
Compositional Semantics for Shared-Variable Concurrency

MIKHAIL SVYATLOVSKIY, Tel Aviv University, Israel

SHAI MERMELSTEIN, Tel Aviv University, Israel

ORI LAHAV, Tel Aviv University, Israel

We revisit the fundamental problem of defining a compositional semantics for a concurrent programming

language under sequentially consistent memory with the aim of equating the denotations of pieces of code if

and only if these pieces induce the same behavior under all program contexts. While the denotational semantics

presented by Brookes [Information and Computation 127, 2 (1996)] has been considered a definitive solution,

we observe that Brookes’s full abstraction result crucially relies on the availability of an impractical whole-

memory atomic read-modify-write instruction. In contrast, we consider a language with standard primitives,

which apply to a single variable. For that language, we propose an alternative denotational semantics based on

traces that track program write actions together with the writes expected from the environment, and equipped

with several closure operators to achieve necessary abstraction. We establish the adequacy of the semantics,

and demonstrate full abstraction for the case that the analyzed code segment is loop-free. Furthermore, we

show that by including a whole-memory atomic read in the language, one obtains full abstraction for programs

with loops. To gain confidence, our results are fully mechanized in Coq.

CCS Concepts: • Theory of computation → Concurrency; Denotational semantics; • Software and its

engineering→ Semantics; Compilers.

Additional Key Words and Phrases: Denotational Semantics; Concurrency; Shared-Memory; Compiler Opti-

mizations

ACM Reference Format:

Mikhail Svyatlovskiy, Shai Mermelstein, and Ori Lahav. 2024. Compositional Semantics for Shared-Variable

Concurrency. Proc. ACM Program. Lang. 8, PLDI, Article 169 (June 2024), 24 pages. https://doi.org/10.1145/

3656399

1 INTRODUCTION

Denotational semantics aims to define the meaning of a piece of code independently of the context
under which it is executed. Generally speaking, such semantics assigns a denotation ⟦�⟧ to every
command � of a given programming language in a way that satisfies the following desiderata:

Compositionality: The denotation of a command should be determined from the denotations
of the command’s immediate constituents. For instance, assuming a sequential composition
operator, “;”, we require that ⟦�1 ;�2⟧ is a function of ⟦�1⟧ and ⟦�2⟧.

Adequacy: Assuming a given operational semantics, the denotations should only consider equiv-
alent commands that operationally behave the same when plugged in an arbitrary program
context. When denotations are partially ordered, we also want the semantics to admit a directional
version of adequacy that targets contextual refinement under the operational semantics instead
of contextual equivalence. For instance, assuming that denotations are sets, as is the case in our

Authors’ Contact Information: Mikhail Svyatlovskiy, Tel Aviv University, Israel, mikhail.svyatlovskiy@phystech.edu; Shai

Mermelstein, Tel Aviv University, Israel, shai.mermelstein@gmail.com; Ori Lahav, Tel Aviv University, Israel, orilahav@tau.

ac.il.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/6-ART169

https://doi.org/10.1145/3656399

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0001-9381-764X
HTTPS://ORCID.ORG/0009-0001-9806-017X
HTTPS://ORCID.ORG/0000-0003-4305-6998
https://doi.org/10.1145/3656399
https://doi.org/10.1145/3656399
https://orcid.org/0000-0001-9381-764X
https://orcid.org/0009-0001-9806-017X
https://orcid.org/0009-0001-9806-017X
https://orcid.org/0000-0003-4305-6998
https://doi.org/10.1145/3656399

169:2 Mikhail Svyatlovskiy, Shai Mermelstein, and Ori Lahav

development, (directional) adequacy ensures that ⟦�1⟧ ⊆ ⟦�2⟧ implies that for every program
context % [−], every behavior of % [�1] under the operational semantics is also a behavior of
% [�2]. This makes denotations beneficial in supporting modular reasoning about the operational
semantics, which by itself is only able to capture complete closed programs. In particular, an ade-
quate denotational semantics can be used for formally justifying local program transformations,
as performed by optimizing compilers. Indeed, adopting contextual refinement as the correctness
criteria of program transformations, adequacy allows one to derive the correctness of a local
transformation �src ⇝ �tgt from ⟦�tgt⟧ ⊆ ⟦�src⟧.

Full abstraction: Ideally, it is desirable for a denotational semantics to equate all pairs of com-
mands that are contextually equivalent under the given operational semantics. A directional
version requires that ⟦�1⟧ ̸⊆ ⟦�2⟧ implies that for some program context % [−], some behavior of
% [�1] under the operational semantics is not a behavior of % [�2]. Conceptually, full abstraction,
together with compositionality and adequacy, means that ⟦�⟧ is indeed a precise compositional
counterpart of the given operational semantics. A fully abstract denotational semantics provides
a complete reasoning principle for correctness of local program transformations. Full abstraction
is sometimes considered as the holy grail of denotational semantics and it is typically very
difficult to obtain [Cardone 2021].

In this paper we consider concurrent programs that employ shared variables for inter-thread
synchronization, governed by a non-deterministic scheduler that cannot be controlled by the
program. For this domain, developing compositional, adequate, and fully abstract semantics is
highly challenging. Indeed, the standard approach for (non-deterministic) sequential programs,
which models programs as transformations from an initial state to a set of final states, fails to
provide compositional semantics for parallelism, since the state transformation induced by a parallel
composition �1 ∥ �2 cannot be determined from those of �1 and �2. One needs more detailed
structures to capture the behaviors of �1 and �2, but being too concrete risks full abstraction.

This problem was addressed by Brookes [1996] (see there also a discussion about earlier attempts).
In Brookes’s approach, the semantics ⟦�⟧ of a command � is given by a set of sequences of transi-
tions from memory to memory, assuming arbitrary environment interference between transitions.
For example, a sequence of the form ⟨B1, B

′
1
⟩, ⟨B2, B

′
2
⟩ consisting of two transitions represents the

case that� did some steps to transform B1 to B
′
1
; then the environment did some steps transforming

B′
1
to B2; and then � continued its execution from B2 and terminated in B′

2
. Brookes showed how

these sequences can be derived from a given command by first deriving a concrete set of sequences,
and then closing it under two closure operators, called mumble and stutter. In particular, ⟦�1 ∥ �2⟧
is obtained by considering all interleavings of sequences of ⟦�1⟧ with sequences of ⟦�2⟧, and
closing the resulting set under the two closure operators. Brookes demonstrated compositionality,
adequacy, and full abstraction for this semantics.

However, the programming language assumed in [Brookes 1996] employs a command of the form
(await � then �) that implements a “conditional critical region”: it blocks the execution as long as
� is unmet, and then in a single atomic step it verifies that � holds and fully runs � . Since � and �
may involve multiple variables, this construct can implement arbitrary atomic (finite) memory-to-
memory transformations (e.g., [x1 ↦→ 0, ... ,x100 ↦→ 0] to [x1 ↦→ 1, ... ,x100 ↦→ 100]), which requires
all other components to be suspended and is unrealistic in practical concurrency. Removing (or
restricting) await does not harm compositionality or adequacy, but, Brookes’s full-abstraction
proof relies on await instructions for building a concurrent context % [−] that precisely mimics the
environment transitions in a given sequence. In fact, the starting point for the current work is our
observation that there are commands �1 and �2 that behave the same when plugged in program

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

Compositional Semantics for Shared-Variable Concurrency 169:3

contexts without await, but can be differentiated by contexts that use await (see Examples 3.7, 4.6
and 5.1 below). Therefore, Brookes’s semantics is too concrete for a language without await.

The main contribution of this work is a novel denotational semantics that addresses this problem.
We propose two models:

• A “concrete semantics” in which denotations track the write operations performed by the
command interleaved with environment writes. For example, W(x, 1), W̄(x, 2), W(y, 1) represents
the case that � writes 1 to x, expects the environment to write 2 to x, and then writes 1 to y.
The concrete semantics is compositional and adequate, but it is not fully abstract. Nevertheless,
since, in contrast to [Brookes 1996], this semantics reflects the property of the operational
semantics that each transition updates at most one variable and since, again in contrast to
[Brookes 1996], we do not record read operations in our denotations, the concrete semantics
suffices for validating a wide variety of contextual refinements (see Fig. 4 below).

• An “abstract semantics” obtained by closing concrete denotations under four rewrite rules,
each of which mimics a certain operational simulation argument allowing one to hide and
introduce component writes from the concrete trace. We show that the abstract semantics is
also compositional and adequate, whereas full abstraction holds up to some level:
– Full abstraction fully holds if we have a “snapshot” instruction that blocks the execution until
some condition is met (a restriction of await to instances of the form await � then skip).

– Without “snapshot”, we establish a restricted version of full abstraction: if �2 is loop-free
and ⟦�1⟧ ̸⊆ ⟦�2⟧, then there exists a context % [−] such that some behavior of % [�1] is not a
behavior of % [�2]. Thus, the abstract semantics is always sound for validating local program
transformations �src ⇝ �tgt, and it provides a complete reasoning principle when �src is
loop-free. When �src has loops, we provide a (rather complicated) counterexample for full
abstraction of our abstract semantics (see Example 4.28 below).

Instead of await instructions the language we assume employs standard read-modify-write
(RMW) constructs that perform an atomic update of a single variable at a time. A natural question
is whether, like await, RMWs allow concurrent contexts to distinguish between commands that
are indistinguishable for contexts consisting solely of reads and writes. We answer this question
affirmatively by demonstrating such cases (see Example 5.1 below). Moreover, we show that by
strengthening one of the four rewrite rules used to define the abstract semantics, we obtain a
denotational semantics that enables compositional reasoning about program transformations under
the assumption that the context cannot perform RMW operations.

Finally, we note certain limitations of the current work (see also §6). All of them raise interesting
questions for future work to which our approach may constitute a starting point.

• We assume that the underlying memory ensures sequential consistency (SC, for short) [Lamport
1979]—the strongest memory model with simple operational semantics based on interleaving
concurrent manipulations of a standard variables-to-values mapping.

• Our notion of behavior under the operational semantics is based on partial correctness, that is: we
only consider terminating executions as inducing program behaviors. Accordingly, contextual
refinement ensures that the target program preserves safety properties of the source, but it is
termination-insensitive, where a diverging program refines every program. Since a compositional
characterization of partial correctness is already challenging, we left the question of termination
to future work. This is in line with multiple previous works that consider only terminating
executions [Liang et al. 2012, 2014; Turon and Wand 2011]. Nevertheless, Brookes [1996, §10]
includes an extension to termination-sensitive refinement, using infinite sequences and assuming
certain fairness conditions on the operational semantics.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

169:4 Mikhail Svyatlovskiy, Shai Mermelstein, and Ori Lahav

expressions � ::= E | 0 | � + � | � = � | ...

let expressions ! ::= � | G | XCHG(G, �) | FAA(G, �)

commands � ::= skip | G := � | let 0 = ! in � |
� ;� | � ∥ � | � ⊕ � | if � then � else � | while G do � |
assume(�) | snapshot(B) | G := ∗ | while ∗ do �

contexts % ::= − | let 0 = ! in % | % ;� | � ; % | % ∥ � | � ∥ % | � ⊕ % | % ⊕ � |
if � then % else � | if � then � else % | while G do % | while ∗ do %

Fig. 1. Syntax: Expressions, Let Expressions, Commands, and Contexts

• Our programming language is a first-order language. Fully abstract semantics for higher-order
languages have proved elusive [Cardone 2021], but we hope that our model can be useful for a
higher-order language with a full abstraction guarantee that applies to its first-order fragment.

Outline. The rest of this paper is structured as follows. In §2 we present the syntax and operational
semantics of the language studied in this paper. In §3 we present the concrete denotational semantics,
establish its compositionality and adequacy, and demonstrate various transformations it validates
(Fig. 4). In §4 we present the abstract denotational semantics, establish its compositionality (§4.1),
adequacy (§4.2), and (restricted as discussed above) full abstraction (§4.3 and §4.4), and demonstrate
transformations validated by the abstract semantics but not by the concrete one (Fig. 5). In §5 we
present the modification of the abstract semantics under the assumption that the context does not
perform RMWs. Finally, in §6 we discuss related and future work.

Artifact. Our results are fully mechanized in Coq, and the proof scripts are available in https:
//doi.org/10.5281/zenodo.10925596.

2 SYNTAX, OPERATIONAL SEMANTICS, AND CONTEXTUAL REFINEMENT

In this sectionwe present the syntax of the studied programming language, its operational semantics,
and the notion of contextual refinement w.r.t. that semantics.

Syntax. We assume a set Var ≜ {x, y, z, ...} of shared variables, ranged over by G,~; a set LVar ≜
{a, b, c, ...} of local variables, ranged over by 0, 1; and a set Val ≜ {0, 1, 2, ...} of values, ranged over
by E . We define a state B to be a function in State ≜ Var → Val. In some examples below, we use
s0 ≜ _G . 0 as the initial state.
Figure 1 presents the grammar for expressions, let expressions, commands, and contexts. Expres-

sions are defined standardly and are composed of values (E) and local variables (0). Let expressions
are used on the right-hand side of let bindings, and include standard expressions, shared variables,
and RMW primitives. The latter are used to atomically execute a read from memory followed by a
write to memory. We consider two kinds of RMWs, whose intuitive semantics is as follows:1

• Exchange (XCHG) loads from a shared variable and modifies it to a given argument.
• Fetch-And-Add (FAA) increments a shared variable by a given argument.

