
Compositional Semantics for Shared-Variable
Concurrency (Extended Version)
MIKHAIL SVYATLOVSKIY, Tel Aviv University, Israel
SHAI MERMELSTEIN, Tel Aviv University, Israel
ORI LAHAV, Tel Aviv University, Israel

We revisit the fundamental problem of defining a compositional semantics for a concurrent programming

language under sequentially consistent memory with the aim of equating the denotations of pieces of code if

and only if these pieces induce the same behavior under all program contexts. While the denotational semantics

presented by Brookes [Information and Computation 127, 2 (1996)] has been considered a definitive solution,

we observe that Brookes’s full abstraction result crucially relies on the availability of an impractical whole-

memory atomic read-modify-write instruction. In contrast, we consider a language with standard primitives,

which apply to a single variable. For that language, we propose an alternative denotational semantics based on

traces that track program write actions together with the writes expected from the environment, and equipped

with several closure operators to achieve necessary abstraction. We establish the adequacy of the semantics,

and demonstrate full abstraction for the case that the analyzed code segment is loop-free. Furthermore, we

show that by including a whole-memory atomic read in the language, one obtains full abstraction for programs

with loops. To gain confidence, our results are fully mechanized in Coq.

CCS Concepts: • Theory of computation → Concurrency; Denotational semantics; • Software and its
engineering → Semantics; Compilers.

Additional Key Words and Phrases: Denotational Semantics; Concurrency; Shared-Memory; Compiler Opti-

mizations

ACM Reference Format:
Mikhail Svyatlovskiy, Shai Mermelstein, and Ori Lahav. 2024. Compositional Semantics for Shared-Variable

Concurrency (Extended Version). Proc. ACM Program. Lang. 8, PLDI, Article 169 (June 2024), 30 pages. https:
//doi.org/10.1145/3656399

1 INTRODUCTION
Denotational semantics aims to define the meaning of a piece of code independently of the context

under which it is executed. Generally speaking, such semantics assigns a denotation ⟦𝐶⟧ to every

command 𝐶 of a given programming language in a way that satisfies the following desiderata:

Compositionality: The denotation of a command should be determined from the denotations

of the command’s immediate constituents. For instance, assuming a sequential composition

operator, “;”, we require that ⟦𝐶1 ;𝐶2⟧ is a function of ⟦𝐶1⟧ and ⟦𝐶2⟧.
Adequacy: Assuming a given operational semantics, the denotations should only consider equiv-

alent commands that operationally behave the same when plugged in an arbitrary program

context. When denotations are partially ordered, we also want the semantics to admit a directional

Authors’ Contact Information: Mikhail Svyatlovskiy, Tel Aviv University, Israel, mikhail.svyatlovskiy@phystech.edu; Shai

Mermelstein, Tel Aviv University, Israel, shai.mermelstein@gmail.com; Ori Lahav, Tel Aviv University, Israel, orilahav@tau.

ac.il.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/6-ART169

https://doi.org/10.1145/3656399

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

HTTPS://ORCID.ORG/0000-0001-9381-764X
HTTPS://ORCID.ORG/0009-0001-9806-017X
HTTPS://ORCID.ORG/0000-0003-4305-6998
https://doi.org/10.1145/3656399
https://doi.org/10.1145/3656399
https://orcid.org/0000-0001-9381-764X
https://orcid.org/0009-0001-9806-017X
https://orcid.org/0009-0001-9806-017X
https://orcid.org/0000-0003-4305-6998
https://doi.org/10.1145/3656399

169:2 Mikhail Svyatlovskiy, Shai Mermelstein, and Ori Lahav

version of adequacy that targets contextual refinement under the operational semantics instead

of contextual equivalence. For instance, assuming that denotations are sets, as is the case in our

development, (directional) adequacy ensures that ⟦𝐶1⟧ ⊆ ⟦𝐶2⟧ implies that for every program

context 𝑃 [−], every behavior of 𝑃 [𝐶1] under the operational semantics is also a behavior of

𝑃 [𝐶2]. This makes denotations beneficial in supporting modular reasoning about the operational

semantics, which by itself is only able to capture complete closed programs. In particular, an ade-

quate denotational semantics can be used for formally justifying local program transformations,

as performed by optimizing compilers. Indeed, adopting contextual refinement as the correctness

criteria of program transformations, adequacy allows one to derive the correctness of a local

transformation 𝐶src ⇝ 𝐶tgt from ⟦𝐶tgt⟧ ⊆ ⟦𝐶src⟧.
Full abstraction: Ideally, it is desirable for a denotational semantics to equate all pairs of com-

mands that are contextually equivalent under the given operational semantics. A directional

version requires that ⟦𝐶1⟧ ̸⊆ ⟦𝐶2⟧ implies that for some program context 𝑃 [−], some behavior of

𝑃 [𝐶1] under the operational semantics is not a behavior of 𝑃 [𝐶2]. Conceptually, full abstraction,
together with compositionality and adequacy, means that ⟦𝐶⟧ is indeed a precise compositional

counterpart of the given operational semantics. A fully abstract denotational semantics provides

a complete reasoning principle for correctness of local program transformations. Full abstraction

is sometimes considered as the holy grail of denotational semantics and it is typically very

difficult to obtain [Cardone 2021].

In this paper we consider concurrent programs that employ shared variables for inter-thread

synchronization, governed by a non-deterministic scheduler that cannot be controlled by the

program. For this domain, developing compositional, adequate, and fully abstract semantics is

highly challenging. Indeed, the standard approach for (non-deterministic) sequential programs,

which models programs as transformations from an initial state to a set of final states, fails to

provide compositional semantics for parallelism, since the state transformation induced by a parallel

composition 𝐶1 ∥ 𝐶2 cannot be determined from those of 𝐶1 and 𝐶2. One needs more detailed

structures to capture the behaviors of 𝐶1 and 𝐶2, but being too concrete risks full abstraction.

This problem was addressed by Brookes [1996] (see there also a discussion about earlier attempts).

In Brookes’s approach, the semantics ⟦𝐶⟧ of a command 𝐶 is given by a set of sequences of transi-

tions from memory to memory, assuming arbitrary environment interference between transitions.

For example, a sequence of the form ⟨𝑠1, 𝑠
′
1
⟩, ⟨𝑠2, 𝑠

′
2
⟩ consisting of two transitions represents the

case that𝐶 did some steps to transform 𝑠1 to 𝑠
′
1
; then the environment did some steps transforming

𝑠′
1
to 𝑠2; and then 𝐶 continued its execution from 𝑠2 and terminated in 𝑠′

2
. Brookes showed how

these sequences can be derived from a given command by first deriving a concrete set of sequences,

and then closing it under two closure operators, called mumble and stutter. In particular, ⟦𝐶1 ∥ 𝐶2⟧
is obtained by considering all interleavings of sequences of ⟦𝐶1⟧ with sequences of ⟦𝐶2⟧, and
closing the resulting set under the two closure operators. Brookes demonstrated compositionality,

adequacy, and full abstraction for this semantics.

However, the programming language assumed in [Brookes 1996] employs a command of the form

(await 𝐵 then 𝐶) that implements a “conditional critical region”: it blocks the execution as long as

𝐵 is unmet, and then in a single atomic step it verifies that 𝐵 holds and fully runs 𝐶 . Since 𝐵 and 𝐶

may involve multiple variables, this construct can implement arbitrary atomic (finite) memory-to-

memory transformations (e.g., [x1 ↦→ 0, ... ,x100 ↦→ 0] to [x1 ↦→ 1, ... ,x100 ↦→ 100]), which requires

all other components to be suspended and is unrealistic in practical concurrency. Removing (or

restricting) await does not harm compositionality or adequacy, but, Brookes’s full-abstraction

proof relies on await instructions for building a concurrent context 𝑃 [−] that precisely mimics the

environment transitions in a given sequence. In fact, the starting point for the current work is our

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

Compositional Semantics for Shared-Variable Concurrency (Extended Version) 169:3

observation that there are commands 𝐶1 and 𝐶2 that behave the same when plugged in program

contexts without await, but can be differentiated by contexts that use await (see Examples 3.7, 4.6

and 5.1 below). Therefore, Brookes’s semantics is too concrete for a language without await.
The main contribution of this work is a novel denotational semantics that addresses this problem.

We propose two models:

• A “concrete semantics” in which denotations track the write operations performed by the

command interleaved with environment writes. For example, W(x, 1), W̄(x, 2), W(y, 1) represents
the case that 𝐶 writes 1 to x, expects the environment to write 2 to x, and then writes 1 to y.
The concrete semantics is compositional and adequate, but it is not fully abstract. Nevertheless,

since, in contrast to [Brookes 1996], this semantics reflects the property of the operational

semantics that each transition updates at most one variable and since, again in contrast to

[Brookes 1996], we do not record read operations in our denotations, the concrete semantics

suffices for validating a wide variety of contextual refinements (see Fig. 4 below).

• An “abstract semantics” obtained by closing concrete denotations under four rewrite rules,

each of which mimics a certain operational simulation argument allowing one to hide and

introduce component writes from the concrete trace. We show that the abstract semantics is

also compositional and adequate, whereas full abstraction holds up to some level:

– Full abstraction fully holds if we have a “snapshot” instruction that blocks the execution until

some condition is met (a restriction of await to instances of the form await 𝐵 then skip).
– Without “snapshot”, we establish a restricted version of full abstraction: if 𝐶2 is loop-free

and ⟦𝐶1⟧ ̸⊆ ⟦𝐶2⟧, then there exists a context 𝑃 [−] such that some behavior of 𝑃 [𝐶1] is not a
behavior of 𝑃 [𝐶2]. Thus, the abstract semantics is always sound for validating local program

transformations 𝐶src ⇝ 𝐶tgt, and it provides a complete reasoning principle when 𝐶src is

loop-free. When 𝐶src has loops, we provide a (rather complicated) counterexample for full

abstraction of our abstract semantics (see Example 4.28 below).

Instead of await instructions the language we assume employs standard read-modify-write

(RMW) constructs that perform an atomic update of a single variable at a time. A natural question

is whether, like await, RMWs allow concurrent contexts to distinguish between commands that

are indistinguishable for contexts consisting solely of reads and writes. We answer this question

affirmatively by demonstrating such cases (see Example 5.1 below). Moreover, we show that by

strengthening one of the four rewrite rules used to define the abstract semantics, we obtain a

denotational semantics that enables compositional reasoning about program transformations under

the assumption that the context cannot perform RMW operations.

Finally, we note certain limitations of the current work (see also §6). All of them raise interesting

questions for future work to which our approach may constitute a starting point.

• We assume that the underlying memory ensures sequential consistency (SC, for short) [Lamport

1979]—the strongest memory model with simple operational semantics based on interleaving

concurrent manipulations of a standard variables-to-values mapping.

• Our notion of behavior under the operational semantics is based on partial correctness, that is: we
only consider terminating executions as inducing program behaviors. Accordingly, contextual

refinement ensures that the target program preserves safety properties of the source, but it is

termination-insensitive, where a diverging program refines every program. Since a compositional

characterization of partial correctness is already challenging, we left the question of termination

to future work. This is in line with multiple previous works that consider only terminating

executions [Liang et al. 2012, 2014; Turon and Wand 2011]. Nevertheless, Brookes [1996, §10]

includes an extension to termination-sensitive refinement, using infinite sequences and assuming

certain fairness conditions on the operational semantics.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

169:4 Mikhail Svyatlovskiy, Shai Mermelstein, and Ori Lahav

expressions 𝐸 ::= 𝑣 | 𝑎 | 𝐸 + 𝐸 | 𝐸 = 𝐸 | ...

let expressions 𝐿 ::= 𝐸 | 𝑥 | XCHG(𝑥, 𝐸) | FAA(𝑥, 𝐸)
commands 𝐶 ::= skip | 𝑥 := 𝐸 | let 𝑎 = 𝐿 in 𝐶 |

𝐶 ;𝐶 | 𝐶 ∥ 𝐶 | 𝐶 ⊕ 𝐶 | if 𝐸 then 𝐶 else 𝐶 | while 𝑥 do 𝐶 |
assume(𝐸) | snapshot(𝑠) | 𝑥 := ∗ | while ∗ do 𝐶

contexts 𝑃 ::= − | let 𝑎 = 𝐿 in 𝑃 | 𝑃 ;𝐶 | 𝐶 ; 𝑃 | 𝑃 ∥ 𝐶 | 𝐶 ∥ 𝑃 | 𝐶 ⊕ 𝑃 | 𝑃 ⊕ 𝐶 |
if 𝐸 then 𝑃 else 𝐶 | if 𝐸 then 𝐶 else 𝑃 | while 𝑥 do 𝑃 | while ∗ do 𝑃

Fig. 1. Syntax: Expressions, Let Expressions, Commands, and Contexts

• Our programming language is a first-order language. Fully abstract semantics for higher-order

languages have proved elusive [Cardone 2021], but we hope that our model can be useful for a

higher-order language with a full abstraction guarantee that applies to its first-order fragment.

Outline. The rest of this paper is structured as follows. In §2 we present the syntax and operational
semantics of the language studied in this paper. In §3 we present the concrete denotational semantics,

establish its compositionality and adequacy, and demonstrate various transformations it validates

(Fig. 4). In §4 we present the abstract denotational semantics, establish its compositionality (§4.1),

adequacy (§4.2), and (restricted as discussed above) full abstraction (§4.3 and §4.4), and demonstrate

transformations validated by the abstract semantics but not by the concrete one (Fig. 5). In §5 we

present the modification of the abstract semantics under the assumption that the context does not

perform RMWs. Finally, in §6 we discuss related and future work.

Artifact. Our results are fully mechanized in Coq, and the proof scripts are available in https:

//doi.org/10.5281/zenodo.10925596.

2 SYNTAX, OPERATIONAL SEMANTICS, AND CONTEXTUAL REFINEMENT
In this sectionwe present the syntax of the studied programming language, its operational semantics,

and the notion of contextual refinement w.r.t. that semantics.

Syntax. We assume a set Var ≜ {x, y, z, ...} of shared variables, ranged over by 𝑥,𝑦; a set LVar ≜
{a, b, c, ...} of local variables, ranged over by 𝑎, 𝑏; and a set Val ≜ {0, 1, 2, ...} of values, ranged over

by 𝑣 . We define a state 𝑠 to be a function in State ≜ Var → Val. In some examples below, we use

s0 ≜ 𝜆𝑥 . 0 as the initial state.

Figure 1 presents the grammar for expressions, let expressions, commands, and contexts. Expres-

sions are defined standardly and are composed of values (𝑣) and local variables (𝑎). Let expressions

are used on the right-hand side of let bindings, and include standard expressions, shared variables,

and RMW primitives. The latter are used to atomically execute a read from memory followed by a

write to memory. We consider two kinds of RMWs, whose intuitive semantics is as follows:
1

• Exchange (XCHG) loads from a shared variable and modifies it to a given argument.

• Fetch-And-Add (FAA) increments a shared variable by a given argument.

These instructions return the value they read, before the modification was performed.

Commands are mostly customary for a (first-order) imperative parallel language, with several

choices that may deserve attention:

1
Our Coq development also has Compare-And-Swap (CAS) instructions, which are elided here.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

https://doi.org/10.5281/zenodo.10925596
https://doi.org/10.5281/zenodo.10925596

Compositional Semantics for Shared-Variable Concurrency (Extended Version) 169:5

𝑣 = ⟦𝐸⟧

⟨𝐸, 𝑠 ⟩ 𝜀−→ ⟨𝑣, 𝑠 ⟩

𝑣 = 𝑠 (𝑥)

⟨𝑥, 𝑠 ⟩ 𝜀−→ ⟨𝑣, 𝑠 ⟩

𝑣 = 𝑠 (𝑥)
𝑣′ = ⟦𝐸⟧ 𝑠′ = 𝑠 [𝑥 ↦→ 𝑣′]

⟨XCHG(𝑥, 𝐸), 𝑠 ⟩
W(𝑥,𝑣′)
−−−−−→ ⟨𝑣, 𝑠′ ⟩

𝑣 = 𝑠 (𝑥)
𝑣′ = 𝑣 + ⟦𝐸⟧ 𝑠′ = 𝑠 [𝑥 ↦→ 𝑣′]

⟨FAA(𝑥, 𝐸), 𝑠 ⟩
W(𝑥,𝑣′)
−−−−−→ ⟨𝑣, 𝑠′ ⟩

𝑣 = ⟦𝐸⟧ 𝑠′ = 𝑠 [𝑥 ↦→ 𝑣]

⟨𝑥 := 𝐸, 𝑠 ⟩
W(𝑥,𝑣)
−−−−→ ⟨skip, 𝑠′ ⟩

⟨𝐿, 𝑠 ⟩
𝛾
−→ ⟨𝑣, 𝑠′ ⟩

⟨let 𝑎 = 𝐿 in 𝐶, 𝑠 ⟩
𝛾
−→ ⟨𝐶 {𝑣/𝑎}, 𝑠′ ⟩

⟨𝐶1, 𝑠 ⟩
𝛾
−→ ⟨𝐶′

1
, 𝑠′ ⟩

⟨𝐶1 ;𝐶2, 𝑠 ⟩
𝛾
−→ ⟨𝐶′

1
;𝐶2, 𝑠

′ ⟩ ⟨skip ;𝐶, 𝑠 ⟩ 𝜀−→ ⟨𝐶, 𝑠 ⟩

⟨𝐶1, 𝑠 ⟩
𝛾
−→ ⟨𝐶′

1
, 𝑠′ ⟩

⟨𝐶1 ∥ 𝐶2, 𝑠 ⟩
𝛾
−→ ⟨𝐶′

1
∥ 𝐶2, 𝑠

′ ⟩

⟨𝐶2, 𝑠 ⟩
𝛾
−→ ⟨𝐶′

2
, 𝑠′ ⟩

⟨𝐶1 ∥ 𝐶2, 𝑠 ⟩
𝛾
−→ ⟨𝐶1 ∥ 𝐶′

2
, 𝑠′ ⟩ ⟨𝐶 ∥ skip, 𝑠 ⟩ 𝜀−→ ⟨𝐶, 𝑠 ⟩ ⟨skip ∥ 𝐶, 𝑠 ⟩ 𝜀−→ ⟨𝐶, 𝑠 ⟩

⟦𝐸⟧ ≠ 0 =⇒ 𝑖 = 1

⟦𝐸⟧ = 0 =⇒ 𝑖 = 2

⟨if 𝐸 then 𝐶1 else 𝐶2, 𝑠 ⟩
𝜀−→ ⟨𝐶𝑖 , 𝑠 ⟩

𝑠 (𝑥) ≠ 0

⟨while 𝑥 do 𝐶, 𝑠 ⟩ 𝜀−→ ⟨𝐶 ; while 𝑥 do 𝐶, 𝑠 ⟩

𝑠 (𝑥) = 0

⟨while 𝑥 do 𝐶, 𝑠 ⟩ 𝜀−→ ⟨skip, 𝑠 ⟩

⟦𝐸⟧ ≠ 0

⟨assume(𝐸), 𝑠 ⟩ 𝜀−→ ⟨skip, 𝑠 ⟩ ⟨snapshot(𝑠), 𝑠 ⟩ 𝜀−→ ⟨skip, 𝑠 ⟩

𝑠′ = 𝑠 [𝑥 ↦→ 𝑣]

⟨𝑥 := ∗, 𝑠 ⟩
W(𝑥,𝑣)
−−−−→ ⟨skip, 𝑠′ ⟩

𝑖 ∈ {1, 2}

⟨𝐶1 ⊕ 𝐶2, 𝑠 ⟩
𝜀−→ ⟨𝐶𝑖 , 𝑠 ⟩ ⟨while ∗ do 𝐶, 𝑠 ⟩ 𝜀−→ ⟨𝐶 ; while ∗ do 𝐶, 𝑠 ⟩ ⟨while ∗ do 𝐶, 𝑠 ⟩ 𝜀−→ ⟨skip, 𝑠 ⟩

Fig. 2. Small-Step Semantics: ⟨𝐿, 𝑠⟩
𝛾
−→ ⟨𝑣, 𝑠′⟩ and ⟨𝐶, 𝑠⟩

𝛾
−→ ⟨𝐶′, 𝑠′⟩

• Parallel composition, “∥”, is a first class construct that can be employed arbitrarily deep inside

other commands, rather than top-level parallel composition which is sometimes assumed when

studying semantics of parallel languages.

