. Let σ be an 〈L2,DL2〉-assignment, and let X 6∈ Fv[σ[ϕ]]. Exactly one of the

following holds:
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• ϕ = (ϕ1 �ϕ2) for � ∈ {∧,∨,⊃} and L2-formulas ϕ1, ϕ2 such that cp[ϕ1] < cp[ϕ] and

cp[ϕ2] < cp[ϕ]. Then, σX:=Xabs
[ϕ]{τ/X} = (σX:=Xabs

[ϕ1]{τ/X} � σX:=Xabs
[ϕ2]{τ/X}).

By the induction hypothesis (and the case in which X 6∈ Fv[ϕ]), this L2-formula is

equal to (σX:=τ [ϕ1] � σX:=τ [ϕ2]). And, by definition, this is equal to σX:=τ [ϕ].

• ϕ = (Qixψ) for Qi ∈ {∀i,∃i}, L2-formula ψ such that cp[ψ] < cp[ϕ], and individual

variable x 6∈ Fv[τ ] ∪ Fv[σ[ϕ]]. Then,

σX:=Xabs
[ϕ]{τ/X} = (QixσX:=Xabs,x:=x[ψ]){τ/X} = (QixσX:=Xabs,x:=x[ψ]{τ/X}).

By the induction hypothesis, this L2-formula is equal to (QixσX:=τ,x:=x[ψ]). And

this is (by definition) equal to σX:=τ [ϕ].

• ϕ = (QsY ψ) for Qs ∈ {∀s,∃s}, L2-formula ψ such that cp[ψ] < cp[ϕ], and set

variable Y 6∈ Fv[τ ] ∪ {X} ∪ Fv[σ[ϕ]]. Then,

σX:=Xabs
[ϕ]{τ/X} = (QsY σX:=Xabs,Y :=Yabs [ψ]){τ/X} = (QiY σX:=Xabs,Y :=Yabs [ψ]{τ/X}).

By the induction hypothesis, this L2-formula is equal to (QiY σX:=τ,Y :=Yabs [ψ]). And

this is (by definition) equal to σX:=τ [ϕ].

Proof of Theorem 9.5.6

Suppose that 6`cfHIF2 H0. The availability of external and internal weakenings ensures

that H0 is unprovable. As in Lemma 8.5.12, it is possible to extend H0 to a maximal

extended L2-hypersequent Ω∗ such that H0 v Ω∗.1 We use Ω∗ to construct a counter-

model for H0 in the form of a quasi-L2-structure Q = 〈V ,D, I, P, v〉. First, the notations

L[ϕ], R[ϕ],Ω∗[ϕ] are defined exactly in the completeness proof for HIF (Theorem 8.5.9).

Similarly, the bounded linearly ordered set V0, the Gödel set V are constructed using Ω∗

exactly as in the first-order proof. Now, let D = DL2 be the Herbrand quasi-domain for

L2, I = IL
2

the Herbrand interpretation for L2, and define P and v as follows:

• For every n-ary predicate symbol p of L2, P [p] = λt1, ... , tn ∈ Di.Ω∗[{p(t1, ... , tn)}].
• For every L2-abstract τ ∈ Ds, P [τ ] = λt ∈ Di.Ω∗[τ [t]].

• For every L2-formula ϕ and 〈L2,D〉-assignment σ, v[ϕ, σ] = Ω∗[σ[ϕ]].

It is easy to verify, using Lemma 9.5.10, that conditions (a) and (b) from Definition 9.5.2

hold.

1A maximal extended L2-hypersequent is defined just like a maximal extended L1-hypersequent, with
the following natural additional requirements in “the witness property”:

For every L2-formula ϕ and set variable X of L2:

1. If t:(∀sXϕ) ∈ µ, then t:ϕ{Y/X} ∈ µ for some set variable Y of L2.
2. If f:(∃sXϕ) ∈ µ, then f:ϕ{Y/X} ∈ µ for some set variable Y of L2.
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We show that Q is not a model of H0. Consider the 〈L2,D〉-assignment σid defined by

σid[x] = x for every individual variable x of L2, and σid[X] = Xabs for every set variable

X of L2. Let s ∈ H0. Since H0 v Ω∗, there exists some µ ∈ Ω∗, such that s ⊆ µ. We

claim that µ ∈ vf[ϕ, σid] whenever f:ϕ ∈ s, and µ 6∈ vt[ϕ, σid] whenever t:ϕ ∈ s. To see

this, it suffices to note that σid[ϕ] = ϕ for every L2-formula ϕ. This fact follows from the

definition of σid[ϕ]. Consequently, vf[ϕ, σid] 6⊆ vt[ϕ, σid], and so Q, σid 6|= s.