These instructions return the value they read, before the modification was performed.
Commands are mostly customary for a (first-order) imperative parallel language, with several

choices that may deserve attention:

1Our Coq development also has Compare-And-Swap (CAS) instructions, which are elided here.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

https://doi.org/10.5281/zenodo.10925596
https://doi.org/10.5281/zenodo.10925596

Compositional Semantics for Shared-Variable Concurrency 169:5

E = ⟦�⟧

⟨�, B ⟩
Y
−→ ⟨E, B ⟩

E = B (G)

⟨G, B ⟩
Y
−→ ⟨E, B ⟩

E = B (G)
E′ = ⟦�⟧ B′ = B [G ↦→ E′]

⟨XCHG(G, �), B ⟩
W(G,E′)
−−−−−→ ⟨E, B′ ⟩

E = B (G)
E′ = E + ⟦�⟧ B′ = B [G ↦→ E′]

⟨FAA(G, �), B ⟩
W(G,E′)
−−−−−→ ⟨E, B′ ⟩

E = ⟦�⟧ B′ = B [G ↦→ E]

⟨G := �, B ⟩
W(G,E)
−−−−→ ⟨skip, B′ ⟩

⟨!, B ⟩
W
−→ ⟨E, B′ ⟩

⟨let 0 = ! in �, B ⟩
W
−→ ⟨� {E/0}, B′ ⟩

⟨�1, B ⟩
W
−→ ⟨�′

1, B
′ ⟩

⟨�1 ;�2, B ⟩
W
−→ ⟨�′

1 ;�2, B
′ ⟩ ⟨skip ;�, B ⟩

Y
−→ ⟨�, B ⟩

⟨�1, B ⟩
W
−→ ⟨�′

1, B
′ ⟩

⟨�1 ∥ �2, B ⟩
W
−→ ⟨�′

1 ∥ �2, B
′ ⟩

⟨�2, B ⟩
W
−→ ⟨�′

2, B
′ ⟩

⟨�1 ∥ �2, B ⟩
W
−→ ⟨�1 ∥ �′

2, B
′ ⟩ ⟨� ∥ skip, B ⟩

Y
−→ ⟨�, B ⟩ ⟨skip ∥ �, B ⟩

Y
−→ ⟨�, B ⟩

⟦�⟧ ≠ 0 =⇒ 8 = 1

⟦�⟧ = 0 =⇒ 8 = 2

⟨if � then �1 else �2, B ⟩
Y
−→ ⟨�8 , B ⟩

B (G) ≠ 0

⟨while G do �, B ⟩
Y
−→ ⟨� ; while G do �, B ⟩

B (G) = 0

⟨while G do �, B ⟩
Y
−→ ⟨skip, B ⟩

⟦�⟧ ≠ 0

⟨assume(�), B ⟩
Y
−→ ⟨skip, B ⟩ ⟨snapshot(B), B ⟩

Y
−→ ⟨skip, B ⟩

B′ = B [G ↦→ E]

⟨G := ∗, B ⟩
W(G,E)
−−−−→ ⟨skip, B′ ⟩

8 ∈ {1, 2}

⟨�1 ⊕ �2, B ⟩
Y
−→ ⟨�8 , B ⟩ ⟨while ∗ do �, B ⟩

Y
−→ ⟨� ; while ∗ do �, B ⟩ ⟨while ∗ do �, B ⟩

Y
−→ ⟨skip, B ⟩

Fig. 2. Small-Step Semantics: ⟨!, B⟩
W
−→ ⟨E, B′⟩ and ⟨�, B⟩

W
−→ ⟨�′, B′⟩

• Parallel composition, “∥”, is a first class construct that can be employed arbitrarily deep inside
other commands, rather than top-level parallel composition which is sometimes assumed when
studying semantics of parallel languages.

• We include non-deterministic choices—between commands (�1 ⊕�2), stored values (G := ∗), and
as a loop termination condition (while ∗ do �).

• Less standardly, we use functional-style let bindings for assigning values to local variables. This
allows us to restrict the scope of these variables inside a command, in a way that a parallel context
cannot change or directly observe. Loops use global variables in the termination condition.

• A non-standard snapshot(B) command is used to block the execution until the memory is in
state B (see operational semantics below).

In examples, we also use (if � then �) for (if � then � else skip), and employ syntactic sugar
incorporating loads inside expressions, such as G := ~ for let a = ~ in G := a and assume(G = E)
for let a = G in assume(a = E). We denote by fv(�) (respectively, fv(�)) the set of local variables
that occur free in an expression � (command �), and call an expression � (command �) closed if
fv(�) = ∅ (fv(�) = ∅). We write �{E/0} for the command obtained from � by substituting the free
occurrences of 0 by E .

Finally, Fig. 1 specifies “contexts” which are defined standardly as commands with one “hole”. We
write % [�] for the command obtained by “plugging in” the command � in % , that is: substituting
the unique − in % by � .

Operational Semantics. We assume that closed expressions are evaluated to values using a function
⟦·⟧ in a standard way. The operational semantics of commands is given in Fig. 2 as a “small-step”
transition relation between configurations, which are tuples of the form ⟨�, B⟩, where � is a

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

169:6 Mikhail Svyatlovskiy, Shai Mermelstein, and Ori Lahav

command and B ∈ State. For a uniform definition of let bindings, it uses a “helper” relation which
defines how let expressions are evaluated to values and affect the state.

The operational semantics is mostly standard.We use syntactic substitution to handle let bindings,
so that steps execute only on closed commands. Parallelism is captured by arbitrary interleaving of
component steps, with non-preemptive scheduling, in the sense that there are no explicit language
constructs for controlling the scheduler. The shared memory follows the SC model, where each
read reads the latest written value recorded in the state. To assist later definitions, the transitions
are labeled with a write label of the form W(G, E) (with G ∈ Var and E ∈ Val) or with an Y label when
no write is performed. We often omit the label from the transition, writing ⟨�, B⟩ −→ ⟨�′, B′⟩ to mean

that ⟨�, B⟩
W
−→ ⟨�′, B′⟩ for some W .

Note that no steps are associated with skip or with assume(�) when ⟦�⟧ = 0. Intuitively, a state
of the form ⟨skip, B⟩ is a valid final state (“a value”). We write ⟨�, B⟩ ↓ B′ if ⟨�, B⟩ −→∗ ⟨skip, B′⟩.2

Contextual Refinement. Contextual refinement under the operational semantics is identified with
soundness of local program transformations, which is defined as follows:

Definition 2.1. A transformation from a command �src to a command �tgt is sound, denoted by
�src ⇝ �tgt, if ⟨% [�tgt], B⟩ ↓ B′ implies ⟨% [�src], B⟩ ↓ B′ for every context % such that % [�src] and
% [�tgt] are closed. We write �1 ↭ �2 when both �1 ⇝ �2 and �2 ⇝ �1 hold.

Example 2.2. For �1 = x := x + 1 and �2 = let a = FAA(x, 1) in skip, we have �1 ⇝ �2 but
�2 ̸⇝ �1. For the former, we can execute a load followed by a store in one atomic step to simulate
the effect of FAA. (The denotational semantics below provides a formal account.) For the latter,
with % = − ∥ x := 1 ; x := 3, we have ⟨% [�8], s0⟩ ↓ s0 [x ↦→ 2] for 8 = 1 but not for 8 = 2.

The following transitivity and congruence properties are easy to establish:

Lemma 2.3. If �1 ⇝ �2 and �2 ⇝ �3, then �1 ⇝ �3.

Proof. Suppose that % [�1] and % [�3] are closed and ⟨% [�3], B⟩ ↓ B
′. Let 01, ... ,0= be an enumer-

ation of fv(% [�2]) and % ′
= let 01 = 0 in (let 02 = 0 in (... let 0= = 0 in %) ...)). Then, % ′ [�1],

% ′ [�2], and %
′ [�3] are all closed, and for 8 ∈ {1, 3}, we have ⟨% ′ [�8], B⟩ ↓ B

′ iff ⟨% [�8], B⟩ ↓ B
′. Then,

�2 ⇝ �3 implies that ⟨% ′ [�2], B⟩ ↓ B
′, and, then, �1 ⇝ �2 implies that ⟨% [�1], B⟩ ↓ B

′, □

Lemma 2.4. If �src ⇝ �tgt, then % [�src] ⇝ % [�tgt] for every context % .

Proof. Easily follows from the fact that for every two contexts % and % ′, there exists a context
% ′′ such that % ′′ [�] = % ′ [% [�]] for every command � . □

Comparison with [Brookes 1996]. We conclude this section by discussing the relation of the above
definitions to the corresponding ones in [Brookes 1996], and motivating the differences. We note
that Brookes [1996] introduces two operational semantics for his language that differ in the level
of granularity, and we compare ours to the one with finer levels of granularity [Brookes 1996, §9].

Putting snapshot aside, in the above operational semantics, every instruction involves at most
one shared variable, which allows us to easily prove the following property:

Lemma 2.5. If ⟨�, B⟩
W
−→ ⟨�′, B′⟩ and � is snapshot-free, then there exists some G ∈ Var such that for

every B1 with B1 (G) = B (G), we have ⟨�, B1⟩
W
−→ ⟨�′, B1 [G ↦→ B′ (G)]⟩.

2We denote by (? and (∗ the reflexive and reflexive-transitive closures of a binary relation ((respectively) and write (1 ; (2
for relational composition, i.e., (1 ; (2 ≜ {⟨G, I⟩ | ∃~. ⟨G, ~⟩ ∈ (1 ∧ ⟨~, I⟩ ∈ (2}.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

Compositional Semantics for Shared-Variable Concurrency 169:7

This is in contrast with [Brookes 1996], which has “await” instructions of the form await � then � ,
where � is a boolean condition, which may read from several shared variables, and � is a finite
sequence of assignments that read and write to shared variables.
To formulate await in our terminology, we use extended expressions, ranged over by E, that

consist of values as well as shared variables (e.g., E = x+ y+ 9). A standard function ⟦E⟧B evaluates
E at state B . Then, the operational semantics of await is formalized as follows:

await
⟦E⟧B0 ≠ 0 ∀1 ≤ 8 ≤ =. B8 = B8−1 [G8 ↦→ ⟦E8⟧B8−1]

⟨await E then (G1 := E1 ; ... ; G= := E=), B0⟩ −→ ⟨skip, B=⟩

In one atomic step, the system performs the loads from memory necessary to evaluate E and
(conditionally) executes multiple assignments involving any number of additional loads in stores.

While being instrumental in the full abstraction proof, await is not standardly available in
real-world shared-memory concurrent programming. Indeed, to implement await, one has to block
all other concurrent processes from accessing any of the variables that are read/written in the
await instruction. (Note that it does not suffice to only block concurrent await’s, we also need
to block primitive loads and stores.) Instead, programming languages and multicore architectures
provide atomic instructions that atomically manipulate a single address, including loads, stores, and
RMWs. Locks, transactional libraries, concurrent objects, and other synchronization mechanisms
are implemented on top of these basic instructions. Such implementations necessarily involve
races—cases in which two different threads are concurrently accessing the same variable, and at
least one of them is writing. Our focus is on concurrent implementations at this level of abstraction.
As we show in §4.3 and §4.4, we are only able to develop fully abstract denotational semantics

when the source program is loop-free. With loops, our proposed denotational semantics is adequate
but not fully abstract. To get full abstraction with loops, we use snapshot, which, like await, we
consider to be unrealistic. The snapshot command uses only the “condition part” of the await, and
can be thought of the restriction of await to the form await � then skip. (Since every program
uses only finitely many variables, the state B used in snapshot can be always translated into an
extended expression.) Thus, our results provide a full abstraction statement similar to [Brookes
1996] but without the full power of await. The (pretended) implementation of snapshot has to
block all other concurrent processes from writing to shared variables, but unlike await, reads can
proceed concurrently.
Finally, we note that for a single variable, we also have assume(G = E) behaving like Brookes’s

await G = E then skip, generating “no behavior” if the condition (on a single variable) is not met.
We use assume commands in the full abstraction proof, but since we only consider terminating
behaviors in this work, it is also possible to use busy-loops that wait until G = E .

3 CONCRETE DENOTATIONAL SEMANTICS

In this section we present the “concrete” denotational semantics and establish its compositionality
and adequacy. The main ingredient for this semantics is our notion of a trace, which consists of an
initial memory state, an initial store, which assigns values to local variables, and a chronicle, which
is a sequence of actions performed by the command along with those expected by the concurrent
context. Next, we formally define these objects and the required operations on them.

Notation 3.1 (Sequences). For a finite alphabet Σ, we denote by Σ
∗ the set of all (finite) sequences

over Σ. We use Y to denote the empty sequence. We write B1 · B2 for the concatenation of sequences,
which is lifted to concatenation of sets of sequences in the obvious way. We identify symbols with
sequences of length 1 or their singletons when needed (e.g., in expressions like f · ().

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

169:8 Mikhail Svyatlovskiy, Shai Mermelstein, and Ori Lahav

Stores. A store is a function \ ∈ Store ≜ LVar → Val. Stores are extended to expressions in the
standard way. We also lift stores to let expressions by applying them inside (e.g., \ (FAA(G, �)) =
FAA(G, \ (�))). In some examples below, we use \0 ≜ _0. 0 as the initial store.

Actions. An action U is either a component write of the form W(G, E) with G ∈ Var and E ∈ Val,
or an environment write of the form W̄(G, E) with G ∈ Var and E ∈ Val. We write Act, CmpW, and
EnvW for the set of all actions, component writes, and environment writes (respectively).

Chronicles. A chronicle 2 is a finite sequence of actions. We denote byChro the set of all chronicles,
by CmpChro the set of all chronicles consisting solely of component writes, and by EnvChro the
set of all chronicles consisting solely of environment writes. A chronicle 2 induces a function from
states to states, recursively defined by: Y (B) ≜ B and (W(G, E) · 2) (B) = (W̄(G, E) · 2) (B) ≜ 2 (B [G ↦→ E]).

Traces. A trace is a triple C = ⟨B, \, 2⟩ ∈ Trace ≜ State × Store × Chro. We refer to the three
components as the initial state (B), the initial store (\), and the chronicle (2) of C , and to the state
2 (B) as the final state of the trace C .

Sequential Composition of Traces. The sequential composition of C = ⟨B, \, 2⟩ and C ′ = ⟨2 (B), \, 2′⟩,
denoted by C ; C ′, is the trace ⟨B, \, 2 · 2′⟩. When the final state of C does not coincide with the initial
state of C ′ or the two traces do not have the same initial store, then C ; C ′ is undefined.