• We include non-deterministic choices—between commands (𝐶1 ⊕𝐶2), stored values (𝑥 := ∗), and
as a loop termination condition (while ∗ do 𝐶).

• Less standardly, we use functional-style let bindings for assigning values to local variables. This

allows us to restrict the scope of these variables inside a command, in a way that a parallel context

cannot change or directly observe. Loops use global variables in the termination condition.

• A non-standard snapshot(𝑠) command is used to block the execution until the memory is in

state 𝑠 (see operational semantics below).

In examples, we also use (if 𝐸 then 𝐶) for (if 𝐸 then 𝐶 else skip), and employ syntactic sugar

incorporating loads inside expressions, such as 𝑥 := 𝑦 for let a = 𝑦 in 𝑥 := a and assume(𝑥 = 𝑣)
for let a = 𝑥 in assume(a = 𝑣). We denote by fv(𝐸) (respectively, fv(𝐶)) the set of local variables
that occur free in an expression 𝐸 (command 𝐶), and call an expression 𝐸 (command 𝐶) closed if

fv(𝐸) = ∅ (fv(𝐶) = ∅). We write 𝐶{𝑣/𝑎} for the command obtained from 𝐶 by substituting the free

occurrences of 𝑎 by 𝑣 .

Finally, Fig. 1 specifies “contexts” which are defined standardly as commands with one “hole”. We

write 𝑃 [𝐶] for the command obtained by “plugging in” the command 𝐶 in 𝑃 , that is: substituting

the unique − in 𝑃 by 𝐶 .

Operational Semantics. We assume that closed expressions are evaluated to values using a function

⟦·⟧ in a standard way. The operational semantics of commands is given in Fig. 2 as a “small-step”

transition relation between configurations, which are tuples of the form ⟨𝐶, 𝑠⟩, where 𝐶 is a

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

169:6 Mikhail Svyatlovskiy, Shai Mermelstein, and Ori Lahav

command and 𝑠 ∈ State. For a uniform definition of let bindings, it uses a “helper” relation which

defines how let expressions are evaluated to values and affect the state.

The operational semantics is mostly standard.We use syntactic substitution to handle let bindings,

so that steps execute only on closed commands. Parallelism is captured by arbitrary interleaving of

component steps, with non-preemptive scheduling, in the sense that there are no explicit language

constructs for controlling the scheduler. The shared memory follows the SC model, where each

read reads the latest written value recorded in the state. To assist later definitions, the transitions

are labeled with a write label of the form W(𝑥, 𝑣) (with 𝑥 ∈ Var and 𝑣 ∈ Val) or with an 𝜀 label when

no write is performed. We often omit the label from the transition, writing ⟨𝐶, 𝑠⟩ −→ ⟨𝐶′, 𝑠′⟩ to mean

that ⟨𝐶, 𝑠⟩
𝛾
−→ ⟨𝐶′, 𝑠′⟩ for some 𝛾 .

Note that no steps are associated with skip or with assume(𝐸) when ⟦𝐸⟧ = 0. Intuitively, a state

of the form ⟨skip, 𝑠⟩ is a valid final state (“a value”). We write ⟨𝐶, 𝑠⟩ ↓ 𝑠′ if ⟨𝐶, 𝑠⟩ −→∗ ⟨skip, 𝑠′⟩.2

Contextual Refinement. Contextual refinement under the operational semantics is identified with

soundness of local program transformations, which is defined as follows:

Definition 2.1. A transformation from a command 𝐶src to a command 𝐶tgt is sound, denoted by

𝐶src ⇝ 𝐶tgt, if ⟨𝑃 [𝐶tgt], 𝑠⟩ ↓ 𝑠′ implies ⟨𝑃 [𝐶src], 𝑠⟩ ↓ 𝑠′ for every context 𝑃 such that 𝑃 [𝐶src] and
𝑃 [𝐶tgt] are closed. We write 𝐶1 ↭ 𝐶2 when both 𝐶1 ⇝ 𝐶2 and 𝐶2 ⇝ 𝐶1 hold.

Example 2.2. For 𝐶1 = x := x + 1 and 𝐶2 = let a = FAA(x, 1) in skip, we have 𝐶1 ⇝ 𝐶2 but

𝐶2 ̸⇝ 𝐶1. For the former, we can execute a load followed by a store in one atomic step to simulate

the effect of FAA. (The denotational semantics below provides a formal account.) For the latter,

with 𝑃 = − ∥ x := 1 ; x := 3, we have ⟨𝑃 [𝐶𝑖], s0⟩ ↓ s0 [x ↦→ 2] for 𝑖 = 1 but not for 𝑖 = 2.

The following transitivity and congruence properties are easy to establish:

Lemma 2.3. If 𝐶1 ⇝ 𝐶2 and 𝐶2 ⇝ 𝐶3, then 𝐶1 ⇝ 𝐶3.

Proof. Suppose that 𝑃 [𝐶1] and 𝑃 [𝐶3] are closed and ⟨𝑃 [𝐶3], 𝑠⟩ ↓ 𝑠′. Let 𝑎1, ... ,𝑎𝑛 be an enumer-

ation of fv(𝑃 [𝐶2]) and 𝑃 ′ = let 𝑎1 = 0 in (let 𝑎2 = 0 in (... let 𝑎𝑛 = 0 in 𝑃) ...)). Then, 𝑃 ′ [𝐶1],
𝑃 ′ [𝐶2], and 𝑃 ′ [𝐶3] are all closed, and for 𝑖 ∈ {1, 3}, we have ⟨𝑃 ′ [𝐶𝑖], 𝑠⟩ ↓ 𝑠′ iff ⟨𝑃 [𝐶𝑖], 𝑠⟩ ↓ 𝑠′. Then,
𝐶2 ⇝ 𝐶3 implies that ⟨𝑃 ′ [𝐶2], 𝑠⟩ ↓ 𝑠′, and, then, 𝐶1 ⇝ 𝐶2 implies that ⟨𝑃 [𝐶1], 𝑠⟩ ↓ 𝑠′, □

Lemma 2.4. If 𝐶src ⇝ 𝐶tgt, then 𝑃 [𝐶src] ⇝ 𝑃 [𝐶tgt] for every context 𝑃 .

Proof. Easily follows from the fact that for every two contexts 𝑃 and 𝑃 ′
, there exists a context

𝑃 ′′
such that 𝑃 ′′ [𝐶] = 𝑃 ′ [𝑃 [𝐶]] for every command 𝐶 . □

Comparison with [Brookes 1996]. We conclude this section by discussing the relation of the above

definitions to the corresponding ones in [Brookes 1996], and motivating the differences. We note

that Brookes [1996] introduces two operational semantics for his language that differ in the level

of granularity, and we compare ours to the one with finer levels of granularity [Brookes 1996, §9].

Putting snapshot aside, in the above operational semantics, every instruction involves at most

one shared variable, which allows us to easily prove the following property:

Lemma 2.5. If ⟨𝐶, 𝑠⟩
𝛾
−→ ⟨𝐶′, 𝑠′⟩ and 𝐶 is snapshot-free, then there exists some 𝑥 ∈ Var such that for

every 𝑠1 with 𝑠1 (𝑥) = 𝑠 (𝑥), we have ⟨𝐶, 𝑠1⟩
𝛾
−→ ⟨𝐶′, 𝑠1 [𝑥 ↦→ 𝑠′ (𝑥)]⟩.

2
We denote by 𝑆?

and 𝑆∗ the reflexive and reflexive-transitive closures of a binary relation 𝑆 (respectively) and write 𝑆1 ; 𝑆2

for relational composition, i.e., 𝑆1 ; 𝑆2 ≜ {⟨𝑥, 𝑧⟩ | ∃𝑦. ⟨𝑥, 𝑦⟩ ∈ 𝑆1 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑆2}.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

Compositional Semantics for Shared-Variable Concurrency (Extended Version) 169:7

This is in contrast with [Brookes 1996], which has “await” instructions of the form await 𝐵 then 𝐶 ,
where 𝐵 is a boolean condition, which may read from several shared variables, and 𝐶 is a finite

sequence of assignments that read and write to shared variables.

To formulate await in our terminology, we use extended expressions, ranged over by E, that
consist of values as well as shared variables (e.g., E = x+ y+ 9). A standard function ⟦E⟧𝑠 evaluates
E at state 𝑠 . Then, the operational semantics of await is formalized as follows:

await

⟦E⟧𝑠0
≠ 0 ∀1 ≤ 𝑖 ≤ 𝑛. 𝑠𝑖 = 𝑠𝑖−1 [𝑥𝑖 ↦→ ⟦E𝑖⟧𝑠𝑖−1

]
⟨await E then (𝑥1 := E1 ; ... ; 𝑥𝑛 := E𝑛), 𝑠0⟩ −→ ⟨skip, 𝑠𝑛⟩

In one atomic step, the system performs the loads from memory necessary to evaluate E and

(conditionally) executes multiple assignments involving any number of additional loads in stores.

While being instrumental in the full abstraction proof, await is not standardly available in

real-world shared-memory concurrent programming. Indeed, to implement await, one has to block
all other concurrent processes from accessing any of the variables that are read/written in the

await instruction. (Note that it does not suffice to only block concurrent await’s, we also need

to block primitive loads and stores.) Instead, programming languages and multicore architectures

provide atomic instructions that atomically manipulate a single address, including loads, stores, and

RMWs. Locks, transactional libraries, concurrent objects, and other synchronization mechanisms

are implemented on top of these basic instructions. Such implementations necessarily involve

races—cases in which two different threads are concurrently accessing the same variable, and at

least one of them is writing. Our focus is on concurrent implementations at this level of abstraction.

As we show in §4.3 and §4.4, we are only able to develop fully abstract denotational semantics

when the source program is loop-free. With loops, our proposed denotational semantics is adequate

but not fully abstract. To get full abstraction with loops, we use snapshot, which, like await, we
consider to be unrealistic. The snapshot command uses only the “condition part” of the await, and
can be thought of the restriction of await to the form await 𝐵 then skip. (Since every program

uses only finitely many variables, the state 𝑠 used in snapshot can be always translated into an

extended expression.) Thus, our results provide a full abstraction statement similar to [Brookes

1996] but without the full power of await. The (pretended) implementation of snapshot has to

block all other concurrent processes from writing to shared variables, but unlike await, reads can
proceed concurrently.

Finally, we note that for a single variable, we also have assume(𝑥 = 𝑣) behaving like Brookes’s
await 𝑥 = 𝑣 then skip, generating “no behavior” if the condition (on a single variable) is not met.

We use assume commands in the full abstraction proof, but since we only consider terminating

behaviors in this work, it is also possible to use busy-loops that wait until 𝑥 = 𝑣 .

3 CONCRETE DENOTATIONAL SEMANTICS
In this section we present the “concrete” denotational semantics and establish its compositionality

and adequacy. The main ingredient for this semantics is our notion of a trace, which consists of an

initial memory state, an initial store, which assigns values to local variables, and a chronicle, which
is a sequence of actions performed by the command along with those expected by the concurrent

context. Next, we formally define these objects and the required operations on them.

Notation 3.1 (Sequences). For a finite alphabet Σ, we denote by Σ∗
the set of all (finite) sequences

over Σ. We use 𝜀 to denote the empty sequence. We write 𝑠1 · 𝑠2 for the concatenation of sequences,

which is lifted to concatenation of sets of sequences in the obvious way. We identify symbols with

sequences of length 1 or their singletons when needed (e.g., in expressions like 𝜎 · 𝑆).

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

169:8 Mikhail Svyatlovskiy, Shai Mermelstein, and Ori Lahav

Stores. A store is a function 𝜃 ∈ Store ≜ LVar → Val. Stores are extended to expressions in the

standard way. We also lift stores to let expressions by applying them inside (e.g., 𝜃 (FAA(𝑥, 𝐸)) =
FAA(𝑥, 𝜃 (𝐸))). In some examples below, we use 𝜃0 ≜ 𝜆𝑎. 0 as the initial store.

Actions. An action 𝛼 is either a component write of the form W(𝑥, 𝑣) with 𝑥 ∈ Var and 𝑣 ∈ Val,
or an environment write of the form W̄(𝑥, 𝑣) with 𝑥 ∈ Var and 𝑣 ∈ Val. We write Act, CmpW, and

EnvW for the set of all actions, component writes, and environment writes (respectively).

Chronicles. A chronicle 𝑐 is a finite sequence of actions. We denote byChro the set of all chronicles,
by CmpChro the set of all chronicles consisting solely of component writes, and by EnvChro the
set of all chronicles consisting solely of environment writes. A chronicle 𝑐 induces a function from

states to states, recursively defined by: 𝜀 (𝑠) ≜ 𝑠 and (W(𝑥, 𝑣) · 𝑐) (𝑠) = (W̄(𝑥, 𝑣) · 𝑐) (𝑠) ≜ 𝑐 (𝑠 [𝑥 ↦→ 𝑣]).

Traces. A trace is a triple 𝑡 = ⟨𝑠, 𝜃, 𝑐⟩ ∈ Trace ≜ State × Store × Chro. We refer to the three

components as the initial state (𝑠), the initial store (𝜃), and the chronicle (𝑐) of 𝑡 , and to the state

𝑐 (𝑠) as the final state of the trace 𝑡 .

Sequential Composition of Traces. The sequential composition of 𝑡 = ⟨𝑠, 𝜃, 𝑐⟩ and 𝑡 ′ = ⟨𝑐 (𝑠), 𝜃, 𝑐′⟩,
denoted by 𝑡 ; 𝑡 ′, is the trace ⟨𝑠, 𝜃, 𝑐 · 𝑐′⟩. When the final state of 𝑡 does not coincide with the initial

state of 𝑡 ′ or the two traces do not have the same initial store, then 𝑡 ; 𝑡 ′ is undefined.

Parallel Composition of Traces. Parallel composition is defined for actions, chronicles, and traces:

(1) The dual of an action 𝛼 , denoted by 𝛼 , is defined by 𝛼 ≜ W̄(𝑥, 𝑣) if 𝛼 = W(𝑥, 𝑣) and 𝛼 ≜ W(𝑥, 𝑣) if
𝛼 = W̄(𝑥, 𝑣). Two actions 𝛼 and 𝛼 ′

are parallelly composable if either 𝛼 = 𝛼 ′
or 𝛼 = 𝛼 ′ ∈ EnvW.

In that case, their parallel composition, denoted by 𝛼 ∥ 𝛼 ′
, is given by:

𝛼 ∥ 𝛼 ′ ≜

{
W(𝑥, 𝑣) 𝛼 = 𝛼 ′ ∈ {W(𝑥, 𝑣), W̄(𝑥, 𝑣)}
𝛼 𝛼 = 𝛼 ′ ∈ EnvW

(2) The parallel composition of two chronicles 𝑐 = 𝛼1 · ··𝛼𝑛 and 𝑐′ = 𝛼 ′
1
· ··𝛼 ′

𝑛 , denoted by 𝑐1 ∥ 𝑐2,

is defined by 𝑐 ∥ 𝑐′ ≜ (𝛼1 ∥ 𝛼 ′
1
) ··· (𝛼𝑛 ∥ 𝛼 ′

𝑛). If some 𝛼𝑖 ∥ 𝛼 ′
𝑖 is undefined or the chronicles

are not of the same length, then 𝑐 ∥ 𝑐′ is undefined.
(3) The parallel composition of two traces 𝑡 = ⟨𝑠, 𝜃, 𝑐⟩ and 𝑡 ′ = ⟨𝑠, 𝜃, 𝑐′⟩, denoted by 𝑡 ∥ 𝑡 ′, is the

trace ⟨𝑠, 𝜃, 𝑐 ∥ 𝑐′⟩. When the two traces do not have the same initial state and store or 𝑐 ∥ 𝑐′
is undefined, then 𝑡 ∥ 𝑡 ′ is undefined.