It remains to prove that Q is legal and comprehensive. We first show that it is legal,

namely that vQ[ϕ, σ] ⊆ v[ϕ, σ] for every L2-formula ϕ and 〈L2,D〉-assignment σ. Let

ϕ be an L2-formula, and σ an 〈L2,D〉-assignment. If ϕ is a first-order formula (L1-
formula) the proof proceeds as in the proof of Theorem 8.5.9. We consider here only the

new possible cases:

• ϕ = {(tεT )} for some first-order L2-term t, and second-order L2-term T . Then

vQ[ϕ, σ] = P [σ[T ]][σ[t]] = Ω∗[σ[T ][σ[t]]] = Ω∗[σ[ϕ]] = v[ϕ, σ].

• ϕ = (∀sXψ) for some set variable X 6∈ Fv[σ[ϕ]] and L2-formula ψ. Then:

vQ[ϕ, σ] = 〈 inf
τ∈Ds

vt[ψ, σX:=τ ], inf
τ∈Ds

vf[ψ, σX:=τ ]〉.

We first prove that vf[ϕ, σ] ⊆ infτ∈Ds v
f[ψ, σX:=τ ]. Thus we show that for every

τ ∈ Ds we have vf[ϕ, σ] ⊆ vf[ψ, σX:=τ ]. Suppose that µ 6∈ vf[ψ, σX:=τ ] for some

τ ∈ Ds. By definition, we have f:σX:=τ [ψ] 6∈ µ. By Lemma 9.5.11, we have

σX:=τ [ψ] = σX:=Xabs
[ψ]{τ/X}. The maximality of Ω∗ ensures that there exist an

L2-hypersequent H v Ω∗, and L2-sequents s1, ... , sn ⊆ µ, such that

`cfHIF2 H | s1 ∪ {f:σX:=Xabs
[ψ]{τ/X}} | ... | sn ∪ {f:σX:=Xabs

[ψ]{τ/X}}.
By n consecutive applications of (f:∀s), we obtain that

`cfHIF2 H | s1 ∪ {f:(∀sXσX:=Xabs
[ψ])} | ... | sn ∪ {f:(∀sXσX:=Xabs

[ψ])}.
Since Ω∗ is unprovable, we must have f:(∀sXσX:=Xabs

[ψ]) 6∈ µ. By definition,

(∀sXσX:=Xabs
[ψ]) = σ[ϕ]. It follows that µ 6∈ vf[ϕ, σ].

Next, we prove that infτ∈Ds v
t[ψ, σX:=τ ] ⊆ vt[ϕ, σ]. Suppose that µ 6∈ vt[ϕ, σ]. Thus

t:σ[ϕ] ∈ µ. By definition, σ[ϕ] = (∀sXσX:=Xabs
[ψ]). Since Ω∗ admits the witness

property, there exists a set variable Y of L2, such that t:σX:=Xabs
[ψ]{Y/X} ∈ µ.

By Lemma 9.3.8, σX:=Xabs
[ψ]{Y/X} = σX:=Xabs

[ψ]{Yabs/X}. By Lemma 9.5.11, we

have σX:=Xabs
[ψ]{Yabs/X} = σX:=Yabs [ψ]. Thus, t:σX:=Yabs [ψ] ∈ µ. It follows that

µ 6∈ vt[ψ, σX:=τ ], for τ = Yabs ∈ Ds, and therefore µ 6∈
⋂
τ∈Ds

vt[ψ, σX:=τ ].

• The case ϕ = (∃sXψ) is handled similarly.

Finally, we show that Q is comprehensive. Let ϕ be an L2-formula, x an indi-

vidual variable, and σ an 〈L2,D〉-assignment. Let y 6∈ Fv[ϕ] ∪ Fv[σ[ϕ]] be an in-
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dividual variable, and let τ = {◦y | σy:=y[ϕ{y/x}]◦}. Then τ ∈ Ds. We show that

P [τ ] = λt ∈ Di.v[ϕ, σx:=t]. Let t ∈ Di. Then, P [τ ][t] = Ω∗[τ [t]] = Ω∗[σy:=y[ϕ{y/x}]{t/y}].
By Lemma 9.5.10, σy:=y[ϕ{y/x}] = σx:=y[ϕ]. By Lemma 9.5.11, σx:=y[ϕ]{t/y} = σx:=t[ϕ].