Parallel Composition of Traces. Parallel composition is defined for actions, chronicles, and traces:

(1) The dual of an action U , denoted by Ū , is defined by Ū ≜ W̄(G, E) if U = W(G, E) and Ū ≜ W(G, E) if
U = W̄(G, E). Two actions U and U ′ are parallelly composable if either U = Ū ′ or U = U ′ ∈ EnvW.
In that case, their parallel composition, denoted by U ∥ U ′, is given by:

U ∥ U ′ ≜

{

W(G, E) U = Ū ′ ∈ {W(G, E), W̄(G, E)}

U U = U ′ ∈ EnvW

(2) The parallel composition of two chronicles 2 = U1 · · ·U= and 2′ = U ′
1
· · ·U ′

= , denoted by 21 ∥ 22,
is defined by 2 ∥ 2′ ≜ (U1 ∥ U ′

1
) ··· (U= ∥ U ′

=). If some U8 ∥ U
′
8 is undefined or the chronicles

are not of the same length, then 2 ∥ 2′ is undefined.
(3) The parallel composition of two traces C = ⟨B, \, 2⟩ and C ′ = ⟨B, \, 2′⟩, denoted by C ∥ C ′, is the

trace ⟨B, \, 2 ∥ 2′⟩. When the two traces do not have the same initial state and store or 2 ∥ 2′

is undefined, then C ∥ C ′ is undefined.

From Commands to Traces. Figure 3 presents an inductive definition of the concrete semantics,
which is a function ⌊·⌋ that maps commands to sets of traces. The skip command does not perform
any component writes and tolerates any environment interference, thus it is associated with traces
with arbitrary environment chronicles (rule skip). A store instruction generates a component write,
and allows arbitrary environment interference before and after (rule store). The value to be stored
is determined according to the initial store. (Unlike the operational semantics, this semantics assigns
meaning to open programs as well.) Let bindings (rule let) start with environment interference
4 and then possibly generate a component write W(G, E) following their operational semantics
(reusing the first part of Fig. 2). Note that the memory visible to the let expression is the one
obtained by applying 4 on the initial state. In turn, the continuation is given by � starting from a
modified state and store. The resulting chronicle is the concatenation of 4 , W ∈ {W(G, E), Y}, and a
chronicle 2 of the continuation. Here we use the transition labels from the operational semantics as
component actions or the empty chronicles. Sequential composition of commands is handled by
sequential composition of traces (rule seq). The denotation of parallel composition uses a (partial)
operation for parallel composition of traces (rule par). Intuitively speaking, a component action

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

Compositional Semantics for Shared-Variable Concurrency 169:9

skip
4 ∈ EnvChro

⟨B, \, 4 ⟩ ∈ ⌊skip⌋

store
41, 42 ∈ EnvChro

U = W(G, \ (�))

⟨B, \, 41 · U · 42 ⟩ ∈ ⌊G := � ⌋

let

4 ∈ EnvChro ⟨\ (!), 4 (B) ⟩
W
−→ ⟨E, B′ ⟩

⟨B′, \ [0 ↦→ E], 2 ⟩ ∈ ⌊� ⌋

⟨B, \, 4 · W · 2 ⟩ ∈ ⌊let 0 = ! in � ⌋

seq

C1 ∈ ⌊�1 ⌋
C2 ∈ ⌊�2 ⌋

C1 ; C2 ∈ ⌊�1 ;�2 ⌋

par
C1 ∈ ⌊�1 ⌋
C2 ∈ ⌊�2 ⌋

C1 ∥ C2 ∈ ⌊�1 ∥ �2 ⌋

choice
C ∈ ⌊�1 ⌋ ∪ ⌊�2 ⌋

C ∈ ⌊�1 ⊕ �2 ⌋

if
\ (�) ≠ 0 =⇒ ⟨B, \, 2 ⟩ ∈ ⌊�1 ⌋
\ (�) = 0 =⇒ ⟨B, \, 2 ⟩ ∈ ⌊�2 ⌋

⟨B, \, 2 ⟩ ∈ ⌊if � then �1 else �2 ⌋

while-true
⟨4 (B), \, 2 ⟩ ∈ ⌊� ⌋ 4 (B) (G) ≠ 0

C ∈ ⌊while G do � ⌋

⟨B, \, 4 · 2 ⟩ ; C ∈ ⌊while G do � ⌋

while-false
41, 42 ∈ EnvChro

41 (B) (G) = 0

⟨B, \, 41 · 42 ⟩ ∈ ⌊while G do � ⌋

assume
4 ∈ EnvChro

\ (�) ≠ 0

⟨B, \, 4 ⟩ ∈ ⌊assume(�) ⌋

snapshot
41, 42 ∈ EnvChro

41 (B) = B′

⟨B, \, 41 · 42 ⟩ ∈ ⌊snapshot(B′) ⌋

havoc
41, 42 ∈ EnvChro

U = W(G, E)

⟨B, \, 41 · U · 42 ⟩ ∈ ⌊G := ∗⌋

nd-while-true
C1 ∈ ⌊� ⌋

C2 ∈ ⌊while ∗ do � ⌋

C1 ; C2 ∈ ⌊while ∗ do � ⌋

nd-while-false
4 ∈ EnvChro

⟨B, \, 4 ⟩ ∈ ⌊while ∗ do � ⌋

Fig. 3. Concrete Trace Semantics: C ∈ ⌊�⌋

on one side has to match the environment action expected from the other side, and together they
form a component action for their external environment. In addition, if both sides expect the same
environment action, then that action is also expected from the external environment of the parallel
composition. The concrete semantics of other language constructs follow similar ideas aiming to
match their operational semantics. As expected, for loops, the definition is recursive.
The concrete denotations admit some invariants, which are useful in our proofs. In particular,

they are closed over environment actions before and after that command’s effects:

Proposition 3.2. If ⟨B, \, 2⟩ ∈ ⌊�⌋, then ⟨B′, \, 41 · 2 · 42⟩ ∈ ⌊�⌋ for every environment chronicles

41, 42 and state B
′ such that 41 (B

′) = B .

This invariant is explicitly enforced in some rules (e.g., skip, store), whereas other rules close
over the prefix (e.g., let) or not close at all (e.g., seq) since they inherit the closure from their parts.

Example 3.3. For � = let a = x in (x := a + 1), ⌊�⌋ consists of all traces of the form
⟨B, \, 41 · 42 · W(x, E + 1) · 43⟩ where 41, 42, 43 ∈ EnvChro and E = 41 (B) (x). In addition, ⌊x := 1⌋
consists of all traces of the form ⟨B, \, 41 · W(x, 1) · 42⟩ where 41, 42 ∈ EnvChro. For their parallel
composition, ⌊� ∥ x := 1⌋ consists of all traces of the form ⟨B, \, 41 · 42 · W(x, E + 1) · 43 · W(x, 1) · 44⟩
or ⟨B, \, 41 · 42 · W(x, 1) · 43 · W(x, E + 1) · 44⟩ where 41, 42, 43, 44 ∈ EnvChro and E = 41 (B) (x); and
⟨B, \, 41 · W(x, 1) · 42 · 43 · W(x, E + 1) · 44⟩ where 41, 42, 43, 44 ∈ EnvChro and E = 42 (B [x ↦→ 1]) (x).

Compositionality. From the definition of the semantics, it is easy to see that the concrete semantics
is compositional. More formally, the following property is proved by standard induction on contexts
(with an inner induction on the derivation of C ∈ ⌊while _ do �⌋ for loops):

Lemma 3.4. If ⌊�1⌋ ⊆ ⌊�2⌋, then ⌊% [�1]⌋ ⊆ ⌊% [�2]⌋ for every context % .

As a corollary, we obtain the compositionality of ⌊·⌋: for every command � whose immediate
sub-commands are �1, ... ,�= , we have that ⌊�⌋ is a function of ⌊�1⌋, ... ,⌊�=⌋. To see this, consider
for instance the case of� = �1 ∥ �2, and suppose that ⌊�1⌋ = ⌊�′

1
⌋ and ⌊�2⌋ = ⌊�′

2
⌋. By Lemma 3.4

applied to the context % = − ∥ �2 and the commands �1,�
′
1
, we obtain ⌊�1 ∥ �2⌋ = ⌊�′

1
∥ �2⌋.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

169:10 Mikhail Svyatlovskiy, Shai Mermelstein, and Ori Lahav

Then, again by Lemma 3.4 applied to the context % = �′
1
∥ − and the commands �2,�

′
2
, we obtain

⌊�′
1
∥ �2⌋ = ⌊�′

1
∥ �′

2
⌋. Together, it follows that ⌊�1 ∥ �2⌋ = ⌊�′

1
∥ �′

2
⌋.

Adequacy. The next lemma provides the key for the adequacy of the concrete semantics.

Lemma 3.5. For a closed command � , we have ⟨�, B⟩ ↓ B′ iff ⟨B, \, 2⟩ ∈ ⌊�⌋ for some store \ and

component chronicle 2 such that 2 (B) = B′.

Proof. For the proof we inductively define an auxiliary relation
2

=⇒ between configurations
labeled with a chronicle 2 , which represents an operational execution interrupted with the environ-
ment writes along 2 (akin to Brookes [1996]’s “state trace” behaviors):

⟨�, B⟩
Y

=⇒ ⟨�, B⟩

U = W̄(G, E) ⟨�, B [G ↦→ E]⟩
2

=⇒ ⟨�′, B′⟩

⟨�, B⟩
U ·2
=⇒ ⟨�′, B′⟩

⟨�, B⟩
W
−→ ⟨�′, B′⟩ ⟨�′, B′⟩

2
=⇒ ⟨�′′, B′′⟩

⟨�, B⟩
W ·2
=⇒ ⟨�′′, B′′⟩

Then, the claim of the lemma is a direct corollary of the following two claims. First, when 2 is a

component chronicle,
2

=⇒ trivially coincides with the operational semantics:

Claim 3.5.1: ⟨�, B⟩ ↓ B′ iff ⟨�, B⟩
2

=⇒ ⟨skip, B′⟩ for some 2 ∈ CmpChro such that 2 (B) = B′.

Second, ⌊�⌋ lies in tight correspondence with
2

=⇒:
Claim 3.5.2: Let� be a command, and let 01, ... ,0= be an enumeration of fv(�). Then, ⟨B, \, 2⟩ ∈ ⌊�⌋

iff ⟨�{\ (01)/01} ... {\ (0=)/0=}, B⟩
2

=⇒ ⟨skip, 2 (B)⟩. The proof of each direction in this claim pro-

ceeds by induction on� , where the interesting cases follow from the fact that
2

=⇒ is compatible with
sequential and parallel compositions. More concretely, for the left-to-right direction, we prove that:

(1) if ⟨�1, B⟩
21
=⇒ ⟨skip, B′⟩ and ⟨�2, B

′⟩
22
=⇒ ⟨skip, B′′⟩, then ⟨�1 ;�2, B⟩

21 ·22
=⇒ ⟨skip, B′′⟩; and (2) if

⟨�1, B⟩
21
=⇒ ⟨skip, B′⟩ and ⟨�2, B⟩

22
=⇒ ⟨skip, B′⟩, then ⟨�1 ∥ �2, B⟩

21 ∥22
=⇒ ⟨skip, B′⟩. For the converse,

we prove: (3) if ⟨�1 ;�2, B⟩
2

=⇒ ⟨skip, B′′⟩, then ⟨�1, B⟩
21
=⇒ ⟨skip, B′⟩ and ⟨�2, B

′⟩
22
=⇒ ⟨skip, B′′⟩

for some chronicles 21, 22 such that 2 = 21 · 22 and state B
′; and (4) if ⟨�1 ∥ �2, B⟩

2
=⇒ ⟨skip, B′⟩, then

⟨�1, B⟩
21
=⇒ ⟨skip, B′⟩ and ⟨�2, B⟩

22
=⇒ ⟨skip, B′⟩ for some chronicles 21, 22 such that 2 = 21 ∥ 22. □

Adequacy of the concrete semantics is now a corollary:

Theorem 3.6. If ⌊�tgt⌋ ⊆ ⌊�src⌋, then �src ⇝ �tgt.

Proof. Suppose that ⌊�tgt⌋ ⊆ ⌊�src⌋. Let % be a context such that % [�src] and % [�tgt] are closed,
and suppose that ⟨% [�tgt], B⟩ ↓ B

′. Since ⟨% [�tgt], B⟩ ↓ B
′, by Lemma 3.5, we have ⟨B, \, 2⟩ ∈ ⌊% [�tgt]⌋

for some store \ and component chronicle 2 ∈ CmpChro such that 2 (B) = B′. Since ⌊�tgt⌋ ⊆ ⌊�src⌋,
by Lemma 3.4, it follows that ⟨B, \, 2⟩ ∈ ⌊% [�src]⌋. By Lemma 3.5, it follows that ⟨% [�src], B⟩ ↓ B

′. □

Figure 4 presents examples of program transformations that are validated by the concrete
semantics. Among RMWs, we only list transformations involving FAA, but similar transformations
can be shown for XCHG and CAS (and some are included in our Coq development).
Many of the transformations in Fig. 4 are structural transformations revealing the algebraic

properties of the language operators. In particular, generalized sequencing reduces parallel composi-
tion to sequential composition. Indeed, by introducing and eliminating skip instructions, using
generalized sequencing we obtain that �1 ∥ �2 ⇝ �1 ;�2 for every �1 and �2. This transformation
is typically considered counterproductive for performance (although it saves the time it takes to
spawn a thread), but it shows the expected monotonicity property of the operational semantics,
which does not hold under some weak memory models [Lahav and Vafeiadis 2016].