From Commands to Traces. Figure 3 presents an inductive definition of the concrete semantics,

which is a function ⌊·⌋ that maps commands to sets of traces. The skip command does not perform

any component writes and tolerates any environment interference, thus it is associated with traces

with arbitrary environment chronicles (rule skip). A store instruction generates a component write,

and allows arbitrary environment interference before and after (rule store). The value to be stored

is determined according to the initial store. (Unlike the operational semantics, this semantics assigns

meaning to open programs as well.) Let bindings (rule let) start with environment interference

𝑒 and then possibly generate a component write W(𝑥, 𝑣) following their operational semantics

(reusing the first part of Fig. 2). Note that the memory visible to the let expression is the one

obtained by applying 𝑒 on the initial state. In turn, the continuation is given by 𝐶 starting from a

modified state and store. The resulting chronicle is the concatenation of 𝑒 , 𝛾 ∈ {W(𝑥, 𝑣), 𝜀}, and a

chronicle 𝑐 of the continuation. Here we use the transition labels from the operational semantics as

component actions or the empty chronicles. Sequential composition of commands is handled by

sequential composition of traces (rule seq). The denotation of parallel composition uses a (partial)

operation for parallel composition of traces (rule par). Intuitively speaking, a component action

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

Compositional Semantics for Shared-Variable Concurrency (Extended Version) 169:9

skip

𝑒 ∈ EnvChro

⟨𝑠, 𝜃, 𝑒 ⟩ ∈ ⌊skip⌋

store

𝑒1, 𝑒2 ∈ EnvChro
𝛼 = W(𝑥, 𝜃 (𝐸))

⟨𝑠, 𝜃, 𝑒1 · 𝛼 · 𝑒2 ⟩ ∈ ⌊𝑥 := 𝐸 ⌋

let

𝑒 ∈ EnvChro ⟨𝜃 (𝐿), 𝑒 (𝑠) ⟩
𝛾
−→ ⟨𝑣, 𝑠′ ⟩

⟨𝑠′, 𝜃 [𝑎 ↦→ 𝑣], 𝑐 ⟩ ∈ ⌊𝐶 ⌋
⟨𝑠, 𝜃, 𝑒 · 𝛾 · 𝑐 ⟩ ∈ ⌊let 𝑎 = 𝐿 in 𝐶 ⌋

seq

𝑡1 ∈ ⌊𝐶1 ⌋
𝑡2 ∈ ⌊𝐶2 ⌋

𝑡1 ; 𝑡2 ∈ ⌊𝐶1 ;𝐶2 ⌋

par

𝑡1 ∈ ⌊𝐶1 ⌋
𝑡2 ∈ ⌊𝐶2 ⌋

𝑡1 ∥ 𝑡2 ∈ ⌊𝐶1 ∥ 𝐶2 ⌋

choice

𝑡 ∈ ⌊𝐶1 ⌋ ∪ ⌊𝐶2 ⌋
𝑡 ∈ ⌊𝐶1 ⊕ 𝐶2 ⌋

if

𝜃 (𝐸) ≠ 0 =⇒ ⟨𝑠, 𝜃, 𝑐 ⟩ ∈ ⌊𝐶1 ⌋
𝜃 (𝐸) = 0 =⇒ ⟨𝑠, 𝜃, 𝑐 ⟩ ∈ ⌊𝐶2 ⌋

⟨𝑠, 𝜃, 𝑐 ⟩ ∈ ⌊if 𝐸 then 𝐶1 else 𝐶2 ⌋

while-true

⟨𝑒 (𝑠), 𝜃, 𝑐 ⟩ ∈ ⌊𝐶 ⌋ 𝑒 (𝑠) (𝑥) ≠ 0

𝑡 ∈ ⌊while 𝑥 do 𝐶 ⌋
⟨𝑠, 𝜃, 𝑒 · 𝑐 ⟩ ; 𝑡 ∈ ⌊while 𝑥 do 𝐶 ⌋

while-false

𝑒1, 𝑒2 ∈ EnvChro
𝑒1 (𝑠) (𝑥) = 0

⟨𝑠, 𝜃, 𝑒1 · 𝑒2 ⟩ ∈ ⌊while 𝑥 do 𝐶 ⌋

assume

𝑒 ∈ EnvChro
𝜃 (𝐸) ≠ 0

⟨𝑠, 𝜃, 𝑒 ⟩ ∈ ⌊assume(𝐸) ⌋

snapshot

𝑒1, 𝑒2 ∈ EnvChro
𝑒1 (𝑠) = 𝑠′

⟨𝑠, 𝜃, 𝑒1 · 𝑒2 ⟩ ∈ ⌊snapshot(𝑠′) ⌋

havoc

𝑒1, 𝑒2 ∈ EnvChro
𝛼 = W(𝑥, 𝑣)

⟨𝑠, 𝜃, 𝑒1 · 𝛼 · 𝑒2 ⟩ ∈ ⌊𝑥 := ∗⌋

nd-while-true

𝑡1 ∈ ⌊𝐶 ⌋
𝑡2 ∈ ⌊while ∗ do 𝐶 ⌋

𝑡1 ; 𝑡2 ∈ ⌊while ∗ do 𝐶 ⌋

nd-while-false

𝑒 ∈ EnvChro

⟨𝑠, 𝜃, 𝑒 ⟩ ∈ ⌊while ∗ do 𝐶 ⌋

Fig. 3. Concrete Trace Semantics: 𝑡 ∈ ⌊𝐶⌋

on one side has to match the environment action expected from the other side, and together they

form a component action for their external environment. In addition, if both sides expect the same

environment action, then that action is also expected from the external environment of the parallel

composition. The concrete semantics of other language constructs follow similar ideas aiming to

match their operational semantics. As expected, for loops, the definition is recursive.

The concrete denotations admit some invariants, which are useful in our proofs. In particular,

they are closed over environment actions before and after that command’s effects:

Proposition 3.2. If ⟨𝑠, 𝜃, 𝑐⟩ ∈ ⌊𝐶⌋, then ⟨𝑠′, 𝜃, 𝑒1 · 𝑐 · 𝑒2⟩ ∈ ⌊𝐶⌋ for every environment chronicles
𝑒1, 𝑒2 and state 𝑠′ such that 𝑒1 (𝑠′) = 𝑠 .

This invariant is explicitly enforced in some rules (e.g., skip, store), whereas other rules close

over the prefix (e.g., let) or not close at all (e.g., seq) since they inherit the closure from their parts.

Example 3.3. For 𝐶 = let a = x in (x := a + 1), ⌊𝐶⌋ consists of all traces of the form

⟨𝑠, 𝜃, 𝑒1 · 𝑒2 · W(x, 𝑣 + 1) · 𝑒3⟩ where 𝑒1, 𝑒2, 𝑒3 ∈ EnvChro and 𝑣 = 𝑒1 (𝑠) (x). In addition, ⌊x := 1⌋
consists of all traces of the form ⟨𝑠, 𝜃, 𝑒1 · W(x, 1) · 𝑒2⟩ where 𝑒1, 𝑒2 ∈ EnvChro. For their parallel
composition, ⌊𝐶 ∥ x := 1⌋ consists of all traces of the form ⟨𝑠, 𝜃, 𝑒1 · 𝑒2 · W(x, 𝑣 + 1) · 𝑒3 · W(x, 1) · 𝑒4⟩
or ⟨𝑠, 𝜃, 𝑒1 · 𝑒2 · W(x, 1) · 𝑒3 · W(x, 𝑣 + 1) · 𝑒4⟩ where 𝑒1, 𝑒2, 𝑒3, 𝑒4 ∈ EnvChro and 𝑣 = 𝑒1 (𝑠) (x); and
⟨𝑠, 𝜃, 𝑒1 · W(x, 1) · 𝑒2 · 𝑒3 · W(x, 𝑣 + 1) · 𝑒4⟩ where 𝑒1, 𝑒2, 𝑒3, 𝑒4 ∈ EnvChro and 𝑣 = 𝑒2 (𝑠 [x ↦→ 1]) (x).

Compositionality. From the definition of the semantics, it is easy to see that the concrete semantics

is compositional. More formally, the following property is proved by standard induction on contexts

(with an inner induction on the derivation of 𝑡 ∈ ⌊while _ do 𝐶⌋ for loops):

Lemma 3.4. If ⌊𝐶1⌋ ⊆ ⌊𝐶2⌋, then ⌊𝑃 [𝐶1]⌋ ⊆ ⌊𝑃 [𝐶2]⌋ for every context 𝑃 .

As a corollary, we obtain the compositionality of ⌊·⌋: for every command 𝐶 whose immediate

sub-commands are 𝐶1, ... ,𝐶𝑛 , we have that ⌊𝐶⌋ is a function of ⌊𝐶1⌋, ... ,⌊𝐶𝑛⌋. To see this, consider

for instance the case of𝐶 = 𝐶1 ∥ 𝐶2, and suppose that ⌊𝐶1⌋ = ⌊𝐶′
1
⌋ and ⌊𝐶2⌋ = ⌊𝐶′

2
⌋. By Lemma 3.4

applied to the context 𝑃 = − ∥ 𝐶2 and the commands 𝐶1,𝐶
′
1
, we obtain ⌊𝐶1 ∥ 𝐶2⌋ = ⌊𝐶′

1
∥ 𝐶2⌋.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

169:10 Mikhail Svyatlovskiy, Shai Mermelstein, and Ori Lahav

Then, again by Lemma 3.4 applied to the context 𝑃 = 𝐶′
1
∥ − and the commands 𝐶2,𝐶

′
2
, we obtain

⌊𝐶′
1
∥ 𝐶2⌋ = ⌊𝐶′

1
∥ 𝐶′

2
⌋. Together, it follows that ⌊𝐶1 ∥ 𝐶2⌋ = ⌊𝐶′

1
∥ 𝐶′

2
⌋.

Adequacy. The next lemma provides the key for the adequacy of the concrete semantics.

Lemma 3.5. For a closed command 𝐶 , we have ⟨𝐶, 𝑠⟩ ↓ 𝑠′ iff ⟨𝑠, 𝜃, 𝑐⟩ ∈ ⌊𝐶⌋ for some store 𝜃 and
component chronicle 𝑐 such that 𝑐 (𝑠) = 𝑠′.

Proof. For the proof we inductively define an auxiliary relation

𝑐
=⇒ between configurations

labeled with a chronicle 𝑐 , which represents an operational execution interrupted with the environ-

ment writes along 𝑐 (akin to Brookes [1996]’s “state trace” behaviors):

⟨𝐶, 𝑠⟩ 𝜀
=⇒ ⟨𝐶, 𝑠⟩

𝛼 = W̄(𝑥, 𝑣) ⟨𝐶, 𝑠 [𝑥 ↦→ 𝑣]⟩ 𝑐
=⇒ ⟨𝐶′, 𝑠′⟩

⟨𝐶, 𝑠⟩ 𝛼 ·𝑐
=⇒ ⟨𝐶′, 𝑠′⟩

⟨𝐶, 𝑠⟩
𝛾
−→ ⟨𝐶′, 𝑠′⟩ ⟨𝐶′, 𝑠′⟩ 𝑐

=⇒ ⟨𝐶′′, 𝑠′′⟩

⟨𝐶, 𝑠⟩
𝛾 ·𝑐
=⇒ ⟨𝐶′′, 𝑠′′⟩

Then, the claim of the lemma is a direct corollary of the following two claims. First, when 𝑐 is a

component chronicle,

𝑐
=⇒ trivially coincides with the operational semantics:

Claim 3.5.1: ⟨𝐶, 𝑠⟩ ↓ 𝑠′ iff ⟨𝐶, 𝑠⟩ 𝑐
=⇒ ⟨skip, 𝑠′⟩ for some 𝑐 ∈ CmpChro such that 𝑐 (𝑠) = 𝑠′.

Second, ⌊𝐶⌋ lies in tight correspondence with

𝑐
=⇒:

Claim 3.5.2: Let𝐶 be a command, and let 𝑎1, ... ,𝑎𝑛 be an enumeration of fv(𝐶). Then, ⟨𝑠, 𝜃, 𝑐⟩ ∈ ⌊𝐶⌋
iff ⟨𝐶{𝜃 (𝑎1)/𝑎1} ... {𝜃 (𝑎𝑛)/𝑎𝑛}, 𝑠⟩

𝑐
=⇒ ⟨skip, 𝑐 (𝑠)⟩. The proof of each direction in this claim pro-

ceeds by induction on𝐶 , where the interesting cases follow from the fact that

𝑐
=⇒ is compatible with

sequential and parallel compositions. More concretely, for the left-to-right direction, we prove that:

(1) if ⟨𝐶1, 𝑠⟩
𝑐1

=⇒ ⟨skip, 𝑠′⟩ and ⟨𝐶2, 𝑠
′⟩

𝑐2

=⇒ ⟨skip, 𝑠′′⟩, then ⟨𝐶1 ;𝐶2, 𝑠⟩
𝑐1 ·𝑐2

=⇒ ⟨skip, 𝑠′′⟩; and (2) if

⟨𝐶1, 𝑠⟩
𝑐1

=⇒ ⟨skip, 𝑠′⟩ and ⟨𝐶2, 𝑠⟩
𝑐2

=⇒ ⟨skip, 𝑠′⟩, then ⟨𝐶1 ∥ 𝐶2, 𝑠⟩
𝑐1 ∥𝑐2

=⇒ ⟨skip, 𝑠′⟩. For the converse,
we prove: (3) if ⟨𝐶1 ;𝐶2, 𝑠⟩

𝑐
=⇒ ⟨skip, 𝑠′′⟩, then ⟨𝐶1, 𝑠⟩

𝑐1

=⇒ ⟨skip, 𝑠′⟩ and ⟨𝐶2, 𝑠
′⟩

𝑐2

=⇒ ⟨skip, 𝑠′′⟩
for some chronicles 𝑐1, 𝑐2 such that 𝑐 = 𝑐1 · 𝑐2 and state 𝑠

′
; and (4) if ⟨𝐶1 ∥ 𝐶2, 𝑠⟩

𝑐
=⇒ ⟨skip, 𝑠′⟩, then

⟨𝐶1, 𝑠⟩
𝑐1

=⇒ ⟨skip, 𝑠′⟩ and ⟨𝐶2, 𝑠⟩
𝑐2

=⇒ ⟨skip, 𝑠′⟩ for some chronicles 𝑐1, 𝑐2 such that 𝑐 = 𝑐1 ∥ 𝑐2. □

Adequacy of the concrete semantics is now a corollary:

Theorem 3.6. If ⌊𝐶tgt⌋ ⊆ ⌊𝐶src⌋, then 𝐶src ⇝ 𝐶tgt.

Proof. Suppose that ⌊𝐶tgt⌋ ⊆ ⌊𝐶src⌋. Let 𝑃 be a context such that 𝑃 [𝐶src] and 𝑃 [𝐶tgt] are closed,
and suppose that ⟨𝑃 [𝐶tgt], 𝑠⟩ ↓ 𝑠′. Since ⟨𝑃 [𝐶tgt], 𝑠⟩ ↓ 𝑠′, by Lemma 3.5, we have ⟨𝑠, 𝜃, 𝑐⟩ ∈ ⌊𝑃 [𝐶tgt]⌋
for some store 𝜃 and component chronicle 𝑐 ∈ CmpChro such that 𝑐 (𝑠) = 𝑠′. Since ⌊𝐶tgt⌋ ⊆ ⌊𝐶src⌋,
by Lemma 3.4, it follows that ⟨𝑠, 𝜃, 𝑐⟩ ∈ ⌊𝑃 [𝐶src]⌋. By Lemma 3.5, it follows that ⟨𝑃 [𝐶src], 𝑠⟩ ↓ 𝑠′. □

Figure 4 presents examples of program transformations that are validated by the concrete

semantics. Among RMWs, we only list transformations involving FAA, but similar transformations

can be shown for XCHG and CAS (and some are included in our Coq development).

Many of the transformations in Fig. 4 are structural transformations revealing the algebraic

properties of the language operators. In particular, generalized sequencing reduces parallel composi-

tion to sequential composition. Indeed, by introducing and eliminating skip instructions, using
generalized sequencing we obtain that 𝐶1 ∥ 𝐶2 ⇝ 𝐶1 ;𝐶2 for every 𝐶1 and 𝐶2. This transformation

is typically considered counterproductive for performance (although it saves the time it takes to

spawn a thread), but it shows the expected monotonicity property of the operational semantics,

which does not hold under some weak memory models [Lahav and Vafeiadis 2016].

Other transformations involve memory accesses. As a concrete example of the style of reasoning

in these proofs, consider the case of unused load elimination/introduction. The traces in ⌊let 𝑎 =

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

Compositional Semantics for Shared-Variable Concurrency (Extended Version) 169:11

Algebraic laws of sequential composition
(𝐶1 ;𝐶2) ;𝐶3 ↭ 𝐶1 ; (𝐶2 ;𝐶3) skip ;𝐶 ↭ 𝐶 𝐶 ; skip ↭ 𝐶

Reordering of local operations
let 𝑎 = 𝐸 in let 𝑎′ = 𝐸′ in 𝐶 ↭ let 𝑎′ = 𝐸′ in let 𝑎 = 𝐸 in 𝐶 provided that 𝑎 ≠ 𝑎′ , 𝑎 ∉ fv(𝐸′) , and 𝑎′ ∉ fv(𝐸)
let 𝑎 = 𝐸 in 𝑥 := 𝐸 ;𝐶 ↭ let 𝑎 = 𝐸 in 𝑥 := 𝑎 ;𝐶 provided that 𝑎 ∉ fv(𝐸)
if 𝐸 then (let 𝑎 = 𝐸′ in 𝐶1)
else (let 𝑎 = 𝐸′ in 𝐶2)

↭
let 𝑎 = 𝐸′ in
(if 𝐸 then 𝐶1 else 𝐶2)

provided that 𝑎 ∉ fv(𝐸)

Unused assignment elimination
let 𝑎 = 𝐸 in 𝐶 ↭ 𝐶 provided that 𝑎 ∉ fv(𝐶)

Loop unrolling
while 𝑥 do 𝐶 ↭ let 𝑎 = 𝑥 in (if 𝑎 then (𝐶 ; while 𝑥 do 𝐶)) provided that 𝑎 ∉ fv(𝐶)

Algebraic laws of parallel composition
skip ∥ 𝐶 ↭ 𝐶 𝐶1 ∥ 𝐶2 ↭ 𝐶2 ∥ 𝐶1 (𝐶1 ∥ 𝐶2) ∥ 𝐶3 ↭ 𝐶1 ∥ (𝐶2 ∥ 𝐶3)

Generalized Sequencing (a.k.a. thread inlining/sequentialization)
(𝐶1 ;𝐶′

1
) ∥ (𝐶2 ;𝐶′

2
) ⇝ (𝐶1 ∥ 𝐶2) ; (𝐶′

1
∥ 𝐶′

2
)

Algebraic laws of non-deterministic choice and distributivity over non-deterministic choice
𝐶1 ⊕ 𝐶2 ↭ 𝐶2 ⊕ 𝐶1 (𝐶1 ⊕ 𝐶2) ⊕ 𝐶3 ↭ 𝐶1 ⊕ (𝐶2 ⊕ 𝐶3) 𝐶 ⊕ 𝐶 ↭ 𝐶 𝐶1 ⊕ 𝐶2 ⇝ 𝐶1 𝐶1 ⊕ 𝐶2 ⇝ 𝐶2

𝐶 ; (𝐶1 ⊕ 𝐶2) ↭ (𝐶 ;𝐶1) ⊕ (𝐶 ;𝐶2) (𝐶1 ⊕ 𝐶2) ;𝐶 ↭ (𝐶1 ;𝐶) ⊕ (𝐶2 ;𝐶) 𝐶 ∥ (𝐶1 ⊕ 𝐶2) ↭ (𝐶 ∥ 𝐶1) ⊕ (𝐶 ∥ 𝐶2)
Load-after-load elimination

let 𝑎 = 𝑥 in (let 𝑏 = 𝑥 in 𝐶) ⇝ let 𝑎 = 𝑥 in (let 𝑏 = 𝑎 in 𝐶)
Load-after-store elimination
𝑥 := 𝐸 ; let 𝑎 = 𝑥 in 𝐶 ⇝ 𝑥 := 𝐸 ; let 𝑎 = 𝐸 in 𝐶

Unused load elimination/introduction
let 𝑎 = 𝑥 in 𝐶 ↭ 𝐶 provided that 𝑎 ∉ fv(𝐶)

Load-after-FAA elimination
let 𝑎 = FAA(𝑥, 𝐸) in let 𝑎′ = 𝑥 in 𝐶 ⇝ let 𝑎 = FAA(𝑥, 𝐸) in let 𝑎′ = 𝑎 + 𝐸 in 𝐶 provided that 𝑎 ∉ fv(𝐸)

Load-before-FAA elimination
let 𝑎 = 𝑥 in let 𝑎′ = FAA(𝑥, 𝐸) in 𝐶 ⇝ let 𝑎 = FAA(𝑥, 𝐸) in let 𝑎′ = 𝑎 in 𝐶 provided that 𝑎 ∉ fv(𝐸)

Load-store to FAA
let 𝑎 = 𝑥 in (𝑥 := 𝑎 + 𝐸 ;𝐶) ⇝ let 𝑎 = FAA(𝑥, 𝐸) in 𝐶 provided that 𝑎 ∉ fv(𝐸)

Assume introduction/elimination
skip ⇝ assume(𝐸) 𝐶 ⇝ assume(0) assume(x = 0) ↭ while x do skip

Specializing non-deterministic values
𝑥 := ∗ ⇝ 𝑥 := 𝑣 while ∗ do 𝐶 ⇝ while 𝑥 do 𝐶

Fig. 4. Examples of program transformations validated by the concrete semantics

𝑥 in 𝐶⌋ are by definition of the form ⟨𝑠, 𝜃, 𝑒 · 𝑐⟩ with 𝑒 ∈ EnvChro and ⟨𝑒 (𝑠), 𝜃 [𝑎 ↦→ 𝑒 (𝑠) (𝑥)], 𝑐⟩ ∈
⌊𝐶⌋. When 𝑎 ∉ fv(𝐶), the latter holds iff ⟨𝑒 (𝑠), 𝜃, 𝑐⟩ ∈ ⌊𝐶⌋. Then, by picking 𝑒 = 𝜀, we obtain

⌊𝐶⌋ ⊆ ⌊let 𝑎 = 𝑥 in 𝐶⌋ (load elimination). The converse (load introduction) follows from the

observation that ⟨𝑒 (𝑠), 𝜃, 𝑐⟩ ∈ ⌊𝐶⌋ implies that ⟨𝑠, 𝜃, 𝑒 · 𝑐⟩ ∈ ⌊𝐶⌋ for every command 𝐶 . Our Coq

development provides general lemmas that are repeatedly used in these arguments.