Thus, P [τ ][t] = Ω∗[σx:=t[ϕ]] = v[ϕ, σx:=t].

9.6 Completeness for the Ordinary Semantics

In this section we use the complete semantics of quasi-structures to prove the complete-

ness of HIF2 for the (ordinary) structures of Henkin-style second-order Gödel logic. To

do so, we show that from every legal quasi-structure which is a counter-model of some

hypersequent H, it is possible to extract an (ordinary) structure, which is also not a

model of H, without losing comprehension.

Definition 9.6.1. Let D be a quasi-domain, and D′ a domain for L2, such that Di = D′i.
Let δ be a function from Ds to 2D

′
s \ {∅}. A pair 〈σ, σ′〉 of an 〈L2,D〉-assignment and an

〈L2,D′〉-assignment (respectively) is called a δ-pair if (i) σ[x] = σ′[x] for every individual

variable; and (ii) σ′[X] ∈ δ[σ[X]] for every set variable.

Theorem 9.6.2. LetQ = 〈V ,D, I, P, v〉 be a legal and comprehensive quasi-L2-structure.

Then there exists a comprehensive L2-structure W = 〈V ,D′, I ′, P ′〉, where D′i = Di and

I ′i = Ii, and a function δ : Ds → 2D
′
s \ {∅}, such that W [ϕ, σ′] ∈ v[ϕ, σ] for every

L2-formula ϕ and δ-pair 〈σ, σ′〉 (of an 〈L2,D〉-assignment and an 〈L2,D′〉-assignment).

Proof. First, we define D′s. For every D ∈ Ds, denote by FD the set of fuzzy subsets D′

of Di over V (i.e. D′ : Di → V), such that D′[d] ∈ P [D][d] for every d ∈ Di. Note that

for every D ∈ Ds, FD is non-empty, since P [D][d] is non-empty for every d ∈ Di. Define

D′s to be
⋃
D∈Ds

FD. Next, I ′s and P ′ are defined as follows:

• For every set constant symbol C of L2, I ′s[C] is an arbitrary element in FIs[C].

• For every predicate symbol p of L2, P ′[p] = P [p]f.

Let δ : Ds → 2D
′
s \ {∅} be defined by δ = λD ∈ Ds.FD. We prove that W and δ satisfy

the requirement in the theorem: W [ϕ, σ′] ∈ v[ϕ, σ] for every L2-formula ϕ and δ-pair

〈σ, σ′〉. Let V = 〈V,≤〉. We use induction on the complexity of ϕ. Note that since Q is

legal, it suffices to show that W [ϕ, σ′] ∈ vQ[ϕ, σ] for every δ-pair 〈σ, σ′〉.
First, suppose that cp[ϕ] = 1, and let 〈σ, σ′〉 be a δ-pair of an 〈L2,D〉-assignment and

an 〈L2,D′〉-assignment. Exactly one of the following holds:

• ϕ = {p(t1, ... , tn)} or ϕ = {⊥}. These cases are handled as in the proof of Theo-

rem 8.6.1.
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• ϕ = {(tεT )} for some first-order L2-term t, and second-order L2-term T . By

definition, W [ϕ, σ′] = σ′I
′
[T ][σ′I

′
[t]]. Clearly, we have σ′I

′
[t] = σI [t]. In addition,

σ′I
′
[T ] ∈ FσI [T ] (in case T is a variable, this holds since 〈σ, σ′〉 is a δ-pair, and if T

is a constant then it holds by definition). Therefore,

σ′I
′
[T ][σ′I

′
[t]] = σ′I

′
[T ][σI [t]] ∈ P [σI [T ]][σ[t]] = vQ[ϕ, σ].

Next, suppose that cp[ϕ] > 1, and that the claim holds for L2-formulas of lower com-

plexity. Let 〈σ, σ′〉 be a δ-pair. Exactly one of the following holds:

• ϕ = (ϕ1 �ϕ2) for � ∈ {∧,∨,⊃} and L2-formulas ϕ1 and ϕ2 such that cp[ϕ1] < cp[ϕ]

and cp[ϕ2] < cp[ϕ]. This case is handled as in the proof of Theorem 8.6.1.