Other transformations involve memory accesses. As a concrete example of the style of reasoning
in these proofs, consider the case of unused load elimination/introduction. The traces in ⌊let 0 =

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

Compositional Semantics for Shared-Variable Concurrency 169:11

Algebraic laws of sequential composition

(�1 ;�2) ;�3 ↭ �1 ; (�2 ;�3) skip ;� ↭ � � ; skip ↭ �

Reordering of local operations

let 0 = � in let 0′ = �′ in � ↭ let 0′ = �′ in let 0 = � in � provided that 0 ≠ 0′ , 0 ∉ fv(�′) , and 0′ ∉ fv(�)

let 0 = � in G := � ;� ↭ let 0 = � in G := 0 ;� provided that 0 ∉ fv(�)
if � then (let 0 = �′ in �1)

else (let 0 = �′ in �2)
↭

let 0 = �′ in

(if � then �1 else �2)
provided that 0 ∉ fv(�)

Unused assignment elimination

let 0 = � in � ↭ � provided that 0 ∉ fv(�)

Loop unrolling

while G do � ↭ let 0 = G in (if 0 then (� ; while G do �)) provided that 0 ∉ fv(�)

Algebraic laws of parallel composition

skip ∥ � ↭ � �1 ∥ �2 ↭ �2 ∥ �1 (�1 ∥ �2) ∥ �3 ↭ �1 ∥ (�2 ∥ �3)

Generalized Sequencing (a.k.a. thread inlining/sequentialization)

(�1 ;�
′
1
) ∥ (�2 ;�

′
2
) ⇝ (�1 ∥ �2) ; (�

′
1
∥ �′

2
)

Algebraic laws of non-deterministic choice and distributivity over non-deterministic choice

�1 ⊕ �2 ↭ �2 ⊕ �1 (�1 ⊕ �2) ⊕ �3 ↭ �1 ⊕ (�2 ⊕ �3) � ⊕ � ↭ � �1 ⊕ �2 ⇝ �1 �1 ⊕ �2 ⇝ �2

� ; (�1 ⊕ �2) ↭ (� ;�1) ⊕ (� ;�2) (�1 ⊕ �2) ;� ↭ (�1 ;�) ⊕ (�2 ;�) � ∥ (�1 ⊕ �2) ↭ (� ∥ �1) ⊕ (� ∥ �2)

Load-after-load elimination

let 0 = G in (let 1 = G in �) ⇝ let 0 = G in (let 1 = 0 in �)

Load-after-store elimination

G := � ; let 0 = G in � ⇝ G := � ; let 0 = � in �

Unused load elimination/introduction

let 0 = G in � ↭ � provided that 0 ∉ fv(�)

Load-after-FAA elimination

let 0 = FAA(G, �) in let 0′ = G in � ⇝ let 0 = FAA(G, �) in let 0′ = 0 + � in � provided that 0 ∉ fv(�)

Load-before-FAA elimination

let 0 = G in let 0′ = FAA(G, �) in � ⇝ let 0 = FAA(G, �) in let 0′ = 0 in � provided that 0 ∉ fv(�)

Load-store to FAA

let 0 = G in (G := 0 + � ;�) ⇝ let 0 = FAA(G, �) in � provided that 0 ∉ fv(�)

Assume introduction/elimination

skip ⇝ assume(�) � ⇝ assume(0) assume(x = 0) ↭ while x do skip

Specializing non-deterministic values

G := ∗ ⇝ G := E while ∗ do � ⇝ while G do �

Fig. 4. Examples of program transformations validated by the concrete semantics

G in �⌋ are by definition of the form ⟨B, \, 4 · 2⟩ with 4 ∈ EnvChro and ⟨4 (B), \ [0 ↦→ 4 (B) (G)], 2⟩ ∈
⌊�⌋. When 0 ∉ fv(�), the latter holds iff ⟨4 (B), \, 2⟩ ∈ ⌊�⌋. Then, by picking 4 = Y, we obtain
⌊�⌋ ⊆ ⌊let 0 = G in �⌋ (load elimination). The converse (load introduction) follows from the
observation that ⟨4 (B), \, 2⟩ ∈ ⌊�⌋ implies that ⟨B, \, 4 · 2⟩ ∈ ⌊�⌋ for every command � . Our Coq
development provides general lemmas that are repeatedly used in these arguments.

Example 3.7. The concrete semantics captures some refinements that are invalid in [Brookes
1996]. Indeed, every command in the language we study changes at most one shared variable. This
is reflected in traces since every action in them mentions one variable. For instance, using the

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

169:12 Mikhail Svyatlovskiy, Shai Mermelstein, and Ori Lahav

concrete semantics we can show that �1 ; �2 ;�3 ⇝ �1 ;�3 for:
3

�1 = x := 1 ; y := 1

�2 = let a = x in (let b = y in (assume((a = 2 ∧ b ≠ 2) ∨ (a ≠ 2 ∧ b = 2))))

�3 = let a = x in (let b = y in (assume((a = 2 ∧ b = 2))))

In Brookes’s setting, this refinement fails to hold. For example, the condition in �2 will never be
satisfied in the context − ∥ await true then (x := 2 ; y := 2).

4 ABSTRACT SEMANTICS

The semantics above fully tracks the sequence of writes performed by a command. There are,
however, contextual refinements in which writes are eliminated or introduced. The “abstract
semantics” presented in this section supports such refinements. The main idea is to close the
concrete sets of traces under certain rewrite rules that hide or introduce actions that can be safely
assumed to be unobservable by the concurrent environment. Then, it may be the case that some
traces in ⌊�tgt⌋ are not in ⌊�src⌋, but they are in the closure of ⌊�src⌋ under these rewrites.
The main technical challenge lies in identifying these rewrite rules and proving the required

properties for this semantics. In §4.1, we establish the compositionality property, which, unlike the
case of the concrete semantics, is not a direct corollary of the definition, and requires a new argument.
Then, in §4.2, we show how adequacy of the abstract semantics follows from its compositionality
and Lemma 3.5 about the concrete semantics. In §4.3, we show that the set of rules is “complete”
by establishing full abstraction. In §4.4, we consider full abstraction in the absence of snapshot.

Notation 4.1 (Rewrite Rules and Closures). A rewrite rule G is a binary relation on syntactic objects.
We use the notation 0 G−→ 1 to mean that ⟨0, 1⟩ ∈ G . For a set - of rewrite rules, we write 0 -−→ 1

if 0 G−→ 1 for some G ∈ - . A set � is closed under - if 1 ∈ � whenever 0 -−→ 1 for some 0 ∈ �.
Assuming some universal setA, the closure of � under - , denoted by �- , is defined as the smallest
subset of A that contains � and is closed under - .

The following general propositions are useful in the sequel.

Proposition 4.2. For every � ⊆ A and set - of rewrite rules, �-
= {1 ∈ A | ∃0 ∈ �. 0 -−→

∗ 1}

Proposition 4.3. For every �, � ⊆ A and set - of rewrite rules, � ⊆ �- implies �- ⊆ �- .

We define the abstract semantics using four rewrite rules. The rules aim to match operational
arguments for cases where it is possible to eliminate a redundant idempotent write, eliminate
several writes that cancel each other, or introduce an invisible write. The examples following the
definition provide the intuition behind each rewrite rule.

Definition 4.4. The abstract denotation of a command � , denoted by ⟦�⟧, is defined by ⟦�⟧ ≜

⌊�⌋R , where R consists of the following rewrite rules on traces:

coalesce: ⟨B, \, 21 ·<1 · W(G, E) ·<2 · 22⟩ coalesce−−−−−→ ⟨B, \, 21 · W(G, E) · 22⟩ provided that
<1,<2 ∈ CmpChro and (<1 · W(G, E) ·<2) (21 (B)) = 21 (B) [G ↦→ E].

coalesce: ⟨B, \, 21 ·<1 · W̄(G, E) ·<2 · 22⟩ coalesce−−−−−→ ⟨B, \, 21 · W̄(G, E) · 22⟩ provided that
<1,<2 ∈ CmpChro, (<1 · W̄(G, E) ·<2) (21 (B)) = 21 (B) [G ↦→ E], and<1 (21 (B)) (G) = 21 (B) (G).

del-red: ⟨B, \, 21 · W(G, E) · 22⟩ del-red−−−−→ ⟨B, \, 21 · 22⟩ provided that 21 (B) (G) = E .

add-red: ⟨B, \, 21 · 22⟩ add-red−−−−→ ⟨B, \, 21 · W(G, E) · 22⟩ provided that 21 (B) (G) = E .

3To assist the reader, we highlight the commands eliminated by a transformation.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

Compositional Semantics for Shared-Variable Concurrency 169:13

Below we freely use Prop. 4.3 and show ⌊�tgt⌋ ⊆ ⟦�src⟧ instead of ⟦�tgt⟧ ⊆ ⟦�src⟧.

Example 4.5 (Rule coalesce). Rule coalesce permits to combine consecutive component writes
into one “atomic block”. The condition (<1 · W(G, E) ·<2) (21 (B)) = 21 (B) [G ↦→ E] ensures that
the effect of the formed block is the same as the effect of a single write. As an example, let
�src = let a = y in (y := 1 ; x := 1 ; y := a). Intuitively speaking, we can always execute it
atomically, without letting the environment to interfere in between the first load and the final
store. In that case, it behaves like �tgt = x := 1. Such reasoning is impossible in the concrete
semantics, but the rule coalesce of the abstract semantics is allowing us exactly that, thus jus-
tifying �src ⇝ �tgt. Indeed, to show that ⌊�tgt⌋ ⊆ ⟦�src⟧ observe that every trace C in ⌊�tgt⌋
has the form ⟨B, \, 41 · W(x, 1) · 42⟩. We can start from a corresponding trace in ⟦�src⟧ of the form
⟨B, \, 41 · W(y, 1) · W(x, 1) · W(y, 41 (B) (y)) · 42⟩ and rewrite by coalesce with 21 = 41, <1 = W(y, 1),
<2 = W(y, 41 (B) (y)), and 22 = 42 to obtain C .

Example 4.6 (Rule coalesce). Rule coalesce allows one to “attach” component actions to an
environment action, provided that the composed block has the same effect as the single environment
action. To see this in action, let �src = let a = y in y := 3 ; if x ≠ 2 then (if x = 2 then y := a).
The two if conditions are satisfied only if the concurrent environment changes x from non-zero
value to zero. In this case, we can encompass that environment store of x with the load from y and
the store of 3 to y just before, and the store of the previous value of y just after, and in this case
�src behaves like �tgt = if x ≠ 2 then (if x = 2 then skip else y := 3) else y := 3. The rule
coalesce of the abstract semantics is needed for that, thus justifying �src ⇝ �tgt. Indeed, to show
that ⌊�tgt⌋ ⊆ ⟦�src⟧ observe that the traces in ⌊�tgt⌋ are either of the form ⟨B, \, 41 · W̄(x, 2) · 42⟩
with 41 (B) (x) ≠ 2 or of the form ⟨B, \, 41 · W(y, 3) · 42⟩. Traces of the latter form are directly in
⌊�src⌋. For a trace C of the first form, we start from a corresponding trace in ⌊�src⌋ of the form
⟨B, \, 41 · W(y, 3) · W̄(x, 2) · W(y, 41 (B) (y)) · 42⟩ and rewrite by coalesce with 21 = 41, <1 = W(y, 3),
<2 = W(y, 41 (B) (y)), and 22 = 42 to obtain C . As in coalesce, the condition (<1 · W̄(G, E) ·<2) (21 (B)) =
21 (B) [G ↦→ E] of coalesce ensures that the formed atomic block affects the memory exactly as the
single environment store. We note that in Brookes’s setting, the transformation �src ⇝ �tgt fails
to hold. For the context % = − ∥ await (x ≠ 2 ∧ y ≠ 3) then x := 2, starting from a state with
x ↦→ 3, y ↦→ 2, only % [�tgt] terminates in a state with x ↦→ 2, y ↦→ 2.

Example 4.7 (Second side-condition of coalesce). Attaching component actions to an environment
write W̄(G, E) may fail if these actions modify G and the environment write is due to an RMW on
G . This is the reason for the condition<1 (21 (B)) (G) = 21 (B) (G) in coalesce. For example, using x

instead of y in the commands in Example 4.6, without this condition, we would obtain:

let a = x in x := 3 ; if x ≠ 2 then (if x = 2 then x := a) ⇝

if x ≠ 2 then (if x = 2 then skip else x := 3) else x := 3

However, starting from x ↦→ 0, in parallel to FAA(x, 2), only the target can terminate with x ↦→ 2.

Example 4.8 (Rule del-red). Executing �src = let a = x in x := a atomically is invisible for
the concurrent environment, behaving like skip. In the concrete semantics, we cannot prove
�src ⇝ skip since all chronicles of ⌊�src⌋ have one component write, whereas those of ⌊skip⌋
have none. The rule del-red is needed here. Indeed, to show that ⌊skip⌋ ⊆ ⟦�src⟧, we start with
an arbitrary trace C in ⌊skip⌋, which must have the form ⟨B, \, 4⟩. Then, a corresponding trace in
⌊�src⌋ of the form ⟨B, \, 4 · W(x, 4 (B) (x))⟩ can be rewritten to C by del-red with 21 = 4 and 22 = Y.

Example 4.9 (Rule add-red). In the operational semantics fetch-and-add by 0 is equivalent to a
read. In particular, for �src = let a = x in y := a and �tgt = let a = FAA(x, 0) in y := a, we have

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

169:14 Mikhail Svyatlovskiy, Shai Mermelstein, and Ori Lahav

�src ⇝ �tgt. This cannot be shown by the concrete semantics since chronicles of �src have only
one component write, while those of �tgt have two such writes. To show that ⌊�tgt⌋ ⊆ ⟦�src⟧, we
start with an arbitrary trace C in ⌊�tgt⌋, which must have the form ⟨B, \, 41 · W(x, E) · 42 · W(y, E) · 43⟩
with E = 41 (B) (x). Then, a corresponding trace in ⌊�src⌋ of the form ⟨B, \, 41 · 42 · W(y, E) · 43⟩ can be
rewritten to C by add-red with 21 = 41 and 22 = 42 · W(y, E) · 43.

Example 4.10. Rule add-red is also necessary for a language without RMWs. For:

�src = let a = y in (y := 1 ; (if x ≠ 0 then x := 0) ; y := a) �tgt = assume(x = 0) ; x := 0

we have �src ⇝ �tgt, but ⌊�tgt⌋ ⊆ ⟦�src⟧ cannot be established without add-red.

Remark 4.11. In the presence of coalesce and add-red, the rule del-red can be strengthened:

del-red′: ⟨B, \, 21 ·< · 22⟩ del-red′−−−−−→ ⟨B, \, 21 · 22⟩ provided that< ∈ CmpChro and<(21 (B)) = 21 (B).

Indeed, we can rewrite as follows using an arbitrary G ∈ Var, and then apply del-red:

⟨B, \, 21 ·< · 22⟩ add-red−−−−→ ⟨B, \, 21 ·< · W(G, 21 (B) (G)) · 22⟩ coalesce−−−−−→ ⟨B, \, 21 · W(G, 21 (B) (G)) · 22⟩.