Example 3.7. The concrete semantics captures some refinements that are invalid in [Brookes

1996]. Indeed, every command in the language we study changes at most one shared variable. This

is reflected in traces since every action in them mentions one variable. For instance, using the

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

169:12 Mikhail Svyatlovskiy, Shai Mermelstein, and Ori Lahav

concrete semantics we can show that 𝐶1 ; 𝐶2 ;𝐶3 ⇝ 𝐶1 ;𝐶3 for:
3

𝐶1 = x := 1 ; y := 1

𝐶2 = let a = x in (let b = y in (assume((a = 2 ∧ b ≠ 2) ∨ (a ≠ 2 ∧ b = 2))))
𝐶3 = let a = x in (let b = y in (assume((a = 2 ∧ b = 2))))

In Brookes’s setting, this refinement fails to hold. For example, the condition in 𝐶2 will never be

satisfied in the context − ∥ await true then (x := 2 ; y := 2).

4 ABSTRACT SEMANTICS
The semantics above fully tracks the sequence of writes performed by a command. There are,

however, contextual refinements in which writes are eliminated or introduced. The “abstract

semantics” presented in this section supports such refinements. The main idea is to close the

concrete sets of traces under certain rewrite rules that hide or introduce actions that can be safely

assumed to be unobservable by the concurrent environment. Then, it may be the case that some

traces in ⌊𝐶tgt⌋ are not in ⌊𝐶src⌋, but they are in the closure of ⌊𝐶src⌋ under these rewrites.
The main technical challenge lies in identifying these rewrite rules and proving the required

properties for this semantics. In §4.1, we establish the compositionality property, which, unlike the

case of the concrete semantics, is not a direct corollary of the definition, and requires a new argument.

Then, in §4.2, we show how adequacy of the abstract semantics follows from its compositionality

and Lemma 3.5 about the concrete semantics. In §4.3, we show that the set of rules is “complete”

by establishing full abstraction. In §4.4, we consider full abstraction in the absence of snapshot.

Notation 4.1 (Rewrite Rules and Closures). A rewrite rule 𝑥 is a binary relation on syntactic objects.

We use the notation 𝑎 𝑥−→ 𝑏 to mean that ⟨𝑎, 𝑏⟩ ∈ 𝑥 . For a set 𝑋 of rewrite rules, we write 𝑎 𝑋−→ 𝑏

if 𝑎 𝑥−→ 𝑏 for some 𝑥 ∈ 𝑋 . A set 𝐴 is closed under 𝑋 if 𝑏 ∈ 𝐴 whenever 𝑎 𝑋−→ 𝑏 for some 𝑎 ∈ 𝐴.

Assuming some universal setA, the closure of 𝐴 under 𝑋 , denoted by 𝐴𝑋
, is defined as the smallest

subset of A that contains 𝐴 and is closed under 𝑋 .

The following general propositions are useful in the sequel.

Proposition 4.2. For every 𝐴 ⊆ A and set 𝑋 of rewrite rules, 𝐴𝑋 = {𝑏 ∈ A | ∃𝑎 ∈ 𝐴. 𝑎 𝑋−→∗ 𝑏}

Proposition 4.3. For every 𝐴, 𝐵 ⊆ A and set 𝑋 of rewrite rules, 𝐴 ⊆ 𝐵𝑋 implies 𝐴𝑋 ⊆ 𝐵𝑋 .

We define the abstract semantics using four rewrite rules. The rules aim to match operational

arguments for cases where it is possible to eliminate a redundant idempotent write, eliminate

several writes that cancel each other, or introduce an invisible write. The examples following the

definition provide the intuition behind each rewrite rule.

Definition 4.4. The abstract denotation of a command 𝐶 , denoted by ⟦𝐶⟧, is defined by ⟦𝐶⟧ ≜
⌊𝐶⌋R , where R consists of the following rewrite rules on traces:

coalesce: ⟨𝑠, 𝜃, 𝑐1 ·𝑚1 · W(𝑥, 𝑣) ·𝑚2 · 𝑐2⟩ coalesce−−−−−→ ⟨𝑠, 𝜃, 𝑐1 · W(𝑥, 𝑣) · 𝑐2⟩ provided that

𝑚1,𝑚2 ∈ CmpChro and (𝑚1 · W(𝑥, 𝑣) ·𝑚2) (𝑐1 (𝑠)) = 𝑐1 (𝑠) [𝑥 ↦→ 𝑣].
coalesce: ⟨𝑠, 𝜃, 𝑐1 ·𝑚1 · W̄(𝑥, 𝑣) ·𝑚2 · 𝑐2⟩ coalesce−−−−−→ ⟨𝑠, 𝜃, 𝑐1 · W̄(𝑥, 𝑣) · 𝑐2⟩ provided that

𝑚1,𝑚2 ∈ CmpChro, (𝑚1 · W̄(𝑥, 𝑣) ·𝑚2) (𝑐1 (𝑠)) = 𝑐1 (𝑠) [𝑥 ↦→ 𝑣], and𝑚1 (𝑐1 (𝑠)) (𝑥) = 𝑐1 (𝑠) (𝑥).
del-red: ⟨𝑠, 𝜃, 𝑐1 · W(𝑥, 𝑣) · 𝑐2⟩ del-red−−−−→ ⟨𝑠, 𝜃, 𝑐1 · 𝑐2⟩ provided that 𝑐1 (𝑠) (𝑥) = 𝑣 .

add-red: ⟨𝑠, 𝜃, 𝑐1 · 𝑐2⟩ add-red−−−−→ ⟨𝑠, 𝜃, 𝑐1 · W(𝑥, 𝑣) · 𝑐2⟩ provided that 𝑐1 (𝑠) (𝑥) = 𝑣 .

3
To assist the reader, we highlight the commands eliminated by a transformation.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

Compositional Semantics for Shared-Variable Concurrency (Extended Version) 169:13

Below we freely use Prop. 4.3 and show ⌊𝐶tgt⌋ ⊆ ⟦𝐶src⟧ instead of ⟦𝐶tgt⟧ ⊆ ⟦𝐶src⟧.

Example 4.5 (Rule coalesce). Rule coalesce permits to combine consecutive component writes

into one “atomic block”. The condition (𝑚1 · W(𝑥, 𝑣) ·𝑚2) (𝑐1 (𝑠)) = 𝑐1 (𝑠) [𝑥 ↦→ 𝑣] ensures that
the effect of the formed block is the same as the effect of a single write. As an example, let

𝐶src = let a = y in (y := 1 ; x := 1 ; y := a). Intuitively speaking, we can always execute it

atomically, without letting the environment to interfere in between the first load and the final

store. In that case, it behaves like 𝐶tgt = x := 1. Such reasoning is impossible in the concrete

semantics, but the rule coalesce of the abstract semantics is allowing us exactly that, thus jus-

tifying 𝐶src ⇝ 𝐶tgt. Indeed, to show that ⌊𝐶tgt⌋ ⊆ ⟦𝐶src⟧ observe that every trace 𝑡 in ⌊𝐶tgt⌋
has the form ⟨𝑠, 𝜃, 𝑒1 · W(x, 1) · 𝑒2⟩. We can start from a corresponding trace in ⟦𝐶src⟧ of the form

⟨𝑠, 𝜃, 𝑒1 · W(y, 1) · W(x, 1) · W(y, 𝑒1 (𝑠) (y)) · 𝑒2⟩ and rewrite by coalesce with 𝑐1 = 𝑒1, 𝑚1 = W(y, 1),
𝑚2 = W(y, 𝑒1 (𝑠) (y)), and 𝑐2 = 𝑒2 to obtain 𝑡 .

Example 4.6 (Rule coalesce). Rule coalesce allows one to “attach” component actions to an

environment action, provided that the composed block has the same effect as the single environment

action. To see this in action, let 𝐶src = let a = y in y := 3 ; if x ≠ 2 then (if x = 2 then y := a).
The two if conditions are satisfied only if the concurrent environment changes x from non-zero

value to zero. In this case, we can encompass that environment store of x with the load from y and

the store of 3 to y just before, and the store of the previous value of y just after, and in this case

𝐶src behaves like 𝐶tgt = if x ≠ 2 then (if x = 2 then skip else y := 3) else y := 3. The rule

coalesce of the abstract semantics is needed for that, thus justifying 𝐶src ⇝ 𝐶tgt. Indeed, to show

that ⌊𝐶tgt⌋ ⊆ ⟦𝐶src⟧ observe that the traces in ⌊𝐶tgt⌋ are either of the form ⟨𝑠, 𝜃, 𝑒1 · W̄(x, 2) · 𝑒2⟩
with 𝑒1 (𝑠) (x) ≠ 2 or of the form ⟨𝑠, 𝜃, 𝑒1 · W(y, 3) · 𝑒2⟩. Traces of the latter form are directly in

⌊𝐶src⌋. For a trace 𝑡 of the first form, we start from a corresponding trace in ⌊𝐶src⌋ of the form
⟨𝑠, 𝜃, 𝑒1 · W(y, 3) · W̄(x, 2) · W(y, 𝑒1 (𝑠) (y)) · 𝑒2⟩ and rewrite by coalesce with 𝑐1 = 𝑒1, 𝑚1 = W(y, 3),
𝑚2 = W(y, 𝑒1 (𝑠) (y)), and 𝑐2 = 𝑒2 to obtain 𝑡 . As in coalesce, the condition (𝑚1 · W̄(𝑥, 𝑣) ·𝑚2) (𝑐1 (𝑠)) =
𝑐1 (𝑠) [𝑥 ↦→ 𝑣] of coalesce ensures that the formed atomic block affects the memory exactly as the

single environment store. We note that in Brookes’s setting, the transformation 𝐶src ⇝ 𝐶tgt fails

to hold. For the context 𝑃 = − ∥ await (x ≠ 2 ∧ y ≠ 3) then x := 2, starting from a state with

x ↦→ 3, y ↦→ 2, only 𝑃 [𝐶tgt] terminates in a state with x ↦→ 2, y ↦→ 2.

Example 4.7 (Second side-condition of coalesce). Attaching component actions to an environment

write W̄(𝑥, 𝑣), may fail if the component actions modify 𝑥 and the environment write is due to an

RMW that depends on the value of 𝑥 . This is the reason for the condition𝑚1 (𝑐1 (𝑠)) (𝑥) = 𝑐1 (𝑠) (𝑥)
in coalesce. For example, using x instead of y in the commands in Example 4.6, without this

condition, we would obtain:

let a = x in x := 3 ; if x ≠ 2 then (if x = 2 then x := a) ⇝
if x ≠ 2 then (if x = 2 then skip else x := 3) else x := 3

However, starting from x ↦→ 0, in parallel to FAA(x, 2), only the target can terminate with x ↦→ 2.

Example 4.8 (Rule del-red). Executing 𝐶src = let a = x in x := a atomically is invisible for

the concurrent environment, behaving like skip. In the concrete semantics, we cannot prove

𝐶src ⇝ skip since all chronicles of ⌊𝐶src⌋ have one component write, whereas those of ⌊skip⌋
have none. The rule del-red is needed here. Indeed, to show that ⌊skip⌋ ⊆ ⟦𝐶src⟧, we start with
an arbitrary trace 𝑡 in ⌊skip⌋, which must have the form ⟨𝑠, 𝜃, 𝑒⟩. Then, a corresponding trace in
⌊𝐶src⌋ of the form ⟨𝑠, 𝜃, 𝑒 · W(x, 𝑒 (𝑠) (x))⟩ can be rewritten to 𝑡 by del-red with 𝑐1 = 𝑒 and 𝑐2 = 𝜀.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

169:14 Mikhail Svyatlovskiy, Shai Mermelstein, and Ori Lahav

Example 4.9 (Rule add-red). In the operational semantics fetch-and-add by 0 is equivalent to a

read. In particular, for 𝐶src = let a = x in y := a and 𝐶tgt = let a = FAA(x, 0) in y := a, we have
𝐶src ⇝ 𝐶tgt. This cannot be shown by the concrete semantics since chronicles of 𝐶src have only

one component write, while those of 𝐶tgt have two such writes. To show that ⌊𝐶tgt⌋ ⊆ ⟦𝐶src⟧, we
start with an arbitrary trace 𝑡 in ⌊𝐶tgt⌋, which must have the form ⟨𝑠, 𝜃, 𝑒1 · W(x, 𝑣) · 𝑒2 · W(y, 𝑣) · 𝑒3⟩
with 𝑣 = 𝑒1 (𝑠) (x). Then, a corresponding trace in ⌊𝐶src⌋ of the form ⟨𝑠, 𝜃, 𝑒1 · 𝑒2 · W(y, 𝑣) · 𝑒3⟩ can be

rewritten to 𝑡 by add-red with 𝑐1 = 𝑒1 and 𝑐2 = 𝑒2 · W(y, 𝑣) · 𝑒3.

Example 4.10. Rule add-red is also necessary for a language without RMWs. For:

𝐶src = let a = y in (y := 1 ; (if x ≠ 0 then x := 0) ; y := a) 𝐶tgt = assume(x = 0) ; x := 0

we have 𝐶src ⇝ 𝐶tgt, but ⌊𝐶tgt⌋ ⊆ ⟦𝐶src⟧ cannot be established without add-red.

Remark 4.11. In the presence of coalesce and add-red, the rule del-red can be strengthened:

del-red
′: ⟨𝑠, 𝜃, 𝑐1 ·𝑚 · 𝑐2⟩ del-red

′−−−−−→ ⟨𝑠, 𝜃, 𝑐1 · 𝑐2⟩ provided that𝑚 ∈ CmpChro and𝑚(𝑐1 (𝑠)) = 𝑐1 (𝑠).

Indeed, we can rewrite as follows using an arbitrary 𝑥 ∈ Var, and then apply del-red:

⟨𝑠, 𝜃, 𝑐1 ·𝑚 · 𝑐2⟩ add-red−−−−→ ⟨𝑠, 𝜃, 𝑐1 ·𝑚 · W(𝑥, 𝑐1 (𝑠) (𝑥)) · 𝑐2⟩ coalesce−−−−−→ ⟨𝑠, 𝜃, 𝑐1 · W(𝑥, 𝑐1 (𝑠) (𝑥)) · 𝑐2⟩.

4.1 Compositionality
We establish the compositionality of ⟦𝐶⟧. First, to handle sequential composition, we observe that

the rules of R can be applied inside sequential composition of traces:

Proposition 4.12. The following hold for every r ∈ R:

• If 𝑡1 r−→ 𝑡 ′
1
and 𝑡 ′

1
; 𝑡2 is defined, then 𝑡1 ; 𝑡2

r−→ 𝑡 ′
1

; 𝑡2.
• If 𝑡2 r−→ 𝑡 ′

2
and 𝑡1 ; 𝑡 ′

2
is defined, then 𝑡1 ; 𝑡2

r−→ 𝑡1 ; 𝑡 ′
2
.

From this property, we obtain the following proposition, which solves the case of sequential

composition in the compositionality proof.

Proposition 4.13. If ⌊𝐶1⌋ ⊆ ⟦𝐶′
1
⟧, then ⌊𝐶1 ;𝐶2⌋ ⊆ ⟦𝐶′

1
;𝐶2⟧. Similarly, if ⌊𝐶2⌋ ⊆ ⟦𝐶′

2
⟧, then

⌊𝐶1 ;𝐶2⌋ ⊆ ⟦𝐶1 ;𝐶′
2
⟧.

Proof. We prove the first claim and the second proof is symmetric. Suppose that ⌊𝐶1⌋ ⊆ ⟦𝐶′
1
⟧.