• ϕ = (Qixψ) for some Qi ∈ {∀i,∃i}, individual variable x of L2, and L2-formula

ψ such that cp[ψ] < cp[ϕ]. We continue with Qi = ∀i (the proof is similar for

∃i). Clearly, for every d ∈ Di, 〈σx:=d, σ
′
x:=d〉 is a δ-pair. Thus by the induction

hypothesis, for every d ∈ Di, W [ψ, σ′x:=d] ∈ v[ψ, σx:=d]. Hence,

W [ϕ, σ′] = inf
d∈Di

W [ψ, σ′x:=d] ∈ 〈 inf
d∈Di

vf[ψ, σx:=d], inf
d∈Di

vt[ψ, σx:=d]〉 = vQ[ϕ, σ].

• ϕ = (QsXψ) for some Qs ∈ {∀i,∃i}, set variable X of L2, and L2-formula ψ such

that cp[ψ] < cp[ϕ]. We continue with Qs = ∀s (the proof is similar for ∃s). In this

case, we should prove that:

inf
D′∈D′s

W [ψ, σ′X:=D′ ] ∈ 〈 inf
D∈Ds

vf[ψ, σX:=D], inf
D∈Ds

vt[ψ, σX:=D]〉.

First, we show that infD∈Ds v
f[ψ, σX:=D] ≤ infD′∈D′sW [ψ, σ′X:=D′ ], by showing that

infD∈Ds v
f[ψ, σX:=D] ≤ W [ψ, σ′X:=D′ ] for every D′ ∈ D′s. Let D′ ∈ D′s, and let

D be an arbitrary element in Ds such that D′ ∈ FD. Then 〈σX:=D, σ
′
X:=D′〉

is a δ-pair. By the induction hypothesis, vf[ψ, σX:=D] ≤ W [ψ, σ′X:=D′ ]. Thus,

infD∈Ds v
f[ψ, σX:=D] ≤ W [ψ, σ′X:=D′ ].

Next, we show that infD′∈D′sW [ψ, σ′X:=D′ ] ≤ infD∈Ds v
t[ψ, σX:=D], by proving that

infD′∈D′sW [ψ, σ′X:=D′ ] ≤ vt[ψ, σX:=D] for every D ∈ Ds. Let D ∈ Ds. Take some

D′ ∈ FD. Then D′ ∈ D′s, and 〈σX:=D, σ
′
X:=D′〉 is a δ-pair. By the induction hypoth-

esis, W [ψ, σ′X:=D′ ] ≤ vt[ψ, σX:=D]. Thus, infD′∈D′sW [ψ, σ′X:=D′ ] ≤ vt[ψ, σX:=D].

Finally, we show that W is comprehensive. Let ϕ be an L2-formula, x an indi-

vidual variable, and σ′ an 〈L2,D′〉-assignment. We show that W [ϕ, σ′, x] ∈ D′s. De-

fine an 〈L2,D〉-assignment σ as follows: (i) σ[x] = σ′[x] for every individual vari-

able x; and (ii) for every set variable X, σ[X] is an (arbitrary) element of Ds such

that σ′[X] ∈ Fσ[X]. Since Q is comprehensive, there exists some D ∈ Ds such that

P [D] = λd ∈ Di.v[ϕ, σx:=d]. We claim that W [ϕ, σ′, x] ∈ FD (and so, W [ϕ, σ′, x] ∈ D′s).
By definition, we should show that W [ϕ, σ′, x][d] ∈ P [D][d] for every d ∈ Di. Let
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d ∈ Di. Obviously, 〈σx:=d, σ
′
x:=d〉 is a δ-pair, and thus by the claim proved above, we have

W [ϕ, σ′, x][d] =W [ϕ, σ′x:=d] ∈ v[ϕ, σx:=d] = P [D][d].

Corollary 9.6.3. If 6`cfHIF2 H, then there exists a comprehensive L2-structure which is

not a model of H.