4.1 Compositionality

We establish the compositionality of ⟦�⟧. First, to handle sequential composition, we observe that
the rules of R can be applied inside sequential composition of traces:

Proposition 4.12. The following hold for every r ∈ R:

• If C1 r−→ C ′
1
and C ′

1
; C2 is defined, then C1 ; C2 r−→ C ′

1
; C2.

• If C2 r−→ C ′
2
and C1 ; C

′
2
is defined, then C1 ; C2 r−→ C1 ; C

′
2
.

From this property, we obtain the following proposition, which solves the case of sequential
composition in the compositionality proof.

Proposition 4.13. If ⌊�1⌋ ⊆ ⟦�′
1
⟧, then ⌊�1 ;�2⌋ ⊆ ⟦�′

1
;�2⟧. Similarly, if ⌊�2⌋ ⊆ ⟦�′

2
⟧, then

⌊�1 ;�2⌋ ⊆ ⟦�1 ;�
′
2
⟧.

Proof. We prove the first claim and the second proof is symmetric. Suppose that ⌊�1⌋ ⊆ ⟦�′
1
⟧.

Let C ∈ ⌊�1 ;�2⌋. By definition, we have C = C1 ; C2 for some C1 ∈ ⌊�1⌋ and C2 ∈ ⌊�2⌋. Our assumption
entails that C1 ∈ ⟦�′

1
⟧. Let C ′

1
∈ ⌊�′

1
⌋ such that C ′

1
R−→

∗ C1. By Prop. 4.12, C ′
1
; C2

R−→
∗ C . In particular,

C ′
1
; C2 is defined, and thus by definition we have C ′

1
; C2 ∈ ⌊�′

1
;�2⌋. It follows that C ∈ ⟦�′

1
;�2⟧. □

Handling parallel composition is more difficult. Indeed, a claim like Prop. 4.12 does not hold for
parallel composition instead of sequential composition: since the rewrite rules change the chronicle
in the trace, it may be that C1 R−→ C ′

1
and C ′

1
∥ C2 is defined, but C1 ∥ C2 is undefined. We address this

problem by showing that in such cases there must be another trace C ′
2
that satisfies C1 ∥ C ′

2
R−→
∗ C ′

1
∥ C2

and belongs to any concrete denotation that C2 belongs to. For the formal argument, we introduce a
set D ≜ { disperse−−−−→, disperse−−−−→, add-red−−−−→, del-red−−−−→} of “dual” rewrite rules:

disperse: ⟨B, \, 21 · W̄(G, E) · 22⟩ disperse−−−−→ ⟨B, \, 21 · 41 · W̄(G, E) · 42 · 22⟩ provided that
41, 42 ∈ EnvChro and (41 · W̄(G, E) · 42) (21 (B)) = 21 (B) [G ↦→ E].

disperse: ⟨B, \, 21 · W(G, E) · 22⟩ disperse−−−−→ ⟨B, \, 21 · 41 · W(G, E) · 42 · 22⟩ provided that
41, 42 ∈ EnvChro, (41 · W(G, E) · 42) (21 (B)) = 21 (B) [G ↦→ E], and 41 (21 (B)) (G) = 21 (B) (G).

add-red: ⟨B, \, 21 · 22⟩ add-red−−−−→ ⟨B, \, 21 · W̄(G, E) · 22⟩ provided that 21 (B) (G) = E .

del-red: ⟨B, \, 21 · W̄(G, E) · 22⟩ del-red−−−−→ ⟨B, \, 21 · 22⟩ provided that 21 (B) (G) = E .

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

Compositional Semantics for Shared-Variable Concurrency 169:15

Proposition 4.14. For every command � , ⌊�⌋ is closed under D.

Proof. By induction on C ∈ ⌊�⌋ using the following claims for the inductive step:
Claim 4.14.1: For every d ∈ D, if C1 ; C2 d−→ C ′, then either C ′ = C ′

1
; C2 for some C ′

1
such that C1 d−→ C ′

1
or

C ′ = C1 ; C
′
2
for some C ′

2
such that C2 d−→ C ′

2
.

Claim 4.14.2: If C1 ∥ C2
d−→ C ′ for d ∈ {disperse, add-red, del-red}, then C ′ = C ′

1
∥ C ′

2
for some C ′

1

and C ′
2
such that C1 d−→ C ′

1
and C2 d−→ C ′

2
.

Claim 4.14.3: If C1 ∥ C2 disperse−−−−→ C ′, then C ′ = C ′
1
∥ C ′

2
for some C ′

1
and C ′

2
satisfying one of the following:

C1
disperse−−−−→ C ′

1
and C2 disperse−−−−→ C ′

2
or C1

disperse−−−−→ C ′
1
and C2 disperse−−−−→ C ′

2
. □

Proposition 4.15. Suppose that C ′
1
∥ C ′

2
is defined.

• If r ∈ R and C1 r−→ C ′
1
, then there exists C2 such that C ′

2
D−→ C2 and C1 ∥ C2 r−→ C ′

1
∥ C ′

2
.

• If r ∈ R and C2 r−→ C ′
2
, then there exists C1 such that C ′

1
D−→ C1 and C1 ∥ C2 r−→ C ′

1
∥ C ′

2
.

With Propositions 4.14 and 4.15, we obtain the variant of Prop. 4.13 to handle parallel composition:

Proposition 4.16. If ⌊�1⌋ ⊆ ⟦�′
1
⟧, then ⌊�1 ∥ �2⌋ ⊆ ⟦�′

1
∥ �2⟧. Similarly, if ⌊�2⌋ ⊆ ⟦�′

2
⟧, then

⌊�1 ∥ �2⌋ ⊆ ⟦�1 ∥ �′
2
⟧.

Proof. We prove the first claim and the second proof is symmetric. Suppose that ⌊�1⌋ ⊆ ⟦�′
1
⟧.

Let C ∈ ⌊�1 ∥ �2⌋. By definition, C = C1 ∥ C2 for some C1 ∈ ⌊�1⌋ and C2 ∈ ⌊�2⌋. Our assumption
entails that C1 ∈ ⟦�′

1
⟧. To show that C ∈ ⟦�′

1
∥ �2⟧, it suffices to show that for every C ′

1
such that

C ′
1

R−→
∗ C1, there exists C

′
2
∈ ⌊�2⌋ such that C ′

1
∥ C ′

2
R−→

∗ C . By Prop. 4.14, it suffices to show that for
every C ′

1
such that C ′

1
R−→
∗ C1, there exists C

′
2
such that C2 D−→

∗ C ′
2
and C ′

1
∥ C ′

2
R−→
∗ C . We prove this claim

by induction on the number of rewrite steps in C ′
1

R−→
∗ C1. In the base case we have C ′

1
= C1 and we

can take C ′
2
= C2 and C

′
1
∥ C ′

2
= C . For the induction step, suppose that for C ′

1
there exists C ′

2
such that

C2
D−→

∗ C ′
2
and C ′

1
∥ C ′

2
R−→

∗ C , and let C ′′
1
such that C ′′

1
R−→ C ′

1
. By Prop. 4.15, there exists C ′′

2
such that

C ′
2

D−→ C ′′
2
and C ′′

1
∥ C ′′

2
R−→ C ′

1
∥ C ′

2
. Thus, we have C2 D−→

∗ C ′′
2
and C ′′

1
∥ C ′′

2
R−→
∗ C . □

Using Propositions 4.13 and 4.16 for handling sequential and parallel composition, and similar
lemmas for other constructs, we can easily establish the following lemma by induction on % :

Lemma 4.17. If ⟦�1⟧ ⊆ ⟦�2⟧, then ⟦% [�1]⟧ ⊆ ⟦% [�2]⟧ for every context % .

As discussed above for the concrete semantics (see discussion after Lemma 3.4), the compositional-
ity of ⟦·⟧ follows from Lemma 4.17. This also entails that there exists a (mathematical) function that
maps the denotations of the immediate sub-commands of � to the denotation of � . To see this, con-
sider again the case of� = �1 ∥ �2. Given ⟦�1⟧ and ⟦�2⟧, we can arbitrarily “pick” some commands
�′
1
and �′

2
with ⟦�′

1
⟧ = ⟦�1⟧ and ⟦�′

2
⟧ = ⟦�2⟧, and “return” ⌊�′

1
∥ �′

2
⌋R . Since ⟦�′

1
⟧ = ⟦�1⟧ and

⟦�′
2
⟧ = ⟦�2⟧, the compositionality of ⟦·⟧ ensures that ⟦�⟧ = ⟦�1 ∥ �2⟧ = ⟦�′

1
∥ �′

2
⟧ = ⌊�′

1
∥ �′

2
⌋R .

Remark 4.18. Candidates for a direct compositional definition of ⟦�1 ;�2⟧ and ⟦�1 ∥ �2⟧ are
to take the R-closure of the set obtained by taking all possible sequential/parallel compositions
of traces from ⟦�1⟧ and ⟦�2⟧. This works for sequential composition, as we have ⟦�1 ;�2⟧ =

{C1 ; C2 | C1 ∈ ⟦�1⟧, C2 ∈ ⟦�2⟧}
R . However, for parallel composition, we only have ⟦�1 ∥ �2⟧ ⊆

{C1 ∥ C2 | C1 ∈ ⟦�1⟧, C2 ∈ ⟦�2⟧}
R . To see that the converse does not hold, let:

�1 = x := 1 ; assume(y = 0) ; assume(z ≠ 1) ; assume(z = 1) ; x := 0

�2 = y := 1 ; assume(x = 0) ; assume(z ≠ 1) ; assume(z = 1) ; y := 0

Using coalesce on ⟨s0, \0, W(x, 1) · W̄(z, 1) · W(x, 0)⟩ ∈ ⌊�1⌋ and ⟨s0, \0, W(y, 1) · W̄(z, 1) · W(y, 0)⟩ ∈
⌊�2⌋, we obtain that C = ⟨s0, \0, W̄(z, 1)⟩ ∈ {C1 ∥ C2 | C1 ∈ ⟦�1⟧, C2 ∈ ⟦�2⟧}

R . But, C ∉ ⟦�1 ∥ �2⟧.
Indeed, no trace in ⌊�1 ∥ �2⌋ has a single environment write to z, and all rules of R preserve the
environment actions.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

169:16 Mikhail Svyatlovskiy, Shai Mermelstein, and Ori Lahav

Store-before-store elimination

G := � ; G := �′ ⇝ G := �′

Store-after-load eliminations

let 0 = G in (G := 0 ;�) ⇝ let 0 = G in �

let 0 = G in (if � then (G := 0 ;�1) else �2) ⇝ let 0 = G in (if � then �1 else �2)
let 0 = G in (~ := � ; G := 0) ⇝ ~ := � provided that G ≠ ~ and 0 ∉ fv(�)
let 0 = G in (let 1 = ~ in G := 0) ⇝ skip provided that 0 ≠ 1

Unused FAA-before-store elimination

let 0 = FAA(G, �) in G := E ⇝ G := E

FAA-after-FAA elimination
let 0 = FAA(G, �) in

let 1 = FAA(G, �′) in �
⇝

let 0 = FAA(G, � + �′) in

let 1 = 0 + � in �
provided that 0 ∉ fv(�) ∪ fv(�′)

FAA-after-store elimination

G := E ; (let 0 = FAA(G, �) in �) ⇝ let 0 = E in (G := E + ⟦�⟧ ;�) provided that 0 ∉ fv(�)

Redundant FAA elimination/introduction

let 0 = G in � ↭ let 0 = FAA(G, 0) in �

Fig. 5. Examples of program transformations validated by the abstract semantics

4.2 Adequacy

We show that adequacy of the abstract semantics is a corollary of its compositionality and of
Lemma 3.5. For that, we first observe that the rewrite rules only manipulate chronicles leaving
the initial state, initial store, and (derived) final state intact, and that only component traces are
mapped to component traces by the rewrite rules in R.

Proposition 4.19. If ⟨B, \, 2⟩ R−→ ⟨B′, \ ′, 2′⟩, then B = B′, \ = \ ′, and 2 (B) = 2′ (B′).

Proposition 4.20. If ⟨B, \, 2⟩ R−→ ⟨B′, \ ′, 2′⟩ and 2′ ∈ CmpChro, then 2 ∈ CmpChro.

Theorem 4.21. If ⟦�tgt⟧ ⊆ ⟦�src⟧, then �src ⇝ �tgt.

Proof. Suppose that ⟦�tgt⟧ ⊆ ⟦�src⟧. Let % be a context such that % [�src] and % [�tgt] are
closed, and suppose that ⟨% [�tgt], B⟩ ↓ B

′. Since ⟨% [�tgt], B⟩ ↓ B
′, by Lemma 3.5, we have ⟨B, \, 2⟩ ∈

⌊% [�tgt]⌋ for some store \ and component chronicle 2 ∈ CmpChro such that 2 (B) = B′. Since
⌊% [�tgt]⌋ ⊆ ⟦% [�tgt]⟧, we have ⟨B, \, 2⟩ ∈ ⟦% [�tgt]⟧. Since ⟦�tgt⟧ ⊆ ⟦�src⟧, by Lemma 4.17, it
follows that ⟨B, \, 2⟩ ∈ ⟦% [�src]⟧. Using Prop. 4.2, C0 R−→

∗ ⟨B, \, 2⟩ for some C0 ∈ ⌊% [�src]⌋. Then, by
Propositions 4.19 and 4.20, C0 = ⟨B, \, 2′⟩ for some component chronicle 2′ ∈ CmpChro such that
2′ (B) = 2 (B) = B′. By Lemma 3.5, it follows that ⟨% [�src], B⟩ ↓ B

′. □

By Prop. 4.3, we have ⟦�tgt⟧ ⊆ ⟦�src⟧ iff ⌊�tgt⌋ ⊆ ⟦�src⟧. It follows that every program transfor-
mation that is validated by the concrete semantics is also validated by the abstract one:

Proposition 4.22. If ⌊�tgt⌋ ⊆ ⌊�src⌋, then ⟦�tgt⟧ ⊆ ⟦�src⟧.

Figure 5 presents examples of refinements that are validated by the abstract semantics but not
by the concrete semantics. Again, among RMWs, we only list transformations involving FAA.