Let 𝑡 ∈ ⌊𝐶1 ;𝐶2⌋. By definition, we have 𝑡 = 𝑡1 ; 𝑡2 for some 𝑡1 ∈ ⌊𝐶1⌋ and 𝑡2 ∈ ⌊𝐶2⌋. Our assumption

entails that 𝑡1 ∈ ⟦𝐶′
1
⟧. Let 𝑡 ′

1
∈ ⌊𝐶′

1
⌋ such that 𝑡 ′

1

R−→∗ 𝑡1. By Prop. 4.12, 𝑡 ′
1

; 𝑡2
R−→∗ 𝑡 . In particular,

𝑡 ′
1

; 𝑡2 is defined, and thus by definition we have 𝑡 ′
1

; 𝑡2 ∈ ⌊𝐶′
1

;𝐶2⌋. It follows that 𝑡 ∈ ⟦𝐶′
1

;𝐶2⟧. □

Handling parallel composition is more difficult. Indeed, a claim like Prop. 4.12 does not hold for

parallel composition instead of sequential composition: since the rewrite rules change the chronicle

in the trace, it may be that 𝑡1
R−→ 𝑡 ′

1
and 𝑡 ′

1
∥ 𝑡2 is defined, but 𝑡1 ∥ 𝑡2 is undefined. We address this

problem by showing that in such cases there must be another trace 𝑡 ′
2
that satisfies 𝑡1 ∥ 𝑡 ′

2

R−→∗ 𝑡 ′
1
∥ 𝑡2

and belongs to any concrete denotation that 𝑡2 belongs to. For the formal argument, we introduce a

set D ≜ { disperse−−−−→, disperse−−−−→, add-red−−−−→, del-red−−−−→} of “dual” rewrite rules:

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

Compositional Semantics for Shared-Variable Concurrency (Extended Version) 169:15

disperse: ⟨𝑠, 𝜃, 𝑐1 · W̄(𝑥, 𝑣) · 𝑐2⟩ disperse−−−−→ ⟨𝑠, 𝜃, 𝑐1 · 𝑒1 · W̄(𝑥, 𝑣) · 𝑒2 · 𝑐2⟩ provided that

𝑒1, 𝑒2 ∈ EnvChro and (𝑒1 · W̄(𝑥, 𝑣) · 𝑒2) (𝑐1 (𝑠)) = 𝑐1 (𝑠) [𝑥 ↦→ 𝑣].
disperse: ⟨𝑠, 𝜃, 𝑐1 · W(𝑥, 𝑣) · 𝑐2⟩ disperse−−−−→ ⟨𝑠, 𝜃, 𝑐1 · 𝑒1 · W(𝑥, 𝑣) · 𝑒2 · 𝑐2⟩ provided that

𝑒1, 𝑒2 ∈ EnvChro, (𝑒1 · W(𝑥, 𝑣) · 𝑒2) (𝑐1 (𝑠)) = 𝑐1 (𝑠) [𝑥 ↦→ 𝑣], and 𝑒1 (𝑐1 (𝑠)) (𝑥) = 𝑐1 (𝑠) (𝑥).
add-red: ⟨𝑠, 𝜃, 𝑐1 · 𝑐2⟩ add-red−−−−→ ⟨𝑠, 𝜃, 𝑐1 · W̄(𝑥, 𝑣) · 𝑐2⟩ provided that 𝑐1 (𝑠) (𝑥) = 𝑣 .

del-red: ⟨𝑠, 𝜃, 𝑐1 · W̄(𝑥, 𝑣) · 𝑐2⟩ del-red−−−−→ ⟨𝑠, 𝜃, 𝑐1 · 𝑐2⟩ provided that 𝑐1 (𝑠) (𝑥) = 𝑣 .

Proposition 4.14. For every command 𝐶 , ⌊𝐶⌋ is closed under D.

Proof. By induction on 𝑡 ∈ ⌊𝐶⌋ using the following claims for the inductive step:

Claim 4.14.1: For every d ∈ D, if 𝑡1 ; 𝑡2
d−→ 𝑡 ′, then either 𝑡 ′ = 𝑡 ′

1
; 𝑡2 for some 𝑡 ′

1
such that 𝑡1

d−→ 𝑡 ′
1
or

𝑡 ′ = 𝑡1 ; 𝑡 ′
2
for some 𝑡 ′

2
such that 𝑡2

d−→ 𝑡 ′
2
.

Claim 4.14.2: If 𝑡1 ∥ 𝑡2
d−→ 𝑡 ′ for d ∈ {disperse, add-red, del-red}, then 𝑡 ′ = 𝑡 ′

1
∥ 𝑡 ′

2
for some 𝑡 ′

1

and 𝑡 ′
2
such that 𝑡1

d−→ 𝑡 ′
1
and 𝑡2

d−→ 𝑡 ′
2
.

Claim 4.14.3: If 𝑡1 ∥ 𝑡2 disperse−−−−→ 𝑡 ′, then 𝑡 ′ = 𝑡 ′
1
∥ 𝑡 ′

2
for some 𝑡 ′

1
and 𝑡 ′

2
satisfying one of the following:

𝑡1
disperse−−−−→ 𝑡 ′

1
and 𝑡2

disperse−−−−→ 𝑡 ′
2

or 𝑡1
disperse−−−−→ 𝑡 ′

1
and 𝑡2

disperse−−−−→ 𝑡 ′
2
. □

Proposition 4.15. Suppose that 𝑡 ′
1
∥ 𝑡 ′

2
is defined.

• If r ∈ R and 𝑡1 r−→ 𝑡 ′
1
, then there exists 𝑡2 such that 𝑡 ′

2

D−→ 𝑡2 and 𝑡1 ∥ 𝑡2 r−→ 𝑡 ′
1
∥ 𝑡 ′

2
.

• If r ∈ R and 𝑡2 r−→ 𝑡 ′
2
, then there exists 𝑡1 such that 𝑡 ′

1

D−→ 𝑡1 and 𝑡1 ∥ 𝑡2 r−→ 𝑡 ′
1
∥ 𝑡 ′

2
.

With Propositions 4.14 and 4.15, we obtain the variant of Prop. 4.13 to handle parallel composition:

Proposition 4.16. If ⌊𝐶1⌋ ⊆ ⟦𝐶′
1
⟧, then ⌊𝐶1 ∥ 𝐶2⌋ ⊆ ⟦𝐶′

1
∥ 𝐶2⟧. Similarly, if ⌊𝐶2⌋ ⊆ ⟦𝐶′

2
⟧, then

⌊𝐶1 ∥ 𝐶2⌋ ⊆ ⟦𝐶1 ∥ 𝐶′
2
⟧.

Proof. We prove the first claim and the second proof is symmetric. Suppose that ⌊𝐶1⌋ ⊆ ⟦𝐶′
1
⟧.

Let 𝑡 ∈ ⌊𝐶1 ∥ 𝐶2⌋. By definition, 𝑡 = 𝑡1 ∥ 𝑡2 for some 𝑡1 ∈ ⌊𝐶1⌋ and 𝑡2 ∈ ⌊𝐶2⌋. Our assumption

entails that 𝑡1 ∈ ⟦𝐶′
1
⟧. To show that 𝑡 ∈ ⟦𝐶′

1
∥ 𝐶2⟧, it suffices to show that for every 𝑡 ′

1
such that

𝑡 ′
1

R−→∗ 𝑡1, there exists 𝑡
′
2
∈ ⌊𝐶2⌋ such that 𝑡 ′

1
∥ 𝑡 ′

2

R−→∗ 𝑡 . By Prop. 4.14, it suffices to show that for

every 𝑡 ′
1
such that 𝑡 ′

1

R−→∗ 𝑡1, there exists 𝑡
′
2
such that 𝑡2

D−→∗ 𝑡 ′
2
and 𝑡 ′

1
∥ 𝑡 ′

2

R−→∗ 𝑡 . We prove this claim

by induction on the number of rewrite steps in 𝑡 ′
1

R−→∗ 𝑡1. In the base case we have 𝑡 ′
1
= 𝑡1 and we

can take 𝑡 ′
2
= 𝑡2 and 𝑡

′
1
∥ 𝑡 ′

2
= 𝑡 . For the induction step, suppose that for 𝑡 ′

1
there exists 𝑡 ′

2
such that

𝑡2
D−→∗ 𝑡 ′

2
and 𝑡 ′

1
∥ 𝑡 ′

2

R−→∗ 𝑡 , and let 𝑡 ′′
1
such that 𝑡 ′′

1

R−→ 𝑡 ′
1
. By Prop. 4.15, there exists 𝑡 ′′

2
such that

𝑡 ′
2

D−→ 𝑡 ′′
2
and 𝑡 ′′

1
∥ 𝑡 ′′

2

R−→ 𝑡 ′
1
∥ 𝑡 ′

2
. Thus, we have 𝑡2

D−→∗ 𝑡 ′′
2
and 𝑡 ′′

1
∥ 𝑡 ′′

2

R−→∗ 𝑡 . □

Using Propositions 4.13 and 4.16 for handling sequential and parallel composition, and similar

lemmas for other constructs, we can easily establish the following lemma by induction on 𝑃 :

Lemma 4.17. If ⟦𝐶1⟧ ⊆ ⟦𝐶2⟧, then ⟦𝑃 [𝐶1]⟧ ⊆ ⟦𝑃 [𝐶2]⟧ for every context 𝑃 .

As discussed above for the concrete semantics (see discussion after Lemma 3.4), the compositional-

ity of ⟦·⟧ follows from Lemma 4.17. This also entails that there exists a (mathematical) function that

maps the denotations of the immediate sub-commands of 𝐶 to the denotation of 𝐶 . To see this, con-

sider again the case of𝐶 = 𝐶1 ∥ 𝐶2. Given ⟦𝐶1⟧ and ⟦𝐶2⟧, we can arbitrarily “pick” some commands

𝐶′
1
and 𝐶′

2
with ⟦𝐶′

1
⟧ = ⟦𝐶1⟧ and ⟦𝐶′

2
⟧ = ⟦𝐶2⟧, and “return” ⌊𝐶′

1
∥ 𝐶′

2
⌋R . Since ⟦𝐶′

1
⟧ = ⟦𝐶1⟧ and

⟦𝐶′
2
⟧ = ⟦𝐶2⟧, the compositionality of ⟦·⟧ ensures that ⟦𝐶⟧ = ⟦𝐶1 ∥ 𝐶2⟧ = ⟦𝐶′

1
∥ 𝐶′

2
⟧ = ⌊𝐶′

1
∥ 𝐶′

2
⌋R .

Remark 4.18. Candidates for a direct compositional definition of ⟦𝐶1 ;𝐶2⟧ and ⟦𝐶1 ∥ 𝐶2⟧ are

to take the R-closure of the set obtained by taking all possible sequential/parallel compositions

of traces from ⟦𝐶1⟧ and ⟦𝐶2⟧. This works for sequential composition, as we have ⟦𝐶1 ;𝐶2⟧ =

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

169:16 Mikhail Svyatlovskiy, Shai Mermelstein, and Ori Lahav

{𝑡1 ; 𝑡2 | 𝑡1 ∈ ⟦𝐶1⟧, 𝑡2 ∈ ⟦𝐶2⟧}R . However, for parallel composition, we only have ⟦𝐶1 ∥ 𝐶2⟧ ⊆
{𝑡1 ∥ 𝑡2 | 𝑡1 ∈ ⟦𝐶1⟧, 𝑡2 ∈ ⟦𝐶2⟧}R . To see that the converse does not hold, let:

𝐶1 = x := 1 ; assume(y = 0) ; assume(z ≠ 1) ; assume(z = 1) ; x := 0

𝐶2 = y := 1 ; assume(x = 0) ; assume(z ≠ 1) ; assume(z = 1) ; y := 0

Using coalesce on ⟨s0, 𝜃0, W(x, 1) · W̄(z, 1) · W(x, 0)⟩ ∈ ⌊𝐶1⌋ and ⟨s0, 𝜃0, W(y, 1) · W̄(z, 1) · W(y, 0)⟩ ∈
⌊𝐶2⌋, we obtain that 𝑡 = ⟨s0, 𝜃0, W̄(z, 1)⟩ ∈ {𝑡1 ∥ 𝑡2 | 𝑡1 ∈ ⟦𝐶1⟧, 𝑡2 ∈ ⟦𝐶2⟧}R . But, 𝑡 ∉ ⟦𝐶1 ∥ 𝐶2⟧.
Indeed, no trace in ⌊𝐶1 ∥ 𝐶2⌋ has a single environment write to z, and all rules of R preserve the

environment actions.

4.2 Adequacy
We show that adequacy of the abstract semantics is a corollary of its compositionality and of

Lemma 3.5. For that, we first observe that the rewrite rules only manipulate chronicles leaving

the initial state, initial store, and (derived) final state intact, and that only component traces are

mapped to component traces by the rewrite rules in R.

Proposition 4.19. If ⟨𝑠, 𝜃, 𝑐⟩ R−→ ⟨𝑠′, 𝜃 ′, 𝑐′⟩, then 𝑠 = 𝑠′, 𝜃 = 𝜃 ′, and 𝑐 (𝑠) = 𝑐′ (𝑠′).

Proposition 4.20. If ⟨𝑠, 𝜃, 𝑐⟩ R−→ ⟨𝑠′, 𝜃 ′, 𝑐′⟩ and 𝑐′ ∈ CmpChro, then 𝑐 ∈ CmpChro.

Theorem 4.21. If ⟦𝐶tgt⟧ ⊆ ⟦𝐶src⟧, then 𝐶src ⇝ 𝐶tgt.

Proof. Suppose that ⟦𝐶tgt⟧ ⊆ ⟦𝐶src⟧. Let 𝑃 be a context such that 𝑃 [𝐶src] and 𝑃 [𝐶tgt] are
closed, and suppose that ⟨𝑃 [𝐶tgt], 𝑠⟩ ↓ 𝑠′. Since ⟨𝑃 [𝐶tgt], 𝑠⟩ ↓ 𝑠′, by Lemma 3.5, we have ⟨𝑠, 𝜃, 𝑐⟩ ∈
⌊𝑃 [𝐶tgt]⌋ for some store 𝜃 and component chronicle 𝑐 ∈ CmpChro such that 𝑐 (𝑠) = 𝑠′. Since
⌊𝑃 [𝐶tgt]⌋ ⊆ ⟦𝑃 [𝐶tgt]⟧, we have ⟨𝑠, 𝜃, 𝑐⟩ ∈ ⟦𝑃 [𝐶tgt]⟧. Since ⟦𝐶tgt⟧ ⊆ ⟦𝐶src⟧, by Lemma 4.17, it

follows that ⟨𝑠, 𝜃, 𝑐⟩ ∈ ⟦𝑃 [𝐶src]⟧. Using Prop. 4.2, 𝑡0
R−→∗ ⟨𝑠, 𝜃, 𝑐⟩ for some 𝑡0 ∈ ⌊𝑃 [𝐶src]⌋. Then, by

Propositions 4.19 and 4.20, 𝑡0 = ⟨𝑠, 𝜃, 𝑐′⟩ for some component chronicle 𝑐′ ∈ CmpChro such that

𝑐′ (𝑠) = 𝑐 (𝑠) = 𝑠′. By Lemma 3.5, it follows that ⟨𝑃 [𝐶src], 𝑠⟩ ↓ 𝑠′. □

By Prop. 4.3, we have ⟦𝐶tgt⟧ ⊆ ⟦𝐶src⟧ iff ⌊𝐶tgt⌋ ⊆ ⟦𝐶src⟧. It follows that every program transfor-

mation that is validated by the concrete semantics is also validated by the abstract one:

Proposition 4.22. If ⌊𝐶tgt⌋ ⊆ ⌊𝐶src⌋, then ⟦𝐶tgt⟧ ⊆ ⟦𝐶src⟧.

Figure 5 presents examples of refinements that are validated by the abstract semantics but not

by the concrete semantics. Again, among RMWs, we only list transformations involving FAA.

4.3 Full Abstraction
We establish full abstraction for the abstract semantics. The proof uses the notation 𝑐 for the dual
of a chronicle 𝑐 , defined by 𝑐 ≜ 𝛼1 · ··𝛼𝑛 for 𝑐 = 𝛼1 · ··𝛼𝑛 .

Theorem 4.23. If ⟦𝐶tgt⟧ ̸⊆ ⟦𝐶src⟧, then 𝐶src ̸⇝ 𝐶tgt.

Proof. Suppose that ⟦𝐶tgt⟧ ̸⊆ ⟦𝐶src⟧. By Prop. 4.3, we have ⌊𝐶tgt⌋ ̸⊆ ⟦𝐶src⟧. Let 𝑡tgt = ⟨𝑠0, 𝜃, 𝑐tgt⟩ ∈
⌊𝐶tgt⌋ \ ⟦𝐶src⟧. Using 𝑡tgt, we construct a context that demonstrates that 𝐶src ̸⇝ 𝐶tgt. Suppose first

that 𝑡tgt is non-empty, and let 𝛼1, ... ,𝛼𝑛 ∈ Act such that 𝑐tgt = 𝛼1 · ··𝛼𝑛 . For every 1 ≤ 𝑖 ≤ 𝑛, let:

𝑠𝑖 ≜ (𝛼1 · ··𝛼𝑖) (𝑠0) 𝐶𝑖 ≜

{
let a = XCHG(𝑥, 𝑣) in assume(a = 𝑠𝑖−1 (𝑥)) 𝛼𝑖 = W̄(𝑥, 𝑣)
skip otherwise

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

Compositional Semantics for Shared-Variable Concurrency (Extended Version) 169:17

Store-before-store elimination
𝑥 := 𝐸 ; 𝑥 := 𝐸′ ⇝ 𝑥 := 𝐸′

Store-after-load eliminations
let 𝑎 = 𝑥 in (𝑥 := 𝑎 ;𝐶) ⇝ let 𝑎 = 𝑥 in 𝐶
let 𝑎 = 𝑥 in (if 𝐸 then (𝑥 := 𝑎 ;𝐶1) else 𝐶2) ⇝ let 𝑎 = 𝑥 in (if 𝐸 then 𝐶1 else 𝐶2)
let 𝑎 = 𝑥 in (𝑦 := 𝐸 ; 𝑥 := 𝑎) ⇝ 𝑦 := 𝐸 provided that 𝑥 ≠ 𝑦 and 𝑎 ∉ fv(𝐸)
let 𝑎 = 𝑥 in (let 𝑏 = 𝑦 in 𝑥 := 𝑎) ⇝ skip provided that 𝑎 ≠ 𝑏

Unused FAA-before-store elimination
let 𝑎 = FAA(𝑥, 𝐸) in 𝑥 := 𝑣 ⇝ 𝑥 := 𝑣

FAA-after-FAA elimination
let 𝑎 = FAA(𝑥, 𝐸) in
let 𝑏 = FAA(𝑥, 𝐸′) in 𝐶 ⇝

let 𝑎 = FAA(𝑥, 𝐸 + 𝐸′) in
let 𝑏 = 𝑎 + 𝐸 in 𝐶

provided that 𝑎 ∉ fv(𝐸) ∪ fv(𝐸′)

FAA-after-store elimination
𝑥 := 𝑣 ; (let 𝑎 = FAA(𝑥, 𝐸) in 𝐶) ⇝ let 𝑎 = 𝑣 in (𝑥 := 𝑣 + ⟦𝐸⟧ ;𝐶) provided that 𝑎 ∉ fv(𝐸)

Redundant FAA elimination/introduction
let 𝑎 = 𝑥 in 𝐶 ↭ let 𝑎 = FAA(𝑥, 0) in 𝐶

Fig. 5. Examples of program transformations validated by the abstract semantics

Let 𝑎1, ... ,𝑎𝑘 be an enumeration of fv(𝐶src) ∪ fv(𝐶tgt), and define:

𝐶ctx ≜ 𝐶1 ; snapshot(𝑠1) ;𝐶2 ; snapshot(𝑠2) ; ... ;𝐶𝑛−1 ; snapshot(𝑠𝑛−1) ;𝐶𝑛

𝑃 ≜ let 𝑎1 = 𝜃 (𝑎1) in (let 𝑎2 = 𝜃 (𝑎2) in (... (let 𝑎𝑘 = 𝜃 (𝑎𝑘) in (𝐶ctx ∥ −) ...))
Intuitively speaking, the snapshots used in the context ensure that every execution of 𝐶ctx visits

the states 𝑠1, ... ,𝑠𝑛−1 in this order.