Proof. Suppose that 6`cfHIF2 H. Then, by Theorem 9.5.6, there exists a legal and com-

prehensive quasi-L2-structure Q = 〈V ,D, P, v〉, which is not a model of H. This implies

that there exists an 〈L2,D〉-assignment σ, such that Q, σ 6|= s for every s ∈ H. Let

W = 〈V ,D′, P ′〉 be a comprehensive L2-structure and δ a function, satisfying the re-

quirement in Theorem 9.6.2. Let σ′ be an 〈L2,D′〉-assignment such that 〈σ, σ′〉 is a

δ-pair (there exists such an assignment since the range of δ does not include the empty

set). We show that W , σ′ 6|= H. Let s ∈ H. Since Q, σ 6|= s, we have Qf[s, σ] > Qt[s, σ].

The fact that W [ϕ, σ′] ∈ v[ϕ, σ] for every ϕ entails that Wf[s, σ′] >Wt[s, σ′], and so

W , σ′ 6|= s.

Just like in the first-order case, we immediately obtain the following:

Corollary 9.6.4. For every L2-formula ϕ, if 
GöL2 ϕ then `HIF2 {{t:ϕ}}.

Corollary 9.6.5. If an L2-hypersequent is provable in HIF2, then it is provable in HIF2

without applying (cut).

Remark 9.6.6. Note that cut-admissibility for HIF (the original system for first-order

Gödel logic) is obtained as a corollary, for the reason that second-order quantifiers cannot

be involved in a cut-free proof of a first-order formula.



Chapter 10

Summary and Further Work

In this thesis, we studied Gentzen-type calculi from a semantic point of view. This study

encompassed several general abstract families of sequent calculi: pure calculi, canonical

calculi, quasi-canonical calculi, and basic calculi, as well as the family of canonical Gödel

hypersequent calculi. For each of these families, a corresponding denotational semantic

framework was identified, based on certain (possibly non-deterministic) semantic struc-

tures: many-valued valuations for pure calculi (including canonical and quasi-canonical

ones); Kripke valuations for basic calculi; and Gödel valuations for canonical Gödel cal-

culi. It was shown that each calculus in these families induces a set of semantic structures

for which it is sound and complete. Moreover, we provided general, modular and uniform

methods to obtain such a set for a given calculus, of which many important soundness

and completeness theorems for known calculi are particular instances. In the case of

canonical calculi (both canonical sequent calculi, and canonical Gödel hypersequent cal-

culi), the resulting semantics was proven to be effective, leading to a semantic decision

procedure for each such calculus. In addition, for each of the families of proof systems

mentioned above, we derived semantic characterizations of analyticity, cut-admissibility

and axiom-expansion. This provides a “semantic toolbox”, intended to complement the

usual proof-theoretic methods. Indeed, as was demonstrated in many examples, the

proofs (or refutations) of these properties based on the semantic characterizations is

straightforward in many cases, and less tedious and error-prone than the usual inductive

syntactic arguments.

Finally, we demonstrated these methods on HIF and HIF2, two hypersequent calculi

for first-order and second-order languages. Based on the ideas from the semantic analysis

of canonical Gödel propositional calculi in Chapter 7, we showed that these calculi are

sound and (cut-free) complete for standard first-order Gödel logic, and Henkin-style

second-order Gödel logic (respectively). To the best of our knowledge, HIF2 is the first

(cut-free) proof system introduced for Henkin-style second-order Gödel logic.
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We believe that the semantic approach in the analysis of proof systems has demon-

strated its potential in this thesis, as a useful methodology, that may be applied whenever

a new Gentzen-type system (of one of the families mentioned above) is encountered. Ev-

idently, this methodology is still in its early stages of its development, and there are

various open questions, and possible promising extensions. The main directions for fur-

ther research include the following:

Substructural Calculi All sequent and hypersequent calculi studied in this thesis are

fully-structural, as they include (both internal and external, in the case of hyper-

sequent calculi) the exchange rules, weakening rules, contraction rules, and ex-

pansion rules (recall that we defined sequents and hypersequents as sets). How-

ever, many important logics have only substructural sequent systems (in particular,

contraction-free or weakening-free calculi), that cannot be treated in our frame-

work. Extending some of the results above for families of substructural systems

is an important future goal. This will require the development of new frameworks

of non-deterministic semantics. In particular, an interesting question arises as to

whether the semantic proof technique of cut-admissibility is applicable for sub-

structural calculi. Two particularly important cases are the (sub-structural) hy-

persequent systems for the fundamental propositional fuzzy logics –  Lukasiewicz’s

logic, and product logic (see [76]). In addition, the current work deals only with

multiple-conclusion systems, while it can be useful to derive similar results for

single-conclusion ones. For two-sided canonical single-conclusion systems, this was

done in [14].