4.3 Full Abstraction

We establish full abstraction for the abstract semantics. The proof uses the notation 2̄ for the dual
of a chronicle 2 , defined by 2̄ ≜ Ū1 · · · Ū= for 2 = U1 · · ·U= .

Theorem 4.23. If ⟦�tgt⟧ ̸⊆ ⟦�src⟧, then �src ̸⇝ �tgt.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

Compositional Semantics for Shared-Variable Concurrency 169:17

Proof. Suppose that ⟦�tgt⟧ ̸⊆ ⟦�src⟧. By Prop. 4.3, we have ⌊�tgt⌋ ̸⊆ ⟦�src⟧. Let Ctgt = ⟨B0, \, 2tgt⟩ ∈
⌊�tgt⌋ \ ⟦�src⟧. Using Ctgt, we construct a context that demonstrates that �src ̸⇝ �tgt. Suppose first
that Ctgt is non-empty, and let U1, ... ,U= ∈ Act such that 2tgt = U1 · · ·U= . For every 1 ≤ 8 ≤ =, let:

B8 ≜ (U1 · · ·U8) (B0) �8 ≜

{

let a = XCHG(G, E) in assume(a = B8−1 (G)) U8 = W̄(G, E)

skip otherwise

Let 01, ... ,0: be an enumeration of fv(�src) ∪ fv(�tgt), and define:

�ctx ≜ �1 ; snapshot(B1) ;�2 ; snapshot(B2) ; ... ;�=−1 ; snapshot(B=−1) ;�=

% ≜ let 01 = \ (01) in (let 02 = \ (02) in (... (let 0: = \ (0:) in (�ctx ∥ −) ...))

Intuitively speaking, the snapshots used in the context ensure that every execution of �ctx visits
the states B1, ... ,B=−1 in this order.

Clearly, % [�src] and % [�tgt] are closed. We claim that (8) ⟨% [�tgt], B0⟩ ↓ B= , but (88) ⟨% [�src], B0⟩ ↚
B= . For (8), observe that ⟨B0, \, ¯2tgt ∥ 2tgt⟩ ∈ ⌊% [�tgt]⌋ for any store \ . Then, since ¯2tgt ∥ 2tgt is a
component chronicle and 2tgt (B0) = B= , ⟨% [�tgt], B0⟩ ↓ B= follows by Lemma 3.5.
To prove (88), it suffices to prove the following claim:

Claim 4.23.1: ⟨B0, \, 2̄⟩ R−→
∗ ⟨B0, \, 2tgt⟩ for every 2 ∈ Chro such that 2 (B0) = B= and ⟨B0, \, 2⟩ ∈ ⌊�ctx⌋.

Indeed, from this claim we obtain that ⟨B0, \, 2̄⟩ ∉ ⌊�src⌋ for every chronicle 2 such that 2 (B0) = B=
and ⟨B0, \, 2⟩ ∈ ⌊�ctx⌋, which implies that ⟨B0, \, 2⟩ ∉ ⌊% [�src]⌋ for every component chronicle 2
satisfying 2 (B0) = B= . Then, (88) follows by Lemma 3.5.

Next, we prove Claim 4.23.1. Let 2 be a chronicle such that 2 (B0) = B= and ⟨B0, \, 2⟩ ∈ ⌊�ctx⌋. Due
to the use of snapshots in�ctx, since ⟨B0, \, 2⟩ ∈ ⌊�ctx⌋, we have that 2 = 21 · · · 2= for some chronicles
21, ... ,2= such that 28 (B8−1) = B8 and ⟨B8−1, \, 28⟩ ∈ ⌊�8⌋ for every 1 ≤ 8 ≤ =. We show that for every
1 ≤ 8 ≤ =, we have ⟨B8−1, \, 2̄8⟩ R−→

∗ ⟨B8−1, \, U8⟩. By repeatedly applying this rewrite, using Prop. 4.12,
the desired ⟨B0, \, 2̄⟩ R−→

∗ ⟨B0, \, 2tgt⟩ follows.
Let 1 ≤ 8 ≤ =, and consider the possible cases:

• U8 = W̄(G, E) is an environment write: In this case, ⟨B8−1, \, 28⟩ ∈ ⌊�8⌋ implies (by rules
let,assume) that there exists environment chronicles 4′, 4 such that 28 = 4′ · W(G, E) · 4 and
4′ (B8−1) (G) = B8−1 (G). Then, since we also have 28 (B8−1) = B8 , using coalesce, we can rewrite
⟨B8−1, \, 2̄8⟩ into ⟨B8−1, \, U8⟩.

• U8 = W(G, E) is an component write: In this case, 28 is an environment chronicle, and either
28 = 4′ · W̄(G, E) · 4 for some environment chronicles 4′, 4 or Ū8 is not inside 28 . In the first case,
since 28 (B8−1) = B8 , using coalesce, we can rewrite ⟨B8−1, \, 2̄8⟩ into ⟨B8−1, \, U8⟩. In the second
case, 28 (B8−1) = B8 = U8 (B8−1) implies that B8−1 = B8 . Using add-red, we can rewrite ⟨B8−1, \, 2̄8⟩
into ⟨B8−1, \, U8 · 2̄8⟩. Then, using the del-red

′ rewrite rule (a combination of coalesce and
add-red and del-red, see Remark 4.11), we rewrite ⟨B8−1, \, U8 · 2̄8⟩ into ⟨B8−1, \, U8⟩.

Finally, consider the case that 2tgt = Y. In this case we define �ctx ≜ skip and also define % as
above (using �ctx). We have ⟨B0, \, Y⟩ ∈ ⌊% [�tgt]⌋ for any store \ , and by Lemma 3.5 we obtain that
⟨% [�tgt], B0⟩ ↓ B0. In turn, as above, ⟨% [�src], B0⟩ ↚ B0 follows from the fact that ⟨B0, \, 2̄⟩ R−→

∗ ⟨B0, \, Y⟩
for every chronicle 2 such that 2 (B0) = B0 and ⟨B0, \, 2⟩ ∈ ⌊�ctx⌋. To prove this fact, let 2 such that
2 (B0) = B0 and ⟨B0, \, 2⟩ ∈ ⌊�ctx⌋. Then, ⟨B0, \, 2⟩ ∈ ⌊�ctx⌋ implies that 2 is an environment chronicle.
Using del-red′, we rewrite ⟨B0, \, 2̄⟩ into ⟨B0, \, Y⟩. □

Given Thm. 4.23, we can use the abstract semantics to easily invalidate certain transformations.
Next, we present two such examples.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

169:18 Mikhail Svyatlovskiy, Shai Mermelstein, and Ori Lahav

Example 4.24. Store-before-store elimination is invalid with an intervening load. For instance,

for �src = x := 1 ; let a = y in (x := 2 ; z := a) and �tgt = let a = y in (x := 2 ; z := a), we have
�src ̸⇝ �tgt. Since ⟨s0, \0, W̄(y, 1) · W(x, 2) · W(z, 0)⟩ ∈ ⟦�tgt⟧ \ ⟦�src⟧, this follows from Thm. 4.23.

Example 4.25. A repeated store cannot be eliminated when there is an intervening store. For

instance, for �src = x := 1 ; y := 1 ; x := 1 and �tgt = x := 1 ; y := 1, we have �src ̸⇝ �tgt. Since
⟨s0, \0, W(x, 1) · W̄(x, 2) · W(y, 1)⟩ ∈ C ∈ ⟦�tgt⟧ \ ⟦�src⟧, this follows from Thm. 4.23.

From the full abstraction proof, we observe that although multiple rewrites of a trace may be
necessary, these rewrites do not overlap. We only apply them to disjoint parts of the chronicle.
Formally, we let R loc be the set consisting of “local” variants of the rules:

coalesceloc: ⟨B, \,<1 · W(G, E) ·<2⟩ coalesceloc−−−−−−→ ⟨B, \, W(G, E)⟩ provided that
<1,<2 ∈ CmpChro and (<1 · W(G, E) ·<2) (B) = B [G ↦→ E].

coalesce
loc
: ⟨B, \,<1 · W̄(G, E) ·<2⟩ coalesce

loc

−−−−−−→ ⟨B, \, W̄(G, E)⟩ provided that
<1,<2 ∈ CmpChro, (<1 · W̄(G, E) ·<2) (B) = B [G ↦→ E], and<1 (B) (G) = B (G).

del-redloc: ⟨B, \,<⟩ del-redloc−−−−−→ ⟨B, \, Y⟩ provided that< ∈ CmpChro and<(B) = B .

add-redloc: ⟨B, \, Y⟩ add-redloc−−−−−−→ ⟨B, \, W(G, E)⟩ provided that B (G) = E .

The relation ⇒ between traces is inductively defined as follows:

⟨B, \, Y⟩ ⇒ ⟨B, \, Y⟩

C1
R loc

−−→
? C ′1 C2 ⇒ C ′2

C1 ; C2 ⇒ C ′1 ; C
′
2

Then, the full abstraction proof shows that�src ̸⇝ �tgt whenever ⌊�tgt⌋ ̸⊆ {C ′ | ∃C ∈ ⌊�src⌋ . C ⇒ C ′}.
In fact, by analyzing the rewrite rules we prove the following:

Lemma 4.26. For every set) of traces, we have) R
= {C ′ | ∃C ∈) . C ⇒ C ′}.

4.4 Full Abstraction Without Snapshots

The full abstraction proof above relies on the availability of the snapshot command, which gives
the parallel context the ability to simultaneously observe the values of all variables. Next, we show
that snapshots can be avoided in that proof provided that �src is loop-free. Roughly speaking, we
show in this case it is possible to achieve the effect of a snapshot executing in parallel to �src by
repeatedly reading shared variables a number of times that can be determined from �src. This
means that when �src is loop-free snapshots do no not increase the distinguishing power of the
parallel context. In turn, we present a delicate example of a command �src with loops, where a
certain refinement holds for snapshot-free contexts but fails to hold for contexts with snapshot.
In particular, this implies that in the language without snapshot, full abstraction of the abstract
semantics does not hold for code fragments with loops.
Formally, we say that a transformation from a command �src to a command �tgt is sound for

no-snapshot context, denoted by �src ⇝snapshot �tgt, if ⟨% [�tgt], B⟩ ↓ B
′ implies ⟨% [�src], B⟩ ↓ B

′ for
every snapshot-free context % such that % [�src] and % [�tgt] are closed.

Theorem 4.27. If �src is loop-free and ⟦�tgt⟧ ̸⊆ ⟦�src⟧, then �src ̸⇝snapshot �tgt.

Proof Sketch. In the proof Thm. 4.23, snapshot is needed in order to ensure that a certain state
is reached when�src is executed concurrently. When�src is loop-free, we can achieve this result by
repeatedly reading the shared variables used in �src, and checking their values one-by-one. More
precisely, given a state B , let�B ≜ assume(G1 = B (G1)) ; ... ; assume(G= = B (G=)) where G1, ... ,G= is an

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

Compositional Semantics for Shared-Variable Concurrency 169:19

enumeration of all shared variables occurring in �src. When �src is loop-free, there exists a bound
∈ N on the number of writes performed by�src (i.e., the number of component actions in ⌊�src⌋).
We use a sequential composition�B ; ... ;�B consisting of # + 1 copies of�B instead of snapshot(B).
If after every execution of �B we reach a state different than B , then for the next execution of �B to
terminate, we need at least one write by the concurrent context. Since the �src is performing at
most # writes, executing �B # + 1 times in a row ensures that at some point we visit B . □

The above implication fails if �src has loops. The simplest example we found is presented next.

Example 4.28. For the commands �src = while ∗ do (y := 0 ; x := ∗ ; x := 0 ; y := ∗) and
�tgt = y := 0 ; x := 1 ; y := 1 ; x := 0, we have�src ̸⇝ �tgt but�src ⇝snapshot �tgt. The former follows
from Thm. 4.23 since we have ⟨s0, \0, W(y, 0) · W(x, 1) · W(y, 1) · W(x, 0)⟩ ∈ ⌊�tgt⌋ \ ⟦�src⟧.
To see that �src ⇝snapshot �tgt, we have to resort to cumbersome operational reasoning, and

provide a simulation relation that relates operational executions of % [�tgt] to those of % [�src].
Roughly speaking, the main idea is to execute y := 0 and x := ∗ (with 1 for ∗) in the source when
the target executes y := 0 and x := 1, respectively. Then, when the target executes y := 1, the source
executes x := 0 ; y := ∗ (with 1 for ∗). This creates a mismatch between the target’s state that has
x = 1 and the source’s state that has x = 0. Nevertheless, whenever the concurrent context relies
on the value of x, the source can do another half-iteration and execute y := 0 ; x := ∗ to fix the
value of x as it is in the target’s state, moving the mismatch between the target and the source to y.
This way, we are able to use the source’s non-deterministic loop, to provide the concurrent context
with whatever value it needs for x and y, one at a time. Finally, when the target executes x := 0 the
source executes x := 0 ; y := ∗ (with the final value of y in the target for ∗).

Making this intuition formal is rather challenging (which provides us with more confidence that
the denotational semantics is beneficial for formal refinement proofs). In our Coq development, we
do that by generalizing the notion of a command context, demonstrating how generalized contexts
interact with the operational semantics, and using generalized contexts for defining the simulation.

Example 4.28 uses non-deterministic looping, while ∗ do � , but, by using the following propo-
sition, it is possible to devise a similar example without non-deterministic looping:

Proposition 4.29. The following transformations are sound:

• G := ∗ ; while G do (G := ∗ ;� ; G := ∗) ; G := ∗ ⇝ while ∗ do � .

• For � = while ~ do (G := 0 ⊕ let 0 = FAA(G, 1) in skip), we have
let 0 = ~ in (~ := 1 ; (� ∥ ~ := 0) ; ~ := 0) ⇝ G := ∗ provided that G ≠ ~.

Using Prop. 4.29, we can adapt Example 4.28 to use a command�′
src that does not use while ∗ do �

and G := ∗ instead of�src and have�
′
src ⇝snapshot �tgt. To see that�

′
src ̸⇝ �tgt, note that a concurrent

snapshot observing x = y = 1 is possible for �tgt but not for �
′
src. Thus, snapshots strictly increase

the distinguishing power of contexts also in a language without non-deterministic loops.