Clearly, 𝑃 [𝐶src] and 𝑃 [𝐶tgt] are closed. We claim that (𝑖) ⟨𝑃 [𝐶tgt], 𝑠0⟩ ↓ 𝑠𝑛 , but (𝑖𝑖) ⟨𝑃 [𝐶src], 𝑠0⟩ ↚
𝑠𝑛 . For (𝑖), observe that ⟨𝑠0, 𝜃, ¯𝑐tgt ∥ 𝑐tgt⟩ ∈ ⌊𝑃 [𝐶tgt]⌋ for any store 𝜃 . Then, since ¯𝑐tgt ∥ 𝑐tgt is a

component chronicle and 𝑐tgt (𝑠0) = 𝑠𝑛 , ⟨𝑃 [𝐶tgt], 𝑠0⟩ ↓ 𝑠𝑛 follows by Lemma 3.5.

To prove (𝑖𝑖), it suffices to prove the following claim:

Claim 4.23.1: ⟨𝑠0, 𝜃, 𝑐⟩ R−→∗ ⟨𝑠0, 𝜃, 𝑐tgt⟩ for every 𝑐 ∈ Chro such that 𝑐 (𝑠0) = 𝑠𝑛 and ⟨𝑠0, 𝜃, 𝑐⟩ ∈ ⌊𝐶ctx⌋.
Indeed, from this claim we obtain that ⟨𝑠0, 𝜃, 𝑐⟩ ∉ ⌊𝐶src⌋ for every chronicle 𝑐 such that 𝑐 (𝑠0) = 𝑠𝑛

and ⟨𝑠0, 𝜃, 𝑐⟩ ∈ ⌊𝐶ctx⌋, which implies that ⟨𝑠0, 𝜃, 𝑐⟩ ∉ ⌊𝑃 [𝐶src]⌋ for every component chronicle 𝑐

satisfying 𝑐 (𝑠0) = 𝑠𝑛 . Then, (𝑖𝑖) follows by Lemma 3.5.

Next, we prove Claim 4.23.1. Let 𝑐 be a chronicle such that 𝑐 (𝑠0) = 𝑠𝑛 and ⟨𝑠0, 𝜃, 𝑐⟩ ∈ ⌊𝐶ctx⌋. Due
to the use of snapshots in𝐶ctx, since ⟨𝑠0, 𝜃, 𝑐⟩ ∈ ⌊𝐶ctx⌋, we have that 𝑐 = 𝑐1 · ·· 𝑐𝑛 for some chronicles

𝑐1, ... ,𝑐𝑛 such that 𝑐𝑖 (𝑠𝑖−1) = 𝑠𝑖 and ⟨𝑠𝑖−1, 𝜃, 𝑐𝑖⟩ ∈ ⌊𝐶𝑖⌋ for every 1 ≤ 𝑖 ≤ 𝑛. We show that for every

1 ≤ 𝑖 ≤ 𝑛, we have ⟨𝑠𝑖−1, 𝜃, 𝑐𝑖⟩ R−→∗ ⟨𝑠𝑖−1, 𝜃, 𝛼𝑖⟩. By repeatedly applying this rewrite, using Prop. 4.12,
the desired ⟨𝑠0, 𝜃, 𝑐⟩ R−→∗ ⟨𝑠0, 𝜃, 𝑐tgt⟩ follows.

Let 1 ≤ 𝑖 ≤ 𝑛, and consider the possible cases:

• 𝛼𝑖 = W̄(𝑥, 𝑣) is an environment write: In this case, ⟨𝑠𝑖−1, 𝜃, 𝑐𝑖⟩ ∈ ⌊𝐶𝑖⌋ implies (by rules

let,assume) that there exists environment chronicles 𝑒′, 𝑒 such that 𝑐𝑖 = 𝑒′ · W(𝑥, 𝑣) · 𝑒 and
𝑒′ (𝑠𝑖−1) (𝑥) = 𝑠𝑖−1 (𝑥). Then, since we also have 𝑐𝑖 (𝑠𝑖−1) = 𝑠𝑖 , using coalesce, we can rewrite

⟨𝑠𝑖−1, 𝜃, 𝑐𝑖⟩ into ⟨𝑠𝑖−1, 𝜃, 𝛼𝑖⟩.
• 𝛼𝑖 = W(𝑥, 𝑣) is an component write: In this case, 𝑐𝑖 is an environment chronicle, and either

𝑐𝑖 = 𝑒′ · W̄(𝑥, 𝑣) · 𝑒 for some environment chronicles 𝑒′, 𝑒 or 𝛼𝑖 is not inside 𝑐𝑖 . In the first case,

since 𝑐𝑖 (𝑠𝑖−1) = 𝑠𝑖 , using coalesce, we can rewrite ⟨𝑠𝑖−1, 𝜃, 𝑐𝑖⟩ into ⟨𝑠𝑖−1, 𝜃, 𝛼𝑖⟩. In the second

case, 𝑐𝑖 (𝑠𝑖−1) = 𝑠𝑖 = 𝛼𝑖 (𝑠𝑖−1) implies that 𝑠𝑖−1 = 𝑠𝑖 . Using add-red, we can rewrite ⟨𝑠𝑖−1, 𝜃, 𝑐𝑖⟩
into ⟨𝑠𝑖−1, 𝜃, 𝛼𝑖 · 𝑐𝑖⟩. Then, using the del-red′ rewrite rule (a combination of coalesce and

add-red and del-red, see Remark 4.11), we rewrite ⟨𝑠𝑖−1, 𝜃, 𝛼𝑖 · 𝑐𝑖⟩ into ⟨𝑠𝑖−1, 𝜃, 𝛼𝑖⟩.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

169:18 Mikhail Svyatlovskiy, Shai Mermelstein, and Ori Lahav

Finally, consider the case that 𝑐tgt = 𝜀. In this case we define 𝐶ctx ≜ skip and also define 𝑃 as

above (using 𝐶ctx). We have ⟨𝑠0, 𝜃, 𝜀⟩ ∈ ⌊𝑃 [𝐶tgt]⌋ for any store 𝜃 , and by Lemma 3.5 we obtain that

⟨𝑃 [𝐶tgt], 𝑠0⟩ ↓ 𝑠0. In turn, as above, ⟨𝑃 [𝐶src], 𝑠0⟩ ↚ 𝑠0 follows from the fact that ⟨𝑠0, 𝜃, 𝑐⟩ R−→∗ ⟨𝑠0, 𝜃, 𝜀⟩
for every chronicle 𝑐 such that 𝑐 (𝑠0) = 𝑠0 and ⟨𝑠0, 𝜃, 𝑐⟩ ∈ ⌊𝐶ctx⌋. To prove this fact, let 𝑐 such that

𝑐 (𝑠0) = 𝑠0 and ⟨𝑠0, 𝜃, 𝑐⟩ ∈ ⌊𝐶ctx⌋. Then, ⟨𝑠0, 𝜃, 𝑐⟩ ∈ ⌊𝐶ctx⌋ implies that 𝑐 is an environment chronicle.

Using del-red
′
, we rewrite ⟨𝑠0, 𝜃, 𝑐⟩ into ⟨𝑠0, 𝜃, 𝜀⟩. □

Given Thm. 4.23, we can use the abstract semantics to easily invalidate certain transformations.

Next, we present two such examples.

Example 4.24. Store-before-store elimination is invalid with an intervening load. For instance,

for 𝐶src = x := 1 ; let a = y in (x := 2 ; z := a) and 𝐶tgt = let a = y in (x := 2 ; z := a), we have
𝐶src ̸⇝ 𝐶tgt. Since ⟨s0, 𝜃0, W̄(y, 1) · W(x, 2) · W(z, 0)⟩ ∈ ⟦𝐶tgt⟧ \ ⟦𝐶src⟧, this follows from Thm. 4.23.

Example 4.25. A repeated store cannot be eliminated when there is an intervening store. For

instance, for 𝐶src = x := 1 ; y := 1 ; x := 1 and 𝐶tgt = x := 1 ; y := 1, we have 𝐶src ̸⇝ 𝐶tgt. Since

⟨s0, 𝜃0, W(x, 1) · W̄(x, 2) · W(y, 1)⟩ ∈ 𝑡 ∈ ⟦𝐶tgt⟧ \ ⟦𝐶src⟧, this follows from Thm. 4.23.

From the full abstraction proof, we observe that although multiple rewrites of a trace may be

necessary, these rewrites do not overlap. We only apply them to disjoint parts of the chronicle.

Formally, we let R loc
be the set consisting of “local” variants of the rules:

coalesce
loc: ⟨𝑠, 𝜃,𝑚1 · W(𝑥, 𝑣) ·𝑚2⟩ coalesce

loc−−−−−−→ ⟨𝑠, 𝜃, W(𝑥, 𝑣)⟩ provided that

𝑚1,𝑚2 ∈ CmpChro and (𝑚1 · W(𝑥, 𝑣) ·𝑚2) (𝑠) = 𝑠 [𝑥 ↦→ 𝑣].
coalesce

loc: ⟨𝑠, 𝜃,𝑚1 · W̄(𝑥, 𝑣) ·𝑚2⟩ coalesce
loc

−−−−−−→ ⟨𝑠, 𝜃, W̄(𝑥, 𝑣)⟩ provided that

𝑚1,𝑚2 ∈ CmpChro, (𝑚1 · W̄(𝑥, 𝑣) ·𝑚2) (𝑠) = 𝑠 [𝑥 ↦→ 𝑣], and𝑚1 (𝑠) (𝑥) = 𝑠 (𝑥).
del-red

loc: ⟨𝑠, 𝜃,𝑚⟩ del-red
loc−−−−−→ ⟨𝑠, 𝜃, 𝜀⟩ provided that𝑚 ∈ CmpChro and𝑚(𝑠) = 𝑠 .

add-red
loc: ⟨𝑠, 𝜃, 𝜀⟩ add-red

loc−−−−−−→ ⟨𝑠, 𝜃, W(𝑥, 𝑣)⟩ provided that 𝑠 (𝑥) = 𝑣 .

The relation ⇒ between traces is inductively defined as follows:

⟨𝑠, 𝜃, 𝜀⟩ ⇒ ⟨𝑠, 𝜃, 𝜀⟩
𝑡1

R loc−−→? 𝑡 ′
1

𝑡2 ⇒ 𝑡 ′
2

𝑡1 ; 𝑡2 ⇒ 𝑡 ′
1

; 𝑡 ′
2

Then, the full abstraction proof shows that𝐶src ̸⇝ 𝐶tgt whenever ⌊𝐶tgt⌋ ̸⊆ {𝑡 ′ | ∃𝑡 ∈ ⌊𝐶src⌋ . 𝑡 ⇒ 𝑡 ′}.
In fact, by analyzing the rewrite rules we prove the following:

Lemma 4.26. For every set 𝑇 of traces, we have 𝑇 R = {𝑡 ′ | ∃𝑡 ∈ 𝑇 . 𝑡 ⇒ 𝑡 ′}.

4.4 Full Abstraction Without Snapshots
The full abstraction proof above relies on the availability of the snapshot command, which gives

the parallel context the ability to simultaneously observe the values of all variables. Next, we show

that snapshots can be avoided in that proof provided that 𝐶src is loop-free. Roughly speaking, we

show in this case it is possible to achieve the effect of a snapshot executing in parallel to 𝐶src by

repeatedly reading shared variables a number of times that can be determined from 𝐶src. This

means that when 𝐶src is loop-free snapshots do no not increase the distinguishing power of the

parallel context. In turn, we present a delicate example of a command 𝐶src with loops, where a

certain refinement holds for snapshot-free contexts but fails to hold for contexts with snapshot.

In particular, this implies that in the language without snapshot, full abstraction of the abstract

semantics does not hold for code fragments with loops.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

Compositional Semantics for Shared-Variable Concurrency (Extended Version) 169:19

Formally, we say that a transformation from a command 𝐶src to a command 𝐶tgt is sound for
no-snapshot context, denoted by 𝐶src ⇝snapshot 𝐶tgt, if ⟨𝑃 [𝐶tgt], 𝑠⟩ ↓ 𝑠′ implies ⟨𝑃 [𝐶src], 𝑠⟩ ↓ 𝑠′ for
every snapshot-free context 𝑃 such that 𝑃 [𝐶src] and 𝑃 [𝐶tgt] are closed.

Theorem 4.27. If 𝐶src is loop-free and ⟦𝐶tgt⟧ ̸⊆ ⟦𝐶src⟧, then 𝐶src ̸⇝snapshot 𝐶tgt.

Proof Sketch. In the proof Thm. 4.23, snapshot is needed in order to ensure that a certain state

is reached when𝐶src is executed concurrently. When𝐶src is loop-free, we can achieve this result by

repeatedly reading the shared variables used in 𝐶src, and checking their values one-by-one. More

precisely, given a state 𝑠 , let𝐶𝑠 ≜ assume(𝑥1 = 𝑠 (𝑥1)) ; ... ; assume(𝑥𝑛 = 𝑠 (𝑥𝑛)) where 𝑥1, ... ,𝑥𝑛 is an

enumeration of all shared variables occurring in 𝐶src. When 𝐶src is loop-free, there exists a bound

𝑁 ∈ N on the number of writes performed by𝐶src (i.e., the number of component actions in ⌊𝐶src⌋).
We use a sequential composition𝐶𝑠 ; ... ;𝐶𝑠 consisting of 𝑁 + 1 copies of𝐶𝑠 instead of snapshot(𝑠).
If after every execution of 𝐶𝑠 we reach a state different than 𝑠 , then for the next execution of 𝐶𝑠 to

terminate, we need at least one write by the concurrent context. Since the 𝐶src is performing at

most 𝑁 writes, executing 𝐶𝑠 𝑁 + 1 times in a row ensures that at some point we visit 𝑠 . □

The above implication fails if 𝐶src has loops. The simplest example we found is presented next.

Example 4.28. For the commands 𝐶src = while ∗ do (y := 0 ; x := ∗ ; x := 0 ; y := ∗) and
𝐶tgt = y := 0 ; x := 1 ; y := 1 ; x := 0, we have𝐶src ̸⇝ 𝐶tgt but𝐶src ⇝snapshot 𝐶tgt. The former follows

from Thm. 4.23 since we have ⟨s0, 𝜃0, W(y, 0) · W(x, 1) · W(y, 1) · W(x, 0)⟩ ∈ ⌊𝐶tgt⌋ \ ⟦𝐶src⟧.
To see that 𝐶src ⇝snapshot 𝐶tgt, we have to resort to cumbersome operational reasoning, and

provide a simulation relation that relates operational executions of 𝑃 [𝐶tgt] to those of 𝑃 [𝐶src].
Roughly speaking, the main idea is to execute y := 0 and x := ∗ (with 1 for ∗) in the source when

the target executes y := 0 and x := 1, respectively. Then, when the target executes y := 1, the source

executes x := 0 ; y := ∗ (with 1 for ∗). This creates a mismatch between the target’s state that has

x = 1 and the source’s state that has x = 0. Nevertheless, whenever the concurrent context relies

on the value of x, the source can do another half-iteration and execute y := 0 ; x := ∗ to fix the

value of x as it is in the target’s state, moving the mismatch between the target and the source to y.
This way, we are able to use the source’s non-deterministic loop, to provide the concurrent context

with whatever value it needs for x and y, one at a time. Finally, when the target executes x := 0 the

source executes x := 0 ; y := ∗ (with the final value of y in the target for ∗).
Making this intuition formal is rather challenging (which provides us with more confidence that

the denotational semantics is beneficial for formal refinement proofs). In our Coq development, we

do that by generalizing the notion of a command context, demonstrating how generalized contexts

interact with the operational semantics, and using generalized contexts for defining the simulation.

Example 4.28 uses non-deterministic looping, while ∗ do 𝐶 , but, by using the following propo-

sition, it is possible to devise a similar example without non-deterministic looping:

Proposition 4.29. The following transformations are sound:

• 𝑥 := ∗ ; while 𝑥 do (𝑥 := ∗ ;𝐶 ; 𝑥 := ∗) ; 𝑥 := ∗ ⇝ while ∗ do 𝐶 .
• For 𝐶 = while 𝑦 do (𝑥 := 0 ⊕ let 𝑎 = FAA(𝑥, 1) in skip), we have
let 𝑎 = 𝑦 in (𝑦 := 1 ; (𝐶 ∥ 𝑦 := 0) ; 𝑦 := 𝑎) ⇝ 𝑥 := ∗ provided that 𝑥 ≠ 𝑦.

Using Prop. 4.29, we can adapt Example 4.28 to use a command𝐶′
src that does not use while ∗ do 𝐶

and 𝑥 := ∗ instead of𝐶src and have𝐶
′
src ⇝snapshot 𝐶tgt. To see that𝐶

′
src ̸⇝ 𝐶tgt, note that a concurrent

snapshot observing x = y = 1 is possible for 𝐶tgt but not for 𝐶
′
src. Thus, snapshots strictly increase

the distinguishing power of contexts also in a language without non-deterministic loops.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

169:20 Mikhail Svyatlovskiy, Shai Mermelstein, and Ori Lahav

5 SEMANTICS FOR RMW-FREE CONTEXTS
In this section we show that RMWs strictly increase the power of contexts to distinguish between

code fragments, and show how to modify the abstract semantics for the case of RMW-free contexts.

Formally, we say that a transformation from a command 𝐶src to a command 𝐶tgt is sound for
no-RMW context, denoted by 𝐶src ⇝rmw 𝐶tgt, if for every RMW-free context 𝑃 such that 𝑃 [𝐶src]
and 𝑃 [𝐶tgt] are closed, we have that ⟨𝑃 [𝐶tgt], 𝑠⟩ ↓ 𝑠′ implies ⟨𝑃 [𝐶src], 𝑠⟩ ↓ 𝑠′.
The next example demonstrates a case where 𝐶src ⇝rmw 𝐶tgt but 𝐶src ̸⇝ 𝐶tgt. (Example 4.7

provides another case in point.)

Example 5.1. Let: 𝐶src = x := 1 ; x := 5 ; if x = 2 then x := 3 else x := 4

𝐶tgt = x := 1 ; if x = 2 then x := 3 else x := 4

An intuitive argument for𝐶src ⇝ 𝐶tgt could claim that when the “then” branch is taken, there must

be a moment when the parallel context stores 2 in x and we can execute x := 5 “just before” that

moment; andwhen the “else” branch is takenwe can execute x := 5;if x = 2 then x := 3 else x := 4

as one atomic block at the time the target executes x := 4. This argument, however, ignores the option

that the context may not be able to store 2 in x if the value of x was modified to 5, which is possible

when the context stores 2 in x using an RMW. Indeed, for 𝑃 = − ∥ let b = FAA(x, 1) in skip we
have ⟨𝑃 [𝐶], s0⟩ ↓ s0 [x ↦→ 3] for𝐶 = 𝐶tgt but not for𝐶 = 𝐶src. Alternatively, using Thm. 4.23,𝐶src ̸⇝
𝐶tgt follows from the fact that for 𝑡 = ⟨s0, 𝜃0, W(x, 1) · W̄(x, 2) · W(x, 3)⟩, we have 𝑡 ∈ ⟦𝐶tgt⟧ \ ⟦𝐶src⟧.
Using the semantics below, we will formally show that 𝐶src ⇝rmw 𝐶tgt.