First-Order and Higher-Order Calculi All general families of sequent and hyperse-

quent calculi studied above handle only propositional logics. Extending the methods

and results of this thesis to languages that include quantifiers is evidently an im-

portant future goal. We believe that such an extension should be possible. Indeed,

the original three-valued non-deterministic semantics for the (cut)-free fragment

of LK applies also to the first-order quantifiers [58], as well as the three-valued

non-deterministic semantics for its (id)-fragment [64]. Our results for HIF2 in

Chapter 9 demonstrate that similar ideas can be applied in different higher-order

calculi. Note that families of canonical sequent calculi with first-order quantifiers

were studied in [18, 98].

Extending the Realm of PNmatrices In Chapters 4 and 5 the semantic framework

of finite PNmatrices has shown to be adequate for canonical sequent calculi and

quasi-canonical ones. Besides the fact that this framework provides intuitive seman-

tics, its main attractive property is its effectiveness. Thus every calculus that has
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a sound and complete PNmatrix is decidable. A natural question is whether this

semantic framework suffices for more than canonical and quasi-canonical calculi.

In particular, consider the following schemes:

Γ⇒ ¬iϕ,∆
Γ,¬i¬ϕ⇒ ∆

Γ⇒ ϕ,∆ Γ⇒ ¬ϕ,∆
Γ,¬(ϕ ∧ ¬ϕ)⇒ ∆

The first one is an example of a family of rules used in proof systems that combine

classical and paraconsistent negations [66], and the second is taken from [12] for

handling certain paraconsistent logics. Note that both schemes (for i > 1 in the

first one) cannot be presented as canonical or quasi-canonical rules, and thus our

semantic methods do not apply to them. Nevertheless, we believe that the ideas

in Chapter 5 can be extended to handle also rules as the first one above, in which

more than one unary connective may precede the formulas in the premises and

the conclusion. For the second rule above, [12] suggests an infinite-valued non-

deterministic matrix, and it remains open whether other systems with rules of this

kind can be characterized by non-deterministic matrices, and in what cases this

infinite-valued semantics is effective.

General Canonical Hypersequent Calculi. In Chapter 7, we studied a family of

canonical hypersequent calculi that are based on the communication rule. It is

interesting to study canonical hypersequent calculi that employ other structural

hypersequential rules. For example, we believe that a similar methodology, using

Kripke semantics of directed frames, should work for canonical calculi based on the

hypersequent rule (lq). This rule is used in systems for logics of weak excluded

middle [42]. Developing a general theory of structural hypersequential rules in

canonical hypersequent calculi is another interesting direction for a future work.

Different Proof-Theoretic Formalisms In this thesis we investigated sequent and

hypersequent systems. It is interesting to pursue similar investigations in other

proof-theoretic frameworks, that handle different families of non-classical logics.

This includes: semantic and prefixed tableaux systems [52], display calculi [33],

nested sequents calculi [53, 60, 36], labelled calculi as in [54, 77], and sequents of

relations [23].

Second-Order Gödel Logic In [72], we proved that HIF (a calculus for first-order

Gödel logic) enjoys cut-admissibility. In fact, for HIF we proved slightly stronger

properties than those shown in this paper for HIF2. Obtaining these stronger

results for HIF2 seems to be straightforward. This includes:

• In [72] we considered also derivations from non-empty sets of hypersequents,
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and proved strong cut-admissibility.

• For applications, it is sometimes useful to enrich Gödel logic with a globaliza-

tion connective (also known as Baaz Delta connective, see [22]). [72] studies

the extension of HIF with rules for this connective, and the same can be done

for HIF2.

In addition, the following extensions of the current result are left for a future work:

• It is interesting to consider equality, both between first-order terms and second-

order ones. In this case, rules for extensionality should be added.

• Extending the calculus for richer second order signatures and also for full type

theory seem to be possible. In the case of classical logic, cut-free completeness

for the extended system was proved shortly after Tait’s proof for the second-

order one by Takahashi and Prawitz, [88, 82]. This extension is necessary in

order to obtain a proof system for (the Gödel fragment) of fuzzy set theory

(see [37]).
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