5 SEMANTICS FOR RMW-FREE CONTEXTS

In this section we show that RMWs strictly increase the power of contexts to distinguish between
code fragments, and show how to modify the abstract semantics for the case of RMW-free contexts.
Formally, we say that a transformation from a command �src to a command �tgt is sound for

no-RMW context, denoted by �src ⇝rmw �tgt, if for every RMW-free context % such that % [�src]
and % [�tgt] are closed, we have that ⟨% [�tgt], B⟩ ↓ B

′ implies ⟨% [�src], B⟩ ↓ B
′.

The next example demonstrates a case where �src ⇝rmw �tgt but �src ̸⇝ �tgt. (Example 4.7
provides another case in point.)

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

169:20 Mikhail Svyatlovskiy, Shai Mermelstein, and Ori Lahav

Example 5.1. Let: �src = x := 1 ; x := 5 ; if x = 2 then x := 3 else x := 4

�tgt = x := 1 ; if x = 2 then x := 3 else x := 4

An intuitive argument for�src ⇝ �tgt could claim that when the “then” branch is taken, there must
be a moment when the parallel context stores 2 in x and we can execute x := 5 “just before” that
moment; andwhen the “else” branch is takenwe can execute x := 5;if x = 2 then x := 3 else x := 4

as one atomic block at the time the target executes x := 4. This argument, however, ignores the option
that the context may not be able to store 2 in x if the value of x was modified to 5, which is possible
when the context stores 2 in x using an RMW. Indeed, for % = − ∥ let b = FAA(x, 1) in skip we
have ⟨% [�], s0⟩ ↓ s0 [x ↦→ 3] for� = �tgt but not for� = �src. Alternatively, using Thm. 4.23,�src ̸⇝
�tgt follows from the fact that for C = ⟨s0, \0, W(x, 1) · W̄(x, 2) · W(x, 3)⟩, we have C ∈ ⟦�tgt⟧ \ ⟦�src⟧.
Using the semantics below, we will formally show that �src ⇝rmw �tgt.

From the discussion above, we observe that when the context is RMW-free, we would like to
allow to attach component actions to environment actions even when the component actions
write to the same variable that the environment modifies. This would formally justify the intuitive
argument about the “then” branch, allowing us to rewrite ⟨s0, \0, W(x, 1) · W(x, 5) · W̄(x, 2) · W(x, 3)⟩
into the target trace ⟨s0, \0, W(x, 1) · W̄(x, 2) · W(x, 3)⟩. We do so by omitting the second side condition
of coalesce, using its following strengthening (in the sense that it allows more rewrites):

coalesce
rmw

: ⟨B, \, 21 ·<1 · W̄(G, E) ·<2 · 22⟩ coalesce
rmw

−−−−−−−→ ⟨B, \, 21 · W̄(G, E) · 22⟩ provided that
<1,<2 ∈ CmpChro and (<1 · W̄(G, E) ·<2) (21 (B)) = 21 (B) [G ↦→ E].

We let Rrmw ≜ { coalesce−−−−−→, coalesce
rmw

−−−−−−−→, del-red−−−−→, add-red−−−−→} and ⟦�⟧rmw ≜ ⌊�⌋Rrmw . Next, we prove the follow-
ing compositionality property, analogous to 4.17:

Lemma 5.2. If ⟦�1⟧rmw ⊆ ⟦�2⟧rmw, then ⟦% [�1]⟧ ⊆ ⟦% [�2]⟧ for every RMW-free context % .

Proof. The proof proceeds by induction on % . For sequential composition, we use the following
analogue of Prop. 4.13:
Claim 5.2.1: If ⌊�1⌋ ⊆ ⟦�′

1
⟧rmw, then ⌊�1 ;�2⌋ ⊆ ⟦�′

1
;�2⟧rmw. Similarly, if ⌊�2⌋ ⊆ ⟦�′

2
⟧rmw, then

⌊�1 ;�2⌋ ⊆ ⟦�1 ;�
′
2
⟧rmw.

For parallel composition, we define the following rule that is dual to coalesce
rmw:

dispersermw: ⟨B, \, 21 · W(G, E) · 22⟩ dispersermw

−−−−−−→ ⟨B, \, 21 · 41 · W(G, E) · 42 · 22⟩ provided that
41, 42 ∈ EnvChro and (41 · W(G, E) · 42) (21 (B)) = 21 (B) [G ↦→ E].

We define Drmw ≜ { disperse−−−−→, dispersermw

−−−−−−→, add-red−−−−→, del-red−−−−→}, and show the following analogue of Prop. 4.14:
Claim 5.2.2: For every RMW-free command � , ⌊�⌋ is closed under Drmw.

Then, we can prove the following variant of Prop. 4.16, which establishes the required property
for parallel composition:
Claim 5.2.3: If ⌊�1⌋ ⊆ ⟦�′

1
⟧rmw and �2 is RMW-free, then ⌊�1 ∥ �2⌋ ⊆ ⟦�′

1
∥ �2⟧rmw. Similarly, if

⌊�2⌋ ⊆ ⟦�′
2
⟧rmw and �1 is RMW-free, then ⌊�1 ∥ �2⌋ ⊆ ⟦�1 ∥ �′

2
⟧rmw.

Other language constructs are handled similarly. □

Given Lemma 5.2, adequacy of ⟦·⟧rmw is shown similarly to the proof of Thm. 4.21.

Theorem 5.3. If ⟦�tgt⟧rmw ⊆ ⟦�src⟧rmw, then �src ⇝rmw �tgt.

With Thm. 5.3, we can revisit Example 5.1 and derive �src ⇝rmw �tgt from ⌊�tgt⌋ ⊆ ⟦�src⟧rmw.
Indeed, traces in ⌊�tgt⌋ are either of the form ⟨B, \, 41 · W(x, 1) · 42 · W̄(x, 2) · 43 · W(x, 3) · 44⟩ or of

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

Compositional Semantics for Shared-Variable Concurrency 169:21

the form ⟨B, \, 41 · W(x, 1) · 42 · W(x, 4) · 43⟩. For C of the first form, we can start from a correspond-
ing trace in ⌊�src⌋ of the form ⟨B, \, 41 · W(x, 1) · 42 · W(x, 5) · W̄(x, 2) · 43 · W(x, 3) · 44⟩ and rewrite
by coalesce

rmw with 21 = 41 · W(x, 1) · 42, <1 = W(x, 5), <2 = Y, and 22 = 43 · W(x, 3) · 44
to obtain C . For C of the second form, we can start from a corresponding trace in ⌊�src⌋ of the
form ⟨B, \, 41 · W(x, 1) · 42 · W(x, 5) · W(x, 4) · 43⟩ and rewrite by coalesce with 21 = 41 · W(x, 1) · 42,
<1 = W(x, 5),<2 = Y, and 22 = 43 to obtain C .

Finally, we establish a full abstraction property for the rmw semantics:

Theorem 5.4. If ⟦�tgt⟧rmw ̸⊆ ⟦�src⟧rmw, then �src ̸⇝rmw �tgt.

Proof. The proof is similar to the proof of Thm. 4.23. Instead of RMW followed by assume, to
construct the appropriate context we let �8 ≜ G := E for the case that U8 = W̄(G, E). Then we have
to show that ⟨B8−1, \, 2̄8⟩ R−→

∗ ⟨B8−1, \, U8⟩ for this case. By the rule store, ⟨B8−1, \, 28⟩ ∈ ⌊�8⌋ implies
that there exist environment chronicles 4′, 4 such that 28 = 4′ · W(G, E) · 4 . (Unlike the corresponding
case in the proof of Thm. 4.23, we do not necessarily have 4′ (B8−1) (G) = B8−1 (G).) Then, since we
also have 28 (B8−1) = B8 (due to the use of snapshots), using coalescermw, we can rewrite ⟨B8−1, \, 2̄8⟩
into ⟨B8−1, \, U8⟩. □

A version that uses repeated reads instead of snapshots is proved by combining the proofs of
Thm. 4.27 and Thm. 5.4. We write�src ⇝rmw,snapshot �tgt, if ⟨% [�tgt], B⟩ ↓ B

′ implies ⟨% [�src], B⟩ ↓ B
′

for every rmw-free and snapshot-free context % such that % [�src] and % [�tgt] are closed.

Theorem 5.5. If �src is loop-free and ⟦�tgt⟧rmw ̸⊆ ⟦�src⟧rmw, then �src ̸⇝rmw,snapshot �tgt.

6 RELATED AND FUTURE WORK

We have already discussed the seminal work of Brookes [1996], from which we took a lot of
inspiration. Our traces consist of write actions, rather than transitions (pairs of states) as in
Brookes’s traces, and are closer in spirit to models of Milner’s CCS [Milner 1980] and Hoare’s
CSP [Hoare 1985]. This choice has several advantages. First, it directly reflects the property of the
operational semantics that each transition updates at most one variable. Second, since reads are not
recorded in traces, our concrete semantics, i.e., before imposing any closures, already validates a
variety of refinements, including all those that do not involve writes. In contrast, in Brookes’s traces
reads are tracked as stuttering transitions, and closures are needed also for refinements of reads
(and of skip). Third, explicit environment writes in traces allows us to have a rule like coalesce
that mimics operational simulation that attaches component actions to one environment write.

Brookes’s traces, which are very similar to the traces used for giving meaning to rely/guarantee
judgements [Jones 1983; Xu et al. 1997], have provided a useful intuition and formal basis for
multiple later frameworks, e.g., [Dingel 1999, 2002; Liang et al. 2012, 2014; Turon and Wand 2011],
which propose relational program logics for reasoning about refinements. For example, [Dingel
1999, 2002] used Brookes’s semantics for deriving a refinement calculus allowing one to develop
full concurrent programs by repeatedly refining a specification.
Some works address the challenge of validating contextual refinements that are conditioned

by some assumptions on the concurrent context. Our results on snapshot/RMW-free contexts
go in this direction, but there is, of course, a variety of more fine-grained assumptions that will
allow deriving useful refinements. For example, we would like to be able to reason about common
concurrency primitives, such as locks and transactions. These can be implemented from standard
shared memory constructs, but when studying full abstraction for them, one should only consider
disciplined contexts, that, e.g., properly interleave lock and unlock commands. Some works, which
provide sound techniques but do not consider full abstraction, addressed similar challenges. For
example, [Liang et al. 2012, 2014] developed a framework for establishing contextual refinement that

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

169:22 Mikhail Svyatlovskiy, Shai Mermelstein, and Ori Lahav

handles assumptions such as data-race-freedom and data encapsulation in concurrent objects, and
demonstrate that their technique is sufficiently expressive for verifying a complex garbage collector.
More recently, Frumin et al. [2021]; Song et al. [2023] studied refinements conditioned by separation
logic premises, and Khyzha and Lahav [2022]; Singh and Lahav [2023] studied refinements that
assume that clients adhere to a given library call policy. We hope that our denotational semantics
will form a basis for continuations along these lines.

Another line of work, see e.g., [Benton et al. 2016], attempts to capture shared-memory con-
currency in general, and Brookes’s semantics in particular, using monadic constructions follow-
ing [Moggi 1991], or even as an algebraic theory [Abadi and Plotkin 2010; Dvir et al. 2022]. A
prominent advantage of these approaches is their ability to capture higher-order programs, while we
are limited to first-order programs. Additionally, this approach detaches structural refinements from
effectful ones and paves the way to type-and-effect systems, enabling reasoning about refinements
using assumptions from a type analysis (see e.g., [Birkedal et al. 2012; Kammar 2014]).

Our work handles shared variables admitting sequentially consistent semantics (SC). Jagadeesan
et al. [2012] modified Brookes’s semantics to apply for x86-TSO memory (see [Owens et al. 2009]),
and achieved full abstraction using await instructions. Dvir et al. [2024] developed Brookes’s
semantics for the Release/Acquire memory model (see [Lahav et al. 2016]), but did not study full
abstraction. A large body of work, e.g., [Jagadeesan et al. 2020; Jeffrey and Riely 2019; Jeffrey et al.
2022; Kavanagh and Brookes 2018, 2019; Paviotti et al. 2020], has been devoted to the study of
compositional semantics for weakly consistent memory that is not necessarily accompanying
an existing operational semantics like in our case. A prominent idea there is the use of partially
orderedmultisets (“pomsets”) [Pratt 1986] or event structures [Winskel 1987] that generalize linearly
ordered traces, like those we work with. This aligns with axiomatic approaches (see, e.g., [Alglave
et al. 2014]), which, as is, like operational semantics, are restricted to apply on closed full programs.

In the realm of weakmemorymodels, reasoning about correctness of local compiler optimizations
is rather challenging and error-prone. Many works have addressed this issue in different levels of
formality, e.g., [Burckhardt et al. 2010; Chakraborty and Vafeiadis 2016; Cho et al. 2022; Dodds et al.
2018; Morisset et al. 2013; Poetzl and Kroening 2016]. Interestingly, it is not always the case that a
weaker memory model allows more optimizations than a stronger one (see, e.g., [Gopalakrishnan
et al. 2023]). For instance, weak memory model usually do not support “store-after-load elimination”
and “redundant FAA elimination” that are valid under SC (see Fig. 5). Attempting to allow local
proofs of optimizations, some of these works develop compositional semantics, but these are
restricted to top-level parallel composition. An noteworthy exception is the work of Dodds et al.
[2018] who developed a denotational semantics for the Release/Acquire weak memory model.
Their semantics is based on an axiomatic formulation, which they generalize to allow “block-local
execution graphs” that iterate over all possible context execution graphs, and thus achieving full
abstraction. Their blocks are, however, restricted to be sequential, which enables local validation of
program transformations without actually showing that ⟦�1 ∥ �2⟧ is a function of ⟦�1⟧ and ⟦�2⟧.
Our notion of contextual refinement is based on partial correctness, and is insensitive to termi-

nation. In concurrent programs termination is interesting assuming scheduler fairness [Francez
1986], and, termination is generalized into a family of progress conditions [Liang and Feng 2020].
By using infinite traces, Brookes’s semantics generalizes to fair infinite runs [Brookes 1996, §10],
and is shown to be fully abstract w.r.t. operational “state-trace behaviors” consisting of sequences
of states visited during the computation. We leave the task of incorporating this dimension into our
semantics for future work, possibly by taking coinductive versions of our concrete semantics. For
the abstract semantics, we expect that the local rewriting rules (see Lemma 4.26) will be handy.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

Compositional Semantics for Shared-Variable Concurrency 169:23

ACKNOWLEDGMENTS

We thank YotamDvir andOhad Kammar for fruitful discussions about this work, and the anonymous
reviewers for their valuable feedback. This work was supported by the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme (grant
agreement no. 851811) and the Israel Science Foundation (grant number 814/22).