From the discussion above, we observe that when the context is RMW-free, we would like to

allow to attach component actions to environment actions even when the component actions

write to the same variable that the environment modifies. This would formally justify the intuitive

argument about the “then” branch, allowing us to rewrite ⟨s0, 𝜃0, W(x, 1) · W(x, 5) · W̄(x, 2) · W(x, 3)⟩
into the target trace ⟨s0, 𝜃0, W(x, 1) · W̄(x, 2) · W(x, 3)⟩. We do so by omitting the second side condition

of coalesce, using its following strengthening (in the sense that it allows more rewrites):

coalesce
rmw: ⟨𝑠, 𝜃, 𝑐1 ·𝑚1 · W̄(𝑥, 𝑣) ·𝑚2 · 𝑐2⟩ coalesce

rmw

−−−−−−−→ ⟨𝑠, 𝜃, 𝑐1 · W̄(𝑥, 𝑣) · 𝑐2⟩ provided that

𝑚1,𝑚2 ∈ CmpChro and (𝑚1 · W̄(𝑥, 𝑣) ·𝑚2) (𝑐1 (𝑠)) = 𝑐1 (𝑠) [𝑥 ↦→ 𝑣].

We let Rrmw ≜ { coalesce−−−−−→, coalesce
rmw

−−−−−−−→, del-red−−−−→, add-red−−−−→} and ⟦𝐶⟧rmw ≜ ⌊𝐶⌋Rrmw
. Next, we prove the follow-

ing compositionality property, analogous to 4.17:

Lemma 5.2. If ⟦𝐶1⟧rmw ⊆ ⟦𝐶2⟧rmw, then ⟦𝑃 [𝐶1]⟧ ⊆ ⟦𝑃 [𝐶2]⟧ for every RMW-free context 𝑃 .

Proof. The proof proceeds by induction on 𝑃 . For sequential composition, we use the following

analogue of Prop. 4.13:

Claim 5.2.1: If ⌊𝐶1⌋ ⊆ ⟦𝐶′
1
⟧rmw, then ⌊𝐶1 ;𝐶2⌋ ⊆ ⟦𝐶′

1
;𝐶2⟧rmw. Similarly, if ⌊𝐶2⌋ ⊆ ⟦𝐶′

2
⟧rmw, then

⌊𝐶1 ;𝐶2⌋ ⊆ ⟦𝐶1 ;𝐶′
2
⟧rmw.

For parallel composition, we define the following rule that is dual to coalesce
rmw

:

disperse
rmw: ⟨𝑠, 𝜃, 𝑐1 · W(𝑥, 𝑣) · 𝑐2⟩ disperse

rmw−−−−−−→ ⟨𝑠, 𝜃, 𝑐1 · 𝑒1 · W(𝑥, 𝑣) · 𝑒2 · 𝑐2⟩ provided that

𝑒1, 𝑒2 ∈ EnvChro and (𝑒1 · W(𝑥, 𝑣) · 𝑒2) (𝑐1 (𝑠)) = 𝑐1 (𝑠) [𝑥 ↦→ 𝑣].

We define Drmw ≜ { disperse−−−−→, disperse
rmw−−−−−−→, add-red−−−−→, del-red−−−−→}, and show the following analogue of Prop. 4.14:

Claim 5.2.2: For every RMW-free command 𝐶 , ⌊𝐶⌋ is closed under Drmw
.

Then, we can prove the following variant of Prop. 4.16, which establishes the required property

for parallel composition:

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

Compositional Semantics for Shared-Variable Concurrency (Extended Version) 169:21

Claim 5.2.3: If ⌊𝐶1⌋ ⊆ ⟦𝐶′
1
⟧rmw and 𝐶2 is RMW-free, then ⌊𝐶1 ∥ 𝐶2⌋ ⊆ ⟦𝐶′

1
∥ 𝐶2⟧rmw. Similarly, if

⌊𝐶2⌋ ⊆ ⟦𝐶′
2
⟧rmw and 𝐶1 is RMW-free, then ⌊𝐶1 ∥ 𝐶2⌋ ⊆ ⟦𝐶1 ∥ 𝐶′

2
⟧rmw.

Other language constructs are handled similarly. □

Given Lemma 5.2, adequacy of ⟦·⟧rmw is shown similarly to the proof of Thm. 4.21.

Theorem 5.3. If ⟦𝐶tgt⟧rmw ⊆ ⟦𝐶src⟧rmw, then 𝐶src ⇝rmw 𝐶tgt.

With Thm. 5.3, we can revisit Example 5.1 and derive 𝐶src ⇝rmw 𝐶tgt from ⌊𝐶tgt⌋ ⊆ ⟦𝐶src⟧rmw.

Indeed, traces in ⌊𝐶tgt⌋ are either of the form ⟨𝑠, 𝜃, 𝑒1 · W(x, 1) · 𝑒2 · W̄(x, 2) · 𝑒3 · W(x, 3) · 𝑒4⟩ or of
the form ⟨𝑠, 𝜃, 𝑒1 · W(x, 1) · 𝑒2 · W(x, 4) · 𝑒3⟩. For 𝑡 of the first form, we can start from a correspond-

ing trace in ⌊𝐶src⌋ of the form ⟨𝑠, 𝜃, 𝑒1 · W(x, 1) · 𝑒2 · W(x, 5) · W̄(x, 2) · 𝑒3 · W(x, 3) · 𝑒4⟩ and rewrite

by coalesce
rmw

with 𝑐1 = 𝑒1 · W(x, 1) · 𝑒2, 𝑚1 = W(x, 5), 𝑚2 = 𝜀, and 𝑐2 = 𝑒3 · W(x, 3) · 𝑒4

to obtain 𝑡 . For 𝑡 of the second form, we can start from a corresponding trace in ⌊𝐶src⌋ of the
form ⟨𝑠, 𝜃, 𝑒1 · W(x, 1) · 𝑒2 · W(x, 5) · W(x, 4) · 𝑒3⟩ and rewrite by coalesce with 𝑐1 = 𝑒1 · W(x, 1) · 𝑒2,

𝑚1 = W(x, 5),𝑚2 = 𝜀, and 𝑐2 = 𝑒3 to obtain 𝑡 .

Finally, we establish a full abstraction property for the rmw semantics:

Theorem 5.4. If ⟦𝐶tgt⟧rmw ̸⊆ ⟦𝐶src⟧rmw, then 𝐶src ̸⇝rmw 𝐶tgt.

Proof. The proof is similar to the proof of Thm. 4.23. Instead of RMW followed by assume, to

construct the appropriate context we let 𝐶𝑖 ≜ 𝑥 := 𝑣 for the case that 𝛼𝑖 = W̄(𝑥, 𝑣). Then we have

to show that ⟨𝑠𝑖−1, 𝜃, 𝑐𝑖⟩ R−→∗ ⟨𝑠𝑖−1, 𝜃, 𝛼𝑖⟩ for this case. By the rule store, ⟨𝑠𝑖−1, 𝜃, 𝑐𝑖⟩ ∈ ⌊𝐶𝑖⌋ implies

that there exist environment chronicles 𝑒′, 𝑒 such that 𝑐𝑖 = 𝑒′ · W(𝑥, 𝑣) · 𝑒 . (Unlike the corresponding
case in the proof of Thm. 4.23, we do not necessarily have 𝑒′ (𝑠𝑖−1) (𝑥) = 𝑠𝑖−1 (𝑥).) Then, since we
also have 𝑐𝑖 (𝑠𝑖−1) = 𝑠𝑖 (due to the use of snapshots), using coalesce

rmw
, we can rewrite ⟨𝑠𝑖−1, 𝜃, 𝑐𝑖⟩

into ⟨𝑠𝑖−1, 𝜃, 𝛼𝑖⟩. □

A version that uses repeated reads instead of snapshots is proved by combining the proofs of

Thm. 4.27 and Thm. 5.4. We write𝐶src ⇝rmw,snapshot 𝐶tgt, if ⟨𝑃 [𝐶tgt], 𝑠⟩ ↓ 𝑠′ implies ⟨𝑃 [𝐶src], 𝑠⟩ ↓ 𝑠′
for every rmw-free and snapshot-free context 𝑃 such that 𝑃 [𝐶src] and 𝑃 [𝐶tgt] are closed.

Theorem 5.5. If 𝐶src is loop-free and ⟦𝐶tgt⟧rmw ̸⊆ ⟦𝐶src⟧rmw, then 𝐶src ̸⇝rmw,snapshot 𝐶tgt.

6 RELATED AND FUTUREWORK
We have already discussed the seminal work of Brookes [1996], from which we took a lot of

inspiration. Our traces consist of write actions, rather than transitions (pairs of states) as in

Brookes’s traces, and are closer in spirit to models of Milner’s CCS [Milner 1980] and Hoare’s

CSP [Hoare 1985]. This choice has several advantages. First, it directly reflects the property of the

operational semantics that each transition updates at most one variable. Second, since reads are not

recorded in traces, our concrete semantics, i.e., before imposing any closures, already validates a

variety of refinements, including all those that do not involve writes. In contrast, in Brookes’s traces

reads are tracked as stuttering transitions, and closures are needed also for refinements of reads

(and of skip). Third, explicit environment writes in traces allows us to have a rule like coalesce

that mimics operational simulation that attaches component actions to one environment write.

Brookes’s traces, which are very similar to the traces used for giving meaning to rely/guarantee

judgements [Jones 1983; Xu et al. 1997], have provided a useful intuition and formal basis for

multiple later frameworks, e.g., [Dingel 1999, 2002; Liang et al. 2012, 2014; Turon and Wand 2011],

which propose relational program logics for reasoning about refinements. For example, [Dingel

1999, 2002] used Brookes’s semantics for deriving a refinement calculus allowing one to develop

full concurrent programs by repeatedly refining a specification.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

169:22 Mikhail Svyatlovskiy, Shai Mermelstein, and Ori Lahav

Some works address the challenge of validating contextual refinements that are conditioned

by some assumptions on the concurrent context. Our results on snapshot/RMW-free contexts

go in this direction, but there is, of course, a variety of more fine-grained assumptions that will

allow deriving useful refinements. For example, we would like to be able to reason about common

concurrency primitives, such as locks and transactions. These can be implemented from standard

shared memory constructs, but when studying full abstraction for them, one should only consider

disciplined contexts, that, e.g., properly interleave lock and unlock commands. Some works, which

provide sound techniques but do not consider full abstraction, addressed similar challenges. For

example, [Liang et al. 2012, 2014] developed a framework for establishing contextual refinement that

handles assumptions such as data-race-freedom and data encapsulation in concurrent objects, and

demonstrate that their technique is sufficiently expressive for verifying a complex garbage collector.

More recently, Frumin et al. [2021]; Song et al. [2023] studied refinements conditioned by separation

logic premises, and Khyzha and Lahav [2022]; Singh and Lahav [2023] studied refinements that

assume that clients adhere to a given library call policy. We hope that our denotational semantics

will form a basis for continuations along these lines.

Another line of work, see e.g., [Benton et al. 2016], attempts to capture shared-memory con-

currency in general, and Brookes’s semantics in particular, using monadic constructions follow-

ing [Moggi 1991], or even as an algebraic theory [Abadi and Plotkin 2010; Dvir et al. 2022]. A

prominent advantage of these approaches is their ability to capture higher-order programs, while we

are limited to first-order programs. Additionally, this approach detaches structural refinements from

effectful ones and paves the way to type-and-effect systems, enabling reasoning about refinements

using assumptions from a type analysis (see e.g., [Birkedal et al. 2012; Kammar 2014]).

Our work handles shared variables admitting sequentially consistent semantics (SC). Jagadeesan

et al. [2012] modified Brookes’s semantics to apply for x86-TSO memory (see [Owens et al. 2009]),

and achieved full abstraction using await instructions. Dvir et al. [2024] developed Brookes’s

semantics for the Release/Acquire memory model (see [Lahav et al. 2016]), but did not study full

abstraction. A large body of work, e.g., [Jagadeesan et al. 2020; Jeffrey and Riely 2019; Jeffrey et al.

2022; Kavanagh and Brookes 2018, 2019; Paviotti et al. 2020], has been devoted to the study of

compositional semantics for weakly consistent memory that is not necessarily accompanying

an existing operational semantics like in our case. A prominent idea there is the use of partially

orderedmultisets (“pomsets”) [Pratt 1986] or event structures [Winskel 1987] that generalize linearly

ordered traces, like those we work with. This aligns with axiomatic approaches (see, e.g., [Alglave

et al. 2014]), which, as is, like operational semantics, are restricted to apply on closed full programs.

In the realm of weakmemorymodels, reasoning about correctness of local compiler optimizations

is rather challenging and error-prone. Many works have addressed this issue in different levels of

formality, e.g., [Burckhardt et al. 2010; Chakraborty and Vafeiadis 2016; Cho et al. 2022; Dodds et al.

2018; Morisset et al. 2013; Poetzl and Kroening 2016]. Interestingly, it is not always the case that a

weaker memory model allows more optimizations than a stronger one (see, e.g., [Gopalakrishnan

et al. 2023]). For instance, weak memory model usually do not support “store-after-load elimination”

and “redundant FAA elimination” that are valid under SC (see Fig. 5). Attempting to allow local

proofs of optimizations, some of these works develop compositional semantics, but these are

restricted to top-level parallel composition. An noteworthy exception is the work of Dodds et al.

[2018] who developed a denotational semantics for the Release/Acquire weak memory model.

Their semantics is based on an axiomatic formulation, which they generalize to allow “block-local

execution graphs” that iterate over all possible context execution graphs, and thus achieving full

abstraction. Their blocks are, however, restricted to be sequential, which enables local validation of

program transformations without actually showing that ⟦𝐶1 ∥ 𝐶2⟧ is a function of ⟦𝐶1⟧ and ⟦𝐶2⟧.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

Compositional Semantics for Shared-Variable Concurrency (Extended Version) 169:23

Our notion of contextual refinement is based on partial correctness, and is insensitive to termi-

nation. In concurrent programs termination is interesting assuming scheduler fairness [Francez

1986], and, termination is generalized into a family of progress conditions [Liang and Feng 2020].

By using infinite traces, Brookes’s semantics generalizes to fair infinite runs [Brookes 1996, §10],

and is shown to be fully abstract w.r.t. operational “state-trace behaviors” consisting of sequences

of states visited during the computation. We leave the task of incorporating this dimension into our

semantics for future work, possibly by taking coinductive versions of our concrete semantics. For

the abstract semantics, we expect that the local rewriting rules (see Lemma 4.26) will be handy.

ACKNOWLEDGMENTS
We thank YotamDvir andOhad Kammar for fruitful discussions about this work, and the anonymous

reviewers for their valuable feedback. This work was supported by the European Research Council

(ERC) under the European Union’s Horizon 2020 research and innovation programme (grant

agreement no. 851811) and the Israel Science Foundation (grant number 814/22).

DATA-AVAILABILITY STATEMENT
The artifact is available at [Svyatlovskiy et al. 2024].

REFERENCES
Martín Abadi and Gordon D. Plotkin. 2010. A Model of Cooperative Threads. Log. Methods Comput. Sci. 6, 4 (2010).

https://doi.org/10.2168/LMCS-6(4:2)2010

Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Modelling, Simulation, Testing, and Data Mining

for Weak Memory. ACM Trans. Program. Lang. Syst. 36, 2, Article 7 (July 2014), 74 pages. https://doi.org/10.1145/2627752

Nick Benton, Martin Hofmann, and Vivek Nigam. 2016. Effect-Dependent Transformations for Concurrent Programs. In

PPDP. ACM, New York, NY, USA, 188–201. https://doi.org/10.1145/2967973.2968602

Lars Birkedal, Filip Sieczkowski, and Jacob Thamsborg. 2012. A Concurrent Logical Relation. In CSL (Leibniz International
Proceedings in Informatics (LIPIcs), Vol. 16). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany,

107–121. https://doi.org/10.4230/LIPIcs.CSL.2012.107

Stephen Brookes. 1996. Full Abstraction for a Shared-Variable Parallel Language. Information and Computation 127, 2 (1996),

145–163. https://doi.org/10.1006/inco.1996.0056

Sebastian Burckhardt, Madanlal Musuvathi, and Vasu Singh. 2010. Verifying Local Transformations on Relaxed Memory

Models. In CC. Springer, Berlin, Heidelberg, 104–123. https://doi.org/10.1007/978-3-642-11970-5_7

Felice Cardone. 2021. Games, Full Abstraction and Full Completeness. In The Stanford Encyclopedia of Philosophy (Spring

2021 ed.), Edward N. Zalta (Ed.). Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/

spr2021/entries/games-abstraction/

Soham Chakraborty and Viktor Vafeiadis. 2016. Validating Optimizations of Concurrent C/C++ Programs. In CGO. ACM,

New York, NY, USA, 216–226. https://doi.org/10.1145/2854038.2854051

Minki Cho, Sung-Hwan Lee, Dongjae Lee, Chung-Kil Hur, and Ori Lahav. 2022. Sequential Reasoning for Optimizing

Compilers under Weak Memory Concurrency. In PLDI. ACM, New York, NY, USA, 213–228. https://doi.org/10.1145/

3519939.3523718

Jürgen Dingel. 1999. A Trace-Based Refinement Calculus for Shared-Variable Parallel Programs. In AMAST. Springer, Berlin,
Heidelberg, 231–247. https://doi.org/10.1007/3-540-49253-4_18

Jürgen Dingel. 2002. A Refinement Calculus for Shared-Variable Parallel and Distributed Programming. Form. Asp. Comput.
14, 2 (dec 2002), 123–197. https://doi.org/10.1007/s001650200032

Mike Dodds, Mark Batty, and Alexey Gotsman. 2018. Compositional Verification of Compiler Optimisations on Relaxed

Memory. In ESOP. Springer, Cham, 1027–1055. https://doi.org/10.1007/978-3-319-89884-1_36

Yotam Dvir, Ohad Kammar, and Ori Lahav. 2022. An Algebraic Theory for Shared-State Concurrency. In APLAS. Springer,
Cham, 3–24. https://doi.org/10.1007/978-3-031-21037-2_1

Yotam Dvir, Ohad Kammar, and Ori Lahav. 2024. A Denotational Approach to Release/Acquire Concurrency. In ESOP.
Springer, Cham, 121–149. https://doi.org/10.1007/978-3-031-57267-8_5

Nissim Francez. 1986. Fairness. Springer. https://doi.org/10.1007/978-1-4612-4886-6

Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2021. ReLoC Reloaded: A Mechanized Relational Logic for Fine-Grained

Concurrency and Logical Atomicity. Log. Methods Comput. Sci. 17, 3 (2021). https://doi.org/10.46298/LMCS-17(3:9)2021

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

https://doi.org/10.2168/LMCS-6(4:2)2010
https://doi.org/10.1145/2627752
https://doi.org/10.1145/2967973.2968602
https://doi.org/10.4230/LIPIcs.CSL.2012.107
https://doi.org/10.1006/inco.1996.0056
https://doi.org/10.1007/978-3-642-11970-5_7
https://plato.stanford.edu/archives/spr2021/entries/games-abstraction/
https://plato.stanford.edu/archives/spr2021/entries/games-abstraction/
https://doi.org/10.1145/2854038.2854051
https://doi.org/10.1145/3519939.3523718
https://doi.org/10.1145/3519939.3523718
https://doi.org/10.1007/3-540-49253-4_18
https://doi.org/10.1007/s001650200032
https://doi.org/10.1007/978-3-319-89884-1_36
https://doi.org/10.1007/978-3-031-21037-2_1
https://doi.org/10.1007/978-3-031-57267-8_5
https://doi.org/10.1007/978-1-4612-4886-6
https://doi.org/10.46298/LMCS-17(3:9)2021

169:24 Mikhail Svyatlovskiy, Shai Mermelstein, and Ori Lahav

Akshay Gopalakrishnan, Clark Verbrugge, and Mark Batty. 2023. Memory Consistency Models for Program Transformations:

An Intellectual Abstract. In ISMM. ACM, New York, NY, USA, 30–42. https://doi.org/10.1145/3591195.3595274

Charles Antony Richard Hoare. 1985. Communicating sequential processes. Prentice-Hall.
Radha Jagadeesan, Alan Jeffrey, and James Riely. 2020. Pomsets with Preconditions: A Simple Model of Relaxed Memory.