DATA-AVAILABILITY STATEMENT

The artifact is available at [Svyatlovskiy et al. 2024].

REFERENCES

Martín Abadi and Gordon D. Plotkin. 2010. A Model of Cooperative Threads. Log. Methods Comput. Sci. 6, 4 (2010).

https://doi.org/10.2168/LMCS-6(4:2)2010

Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Modelling, Simulation, Testing, and Data Mining

for Weak Memory. ACM Trans. Program. Lang. Syst. 36, 2, Article 7 (July 2014), 74 pages. https://doi.org/10.1145/2627752

Nick Benton, Martin Hofmann, and Vivek Nigam. 2016. Effect-Dependent Transformations for Concurrent Programs. In

PPDP. ACM, New York, NY, USA, 188–201. https://doi.org/10.1145/2967973.2968602

Lars Birkedal, Filip Sieczkowski, and Jacob Thamsborg. 2012. A Concurrent Logical Relation. In CSL (Leibniz International

Proceedings in Informatics (LIPIcs), Vol. 16). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany,

107–121. https://doi.org/10.4230/LIPIcs.CSL.2012.107

Stephen Brookes. 1996. Full Abstraction for a Shared-Variable Parallel Language. Information and Computation 127, 2 (1996),

145–163. https://doi.org/10.1006/inco.1996.0056

Sebastian Burckhardt, Madanlal Musuvathi, and Vasu Singh. 2010. Verifying Local Transformations on Relaxed Memory

Models. In CC. Springer, Berlin, Heidelberg, 104–123. https://doi.org/10.1007/978-3-642-11970-5_7

Felice Cardone. 2021. Games, Full Abstraction and Full Completeness. In The Stanford Encyclopedia of Philosophy (Spring

2021 ed.), Edward N. Zalta (Ed.). Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/

spr2021/entries/games-abstraction/

Soham Chakraborty and Viktor Vafeiadis. 2016. Validating Optimizations of Concurrent C/C++ Programs. In CGO. ACM,

New York, NY, USA, 216–226. https://doi.org/10.1145/2854038.2854051

Minki Cho, Sung-Hwan Lee, Dongjae Lee, Chung-Kil Hur, and Ori Lahav. 2022. Sequential Reasoning for Optimizing

Compilers under Weak Memory Concurrency. In PLDI. ACM, New York, NY, USA, 213–228. https://doi.org/10.1145/

3519939.3523718

Jürgen Dingel. 1999. A Trace-Based Refinement Calculus for Shared-Variable Parallel Programs. In AMAST. Springer, Berlin,

Heidelberg, 231–247. https://doi.org/10.1007/3-540-49253-4_18

Jürgen Dingel. 2002. A Refinement Calculus for Shared-Variable Parallel and Distributed Programming. Form. Asp. Comput.

14, 2 (dec 2002), 123–197. https://doi.org/10.1007/s001650200032

Mike Dodds, Mark Batty, and Alexey Gotsman. 2018. Compositional Verification of Compiler Optimisations on Relaxed

Memory. In ESOP. Springer, Cham, 1027–1055. https://doi.org/10.1007/978-3-319-89884-1_36

Yotam Dvir, Ohad Kammar, and Ori Lahav. 2022. An Algebraic Theory for Shared-State Concurrency. In APLAS. Springer,

Cham, 3–24. https://doi.org/10.1007/978-3-031-21037-2_1

Yotam Dvir, Ohad Kammar, and Ori Lahav. 2024. A Denotational Approach to Release/Acquire Concurrency. In ESOP.

Springer, Cham, 121–149. https://doi.org/10.1007/978-3-031-57267-8_5

Nissim Francez. 1986. Fairness. Springer. https://doi.org/10.1007/978-1-4612-4886-6

Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2021. ReLoC Reloaded: A Mechanized Relational Logic for Fine-Grained

Concurrency and Logical Atomicity. Log. Methods Comput. Sci. 17, 3 (2021). https://doi.org/10.46298/LMCS-17(3:9)2021

Akshay Gopalakrishnan, Clark Verbrugge, and Mark Batty. 2023. Memory Consistency Models for Program Transformations:

An Intellectual Abstract. In ISMM. ACM, New York, NY, USA, 30–42. https://doi.org/10.1145/3591195.3595274

Charles Antony Richard Hoare. 1985. Communicating sequential processes. Prentice-Hall.

Radha Jagadeesan, Alan Jeffrey, and James Riely. 2020. Pomsets with Preconditions: A Simple Model of Relaxed Memory.

Proc. ACM Program. Lang. 4, OOPSLA, Article 194 (Nov. 2020), 30 pages. https://doi.org/10.1145/3428262

Radha Jagadeesan, Gustavo Petri, and James Riely. 2012. Brookes Is Relaxed, Almost!. In FoSSaCS. Springer, Berlin, Heidelberg,

180–194. https://doi.org/10.1007/978-3-642-28729-9_12

Alan Jeffrey and James Riely. 2019. On Thin Air Reads: Towards an Event Structures Model of Relaxed Memory. Logical

Methods in Computer Science 15, 1 (2019). https://doi.org/10.23638/LMCS-15(1:33)2019

Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, Ilya Kaysin, and Anton Podkopaev. 2022. The Leaky Semicolon:

Compositional Semantic Dependencies for Relaxed-Memory Concurrency. Proc. ACM Program. Lang. 6, POPL, Article 54

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

https://doi.org/10.2168/LMCS-6(4:2)2010
https://doi.org/10.1145/2627752
https://doi.org/10.1145/2967973.2968602
https://doi.org/10.4230/LIPIcs.CSL.2012.107
https://doi.org/10.1006/inco.1996.0056
https://doi.org/10.1007/978-3-642-11970-5_7
https://plato.stanford.edu/archives/spr2021/entries/games-abstraction/
https://plato.stanford.edu/archives/spr2021/entries/games-abstraction/
https://doi.org/10.1145/2854038.2854051
https://doi.org/10.1145/3519939.3523718
https://doi.org/10.1145/3519939.3523718
https://doi.org/10.1007/3-540-49253-4_18
https://doi.org/10.1007/s001650200032
https://doi.org/10.1007/978-3-319-89884-1_36
https://doi.org/10.1007/978-3-031-21037-2_1
https://doi.org/10.1007/978-3-031-57267-8_5
https://doi.org/10.1007/978-1-4612-4886-6
https://doi.org/10.46298/LMCS-17(3:9)2021
https://doi.org/10.1145/3591195.3595274
https://doi.org/10.1145/3428262
https://doi.org/10.1007/978-3-642-28729-9_12
https://doi.org/10.23638/LMCS-15(1:33)2019

169:24 Mikhail Svyatlovskiy, Shai Mermelstein, and Ori Lahav

(jan 2022), 30 pages. https://doi.org/10.1145/3498716

Cliff B. Jones. 1983. Tentative Steps toward a Development Method for Interfering Programs. ACM Trans. Program. Lang.

Syst. 5, 4 (oct 1983), 596–619. https://doi.org/10.1145/69575.69577

Ohad Kammar. 2014. Algebraic theory of type-and-effect systems. Ph. D. Dissertation. University of Edinburgh, UK. https:

//hdl.handle.net/1842/8910

Ryan Kavanagh and Stephen Brookes. 2018. A denotational account of C11-style memory. CoRR abs/1804.04214 (2018).

arXiv:1804.04214 http://arxiv.org/abs/1804.04214

Ryan Kavanagh and Stephen Brookes. 2019. A Denotational Semantics for SPARC TSO. Logical Methods in Computer Science

Volume 15, Issue 2 (May 2019). https://doi.org/10.23638/LMCS-15(2:10)2019

Artem Khyzha and Ori Lahav. 2022. Abstraction for Crash-Resilient Objects. In ESOP. Springer International Publishing,

Cham, 262–289. https://doi.org/10.1007/978-3-030-99336-8_10

Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. 2016. Taming Release-Acquire Consistency. In POPL. ACM, New York,

NY, USA, 649–662. https://doi.org/10.1145/2837614.2837643

Ori Lahav and Viktor Vafeiadis. 2016. Explaining Relaxed Memory Models with Program Transformations. In FM. Springer,

479–495. https://doi.org/10.1007/978-3-319-48989-6_29

Leslie Lamport. 1979. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs. IEEE

Trans. Computers 28, 9 (Sept. 1979), 690–691. https://doi.org/10.1109/TC.1979.1675439

Hongjin Liang and Xinyu Feng. 2020. Progress of Concurrent Objects. Foundations and Trends in Programming Languages 5,

4 (2020), 282–414. https://doi.org/10.1561/2500000041

Hongjin Liang, Xinyu Feng, and Ming Fu. 2012. A Rely-Guarantee-Based Simulation for Verifying Concurrent Program

Transformations. In POPL. ACM, New York, NY, USA, 455–468. https://doi.org/10.1145/2103656.2103711

Hongjin Liang, Xinyu Feng, and Ming Fu. 2014. Rely-Guarantee-Based Simulation for Compositional Verification of

Concurrent Program Transformations. ACM Trans. Program. Lang. Syst. 36, 1, Article 3 (Mar. 2014), 55 pages. https:

//doi.org/10.1145/2576235

Robin Milner. 1980. A calculus of communicating systems. Springer.

Eugenio Moggi. 1991. Notions of computation and monads. Information and Computation 93, 1 (1991), 55–92. https:

//doi.org/10.1016/0890-5401(91)90052-4

Robin Morisset, Pankaj Pawan, and Francesco Zappa Nardelli. 2013. Compiler Testing via a Theory of Sound Optimisations

in the C11/C++11 Memory Model. In PLDI. ACM, New York, NY, USA, 187–196. https://doi.org/10.1145/2491956.2491967

Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A Better x86 Memory Model: x86-TSO. In TPHOLs. Springer, Berlin,

Heidelberg, 391–407. https://doi.org/10.1007/978-3-642-03359-9_27

Marco Paviotti, Simon Cooksey, Anouk Paradis, Daniel Wright, Scott Owens, and Mark Batty. 2020. Modular Relaxed

Dependencies in Weak Memory Concurrency. In ESOP. Springer, Cham, 599–625. https://doi.org/10.1007/978-3-030-

44914-8_22

Daniel Poetzl and Daniel Kroening. 2016. Formalizing and Checking Thread Refinement for Data-Race-Free Execution

Models. In ESOP. Springer, Berlin, Heidelberg, 515–530. https://doi.org/10.1007/978-3-662-49674-9_30

Vaughan Pratt. 1986. Modeling Concurrency with Partial Orders. Int. J. Parallel Program. 15, 1 (feb 1986), 33–71. https:

//doi.org/10.1007/BF01379149

Abhishek Kr Singh and Ori Lahav. 2023. An Operational Approach to Library Abstraction under Relaxed Memory

Concurrency. Proc. ACM Program. Lang. 7, POPL, Article 53 (jan 2023), 31 pages. https://doi.org/10.1145/3571246

Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer. 2023. Conditional Contextual

Refinement. Proc. ACM Program. Lang. 7, POPL, Article 39 (jan 2023), 31 pages. https://doi.org/10.1145/3571232

Mikhail Svyatlovskiy, Shai Mermelstein, and Ori Lahav. 2024. Coq Mechanization for "Compositional Semantics for Shared-

Variable Concurrency" (PLDI 2024). https://doi.org/10.5281/zenodo.10925596

Aaron Joseph Turon and Mitchell Wand. 2011. A Separation Logic for Refining Concurrent Objects. In POPL. ACM, New

York, NY, USA, 247–258. https://doi.org/10.1145/1926385.1926415

Glynn Winskel. 1987. Event structures. In ACPN. Springer, Berlin, Heidelberg, 325–392. https://doi.org/10.1007/3-540-

17906-2_31

Qiwen Xu, Willem P. de Roever, and Jifeng He. 1997. The Rely-Guarantee Method for Verifying Shared Variable Concurrent

Programs. Formal Aspects Comput. 9, 2 (1997), 149–174. https://doi.org/10.1007/BF01211617

Received 2023-11-16; accepted 2024-03-31

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

https://doi.org/10.1145/3498716
https://doi.org/10.1145/69575.69577
https://hdl.handle.net/1842/8910
https://hdl.handle.net/1842/8910
https://arxiv.org/abs/1804.04214
http://arxiv.org/abs/1804.04214
https://doi.org/10.23638/LMCS-15(2:10)2019
https://doi.org/10.1007/978-3-030-99336-8_10
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1007/978-3-319-48989-6_29
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1561/2500000041
https://doi.org/10.1145/2103656.2103711
https://doi.org/10.1145/2576235
https://doi.org/10.1145/2576235
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1145/2491956.2491967
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-030-44914-8_22
https://doi.org/10.1007/978-3-030-44914-8_22
https://doi.org/10.1007/978-3-662-49674-9_30
https://doi.org/10.1007/BF01379149
https://doi.org/10.1007/BF01379149
https://doi.org/10.1145/3571246
https://doi.org/10.1145/3571232
https://doi.org/10.5281/zenodo.10925596
https://doi.org/10.1145/1926385.1926415
https://doi.org/10.1007/3-540-17906-2_31
https://doi.org/10.1007/3-540-17906-2_31
https://doi.org/10.1007/BF01211617

	Abstract
	1 Introduction
	2 Syntax, Operational Semantics, and Contextual Refinement
	3 Concrete Denotational Semantics
	4 Abstract Semantics
	4.1 Compositionality
	4.2 Adequacy
	4.3 Full Abstraction
	4.4 Full Abstraction Without Snapshots

	5 Semantics for RMW-Free Contexts
	6 Related and Future Work
	Acknowledgments
	References