Proc. ACM Program. Lang. 4, OOPSLA, Article 194 (Nov. 2020), 30 pages. https://doi.org/10.1145/3428262

Radha Jagadeesan, Gustavo Petri, and James Riely. 2012. Brookes Is Relaxed, Almost!. In FoSSaCS. Springer, Berlin, Heidelberg,
180–194. https://doi.org/10.1007/978-3-642-28729-9_12

Alan Jeffrey and James Riely. 2019. On Thin Air Reads: Towards an Event Structures Model of Relaxed Memory. Logical
Methods in Computer Science 15, 1 (2019). https://doi.org/10.23638/LMCS-15(1:33)2019

Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, Ilya Kaysin, and Anton Podkopaev. 2022. The Leaky Semicolon:

Compositional Semantic Dependencies for Relaxed-Memory Concurrency. Proc. ACM Program. Lang. 6, POPL, Article 54
(jan 2022), 30 pages. https://doi.org/10.1145/3498716

Cliff B. Jones. 1983. Tentative Steps toward a Development Method for Interfering Programs. ACM Trans. Program. Lang.
Syst. 5, 4 (oct 1983), 596–619. https://doi.org/10.1145/69575.69577

Ohad Kammar. 2014. Algebraic theory of type-and-effect systems. Ph. D. Dissertation. University of Edinburgh, UK. https:

//hdl.handle.net/1842/8910

Ryan Kavanagh and Stephen Brookes. 2018. A denotational account of C11-style memory. CoRR abs/1804.04214 (2018).

arXiv:1804.04214 http://arxiv.org/abs/1804.04214

Ryan Kavanagh and Stephen Brookes. 2019. A Denotational Semantics for SPARC TSO. Logical Methods in Computer Science
Volume 15, Issue 2 (May 2019). https://doi.org/10.23638/LMCS-15(2:10)2019

Artem Khyzha and Ori Lahav. 2022. Abstraction for Crash-Resilient Objects. In ESOP. Springer International Publishing,
Cham, 262–289. https://doi.org/10.1007/978-3-030-99336-8_10

Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. 2016. Taming Release-Acquire Consistency. In POPL. ACM, New York,

NY, USA, 649–662. https://doi.org/10.1145/2837614.2837643

Ori Lahav and Viktor Vafeiadis. 2016. Explaining Relaxed Memory Models with Program Transformations. In FM. Springer,

479–495. https://doi.org/10.1007/978-3-319-48989-6_29

Leslie Lamport. 1979. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs. IEEE
Trans. Computers 28, 9 (Sept. 1979), 690–691. https://doi.org/10.1109/TC.1979.1675439

Hongjin Liang and Xinyu Feng. 2020. Progress of Concurrent Objects. Foundations and Trends in Programming Languages 5,
4 (2020), 282–414. https://doi.org/10.1561/2500000041

Hongjin Liang, Xinyu Feng, and Ming Fu. 2012. A Rely-Guarantee-Based Simulation for Verifying Concurrent Program

Transformations. In POPL. ACM, New York, NY, USA, 455–468. https://doi.org/10.1145/2103656.2103711

Hongjin Liang, Xinyu Feng, and Ming Fu. 2014. Rely-Guarantee-Based Simulation for Compositional Verification of

Concurrent Program Transformations. ACM Trans. Program. Lang. Syst. 36, 1, Article 3 (Mar. 2014), 55 pages. https:

//doi.org/10.1145/2576235

Robin Milner. 1980. A calculus of communicating systems. Springer.
Eugenio Moggi. 1991. Notions of computation and monads. Information and Computation 93, 1 (1991), 55–92. https:

//doi.org/10.1016/0890-5401(91)90052-4

Robin Morisset, Pankaj Pawan, and Francesco Zappa Nardelli. 2013. Compiler Testing via a Theory of Sound Optimisations

in the C11/C++11 Memory Model. In PLDI. ACM, New York, NY, USA, 187–196. https://doi.org/10.1145/2491956.2491967

Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A Better x86 Memory Model: x86-TSO. In TPHOLs. Springer, Berlin,
Heidelberg, 391–407. https://doi.org/10.1007/978-3-642-03359-9_27

Marco Paviotti, Simon Cooksey, Anouk Paradis, Daniel Wright, Scott Owens, and Mark Batty. 2020. Modular Relaxed

Dependencies in Weak Memory Concurrency. In ESOP. Springer, Cham, 599–625. https://doi.org/10.1007/978-3-030-

44914-8_22

Daniel Poetzl and Daniel Kroening. 2016. Formalizing and Checking Thread Refinement for Data-Race-Free Execution

Models. In ESOP. Springer, Berlin, Heidelberg, 515–530. https://doi.org/10.1007/978-3-662-49674-9_30

Vaughan Pratt. 1986. Modeling Concurrency with Partial Orders. Int. J. Parallel Program. 15, 1 (feb 1986), 33–71. https:

//doi.org/10.1007/BF01379149

Abhishek Kr Singh and Ori Lahav. 2023. An Operational Approach to Library Abstraction under Relaxed Memory

Concurrency. Proc. ACM Program. Lang. 7, POPL, Article 53 (jan 2023), 31 pages. https://doi.org/10.1145/3571246

Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer. 2023. Conditional Contextual

Refinement. Proc. ACM Program. Lang. 7, POPL, Article 39 (jan 2023), 31 pages. https://doi.org/10.1145/3571232

Mikhail Svyatlovskiy, Shai Mermelstein, and Ori Lahav. 2024. Coq Mechanization for "Compositional Semantics for Shared-
Variable Concurrency" (PLDI 2024). https://doi.org/10.5281/zenodo.10925596

Aaron Joseph Turon and Mitchell Wand. 2011. A Separation Logic for Refining Concurrent Objects. In POPL. ACM, New

York, NY, USA, 247–258. https://doi.org/10.1145/1926385.1926415

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

https://doi.org/10.1145/3591195.3595274
https://doi.org/10.1145/3428262
https://doi.org/10.1007/978-3-642-28729-9_12
https://doi.org/10.23638/LMCS-15(1:33)2019
https://doi.org/10.1145/3498716
https://doi.org/10.1145/69575.69577
https://hdl.handle.net/1842/8910
https://hdl.handle.net/1842/8910
https://arxiv.org/abs/1804.04214
http://arxiv.org/abs/1804.04214
https://doi.org/10.23638/LMCS-15(2:10)2019
https://doi.org/10.1007/978-3-030-99336-8_10
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1007/978-3-319-48989-6_29
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1561/2500000041
https://doi.org/10.1145/2103656.2103711
https://doi.org/10.1145/2576235
https://doi.org/10.1145/2576235
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1145/2491956.2491967
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-030-44914-8_22
https://doi.org/10.1007/978-3-030-44914-8_22
https://doi.org/10.1007/978-3-662-49674-9_30
https://doi.org/10.1007/BF01379149
https://doi.org/10.1007/BF01379149
https://doi.org/10.1145/3571246
https://doi.org/10.1145/3571232
https://doi.org/10.5281/zenodo.10925596
https://doi.org/10.1145/1926385.1926415

Compositional Semantics for Shared-Variable Concurrency (Extended Version) 169:25

Glynn Winskel. 1987. Event structures. In ACPN. Springer, Berlin, Heidelberg, 325–392. https://doi.org/10.1007/3-540-

17906-2_31

Qiwen Xu, Willem P. de Roever, and Jifeng He. 1997. The Rely-Guarantee Method for Verifying Shared Variable Concurrent

Programs. Formal Aspects Comput. 9, 2 (1997), 149–174. https://doi.org/10.1007/BF01211617

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

https://doi.org/10.1007/3-540-17906-2_31
https://doi.org/10.1007/3-540-17906-2_31
https://doi.org/10.1007/BF01211617

169:26 Mikhail Svyatlovskiy, Shai Mermelstein, and Ori Lahav

A PROOFS
We provide proof outlines that were not included in the main text.

A.1 Proof for Example 4.28
This section is devoted to the missing proof in Example 4.28: 𝐶src ⇝snapshot 𝐶tgt for

𝐶src =while ∗ do (y := 0 ; x := ∗ ; x := 0 ; y := ∗)
𝐶tgt =y := 0 ; x := 1 ; y := 1 ; x := 0

For this proof we provide a simulation relation that relates operational executions of 𝑃 [𝐶tgt]
to those of 𝑃 [𝐶src]. The definition requires the notion of generalized contexts, specified by the

following grammar:

P ::= 𝐶 | let 𝑎 = 𝐿 in 𝑃 | 𝐶 ; 𝑃 | 𝐶 ⊕ 𝑃 | 𝑃 ⊕ 𝐶 |
if 𝐸 then 𝑃 else 𝐶 | if 𝐸 then 𝐶 else 𝑃 | while 𝑥 do 𝑃 | while ∗ do 𝑃 |
⊲⊳ | P ; 𝑃 | P ;𝐶 | 𝐶 ∥ P | P ∥ 𝐶

We write P[𝐶] (𝐶⊲⊳) for the command obtained from P by plugging in 𝐶 in (all occurrences of) −
and 𝐶⊲⊳ in ⊲⊳ (if it exists). A generalized context P is peeled if ⊲⊳ appears in P. We denote by Gctx
the set of all generalized contexts, any by PGctx the set of all peeled generalized contexts.

Lemma A.1. For every context 𝑃 , there exists a generalized context P such that P[𝐶] (𝐶) = 𝑃 [𝐶] for
every 𝐶 .

Lemma A.2. Let P{skip/⊲⊳} denote the (non-peeled) generalized context obtained from a a gen-
eralized context 𝑃 by substituting skip for ⊲⊳. Then, P[𝐶1] (skip) = P{skip/⊲⊳}[𝐶1] (𝐶2) for every
commands 𝐶1,𝐶2.

Lemma A.3. If ⟨𝐶2, 𝑠⟩ −→∗ ⟨𝐶′
2
, 𝑠′⟩ and P is peeled, then ⟨P[𝐶1] (𝐶2), 𝑠⟩ −→∗ ⟨P[𝐶1] (𝐶′

2
), 𝑠′⟩.

Lemma A.4. If ⟨P[𝐶1] (𝐶2), 𝑠⟩ −→ ⟨𝐶′, 𝑠′⟩, 𝐶1 is closed and 𝐶2 ≠ skip, then one of the following
holds:

• P is peeled and there exists 𝐶′
2
such that 𝐶′ = P[𝐶1] (𝐶′

2
) and ⟨𝐶2, 𝑠⟩ −→ ⟨𝐶′

2
, 𝑠′⟩.

• There exists P′ ∈ Gctx such that 𝐶′ = P′ [𝐶1] (𝐶2) and the following hold:
– For every 𝑠1, 𝑠

′
1
∈ State and commands 𝐶3,𝐶4, if ⟨P[𝐶1] (𝐶2), 𝑠1⟩ −→ ⟨P′ [𝐶1] (𝐶2), 𝑠′1⟩ and 𝐶3

is closed, then ⟨P[𝐶3] (𝐶4), 𝑠1⟩ −→ ⟨P′ [𝐶3] (𝐶4), 𝑠′1⟩.
– P is peeled iff P′ is peeled.

• There exists P′ ∈ Gctx such that 𝐶′ = P′ [𝐶1] (𝐶1) and the following hold:
– For every 𝑠1, 𝑠

′
1
∈ State and commands 𝐶3,𝐶4, if ⟨P[𝐶1] (𝐶2), 𝑠1⟩ −→ ⟨P′ [𝐶1] (𝐶1), 𝑠′1⟩ and 𝐶3

is closed, then ⟨P[𝐶3] (𝐶4), 𝑠1⟩ −→ ⟨P′ [𝐶3] (𝐶3), 𝑠′1⟩.
– P is non-peeled and P′ is peeled.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

Compositional Semantics for Shared-Variable Concurrency (Extended Version) 169:27

Next, for the simulation relation, we define nine relations on configurations:

▷1 ≜ {⟨⟨P[𝐶tgt] (𝐶tgt), 𝑠⟩, ⟨P[𝐶src] (𝐶src), 𝑠⟩⟩ | P ∈ Gctx, 𝑠 ∈ State}
▷2 ≜ {⟨⟨P[𝐶tgt] (x := 1 ; y := 1 ; x := 0), 𝑠⟩, ⟨P[𝐶src] (x := ∗ ; x := 0 ; y := ∗ ;𝐶src), 𝑠⟩⟩ | P ∈ PGctx, 𝑠 ∈ State}
▷′

2
≜ {⟨⟨P[𝐶tgt] (skip ;𝐶′), 𝑠⟩, ⟨P[𝐶src] (𝐶′′), 𝑠⟩⟩ | ⟨⟨P[𝐶tgt] (𝐶′), 𝑠⟩, ⟨P[𝐶src] (𝐶′′), 𝑠⟩⟩ ∈ ▷2}

▷3 ≜ {⟨⟨P[𝐶tgt] (y := 1 ; x := 0), 𝑠⟩, ⟨P[𝐶src] (x := 0 ; y := ∗ ;𝐶src), 𝑠⟩⟩ | P ∈ PGctx, 𝑠 ∈ State}
▷′

3
≜ {⟨⟨P[𝐶tgt] (skip ;𝐶′), 𝑠⟩, ⟨P[𝐶src] (𝐶′′), 𝑠⟩⟩ | ⟨⟨P[𝐶tgt] (𝐶′), 𝑠⟩, ⟨P[𝐶src] (𝐶′′), 𝑠⟩⟩ ∈ ▷′

3
}

▷4 ≜ {⟨⟨P[𝐶tgt] (x := 0), 𝑠⟩, ⟨P[𝐶src] (𝐶src), 𝑠 [x ↦→ 0]⟩⟩ | P ∈ PGctx, 𝑠 ∈ State}
▷′

4
≜ {⟨⟨P[𝐶tgt] (skip ;𝐶′), 𝑠⟩, ⟨P[𝐶src] (𝐶′′), 𝑠′⟩⟩ | ⟨⟨P[𝐶tgt] (𝐶′), 𝑠⟩, ⟨P[𝐶src] (𝐶′′), 𝑠′⟩⟩ ∈ ▷4}

▷5 ≜ {⟨⟨P[𝐶tgt] (x := 0), 𝑠⟩, ⟨P[𝐶src] (x := 0 ; y := ∗ ;𝐶src), 𝑠 [y ↦→ 0]⟩⟩ | P ∈ PGctx, 𝑠 ∈ State}
▷′

5
≜ {⟨⟨P[𝐶tgt] (skip ;𝐶′), 𝑠⟩, ⟨P[𝐶src] (𝐶′′), 𝑠′⟩⟩ | ⟨⟨P[𝐶tgt] (𝐶′), 𝑠⟩, ⟨P[𝐶src] (𝐶′′), 𝑠′⟩⟩ ∈ ▷5}

We let ▷ ≜ ▷1 ∪ ▷2 ∪ ▷′
2
∪ ▷3 ∪ ▷′

3
∪ ▷4 ∪ ▷′

4
∪ ▷5 ∪ ▷′

5
.

Lemma A.5. Suppose that ⟨𝐶1, 𝑠1⟩ −→ ⟨𝐶′
1
, 𝑠′

1
⟩, and let ⟨𝐶2, 𝑠2⟩ such that ⟨𝐶1, 𝑠1⟩ ▷ ⟨𝐶2, 𝑠2⟩. Then,

there exists ⟨𝐶′
2
, 𝑠′

2
⟩ such that ⟨𝐶2, 𝑠2⟩ −→∗ ⟨𝐶′

2
, 𝑠′

2
⟩, and the following hold:

(1) If ⟨𝐶1, 𝑠1⟩ ▷1 ⟨𝐶2, 𝑠2⟩, then ⟨𝐶′
1
, 𝑠′

1
⟩(▷1 ∪ ▷′

2
)⟨𝐶′

2
, 𝑠′

2
⟩.

(2) If ⟨𝐶1, 𝑠1⟩ ▷2 ⟨𝐶2, 𝑠2⟩, then ⟨𝐶′
1
, 𝑠′

1
⟩(▷2 ∪ ▷′

3
)⟨𝐶′

2
, 𝑠′

2
⟩.

(3) If ⟨𝐶1, 𝑠1⟩ ▷′
2
⟨𝐶2, 𝑠2⟩, then ⟨𝐶′

1
, 𝑠′

1
⟩(▷′

2
∪ ▷2)⟨𝐶′

2
, 𝑠′

2
⟩.

(4) If ⟨𝐶1, 𝑠1⟩ ▷3 ⟨𝐶2, 𝑠2⟩, then ⟨𝐶′
1
, 𝑠′

1
⟩(▷3 ∪ ▷′

4
)⟨𝐶′

2
, 𝑠′

2
⟩.

(5) If ⟨𝐶1, 𝑠1⟩ ▷′
3
⟨𝐶2, 𝑠2⟩, then ⟨𝐶′

1
, 𝑠′

1
⟩(▷′

3
∪ ▷3)⟨𝐶′

2
, 𝑠′

2
⟩.

(6) If ⟨𝐶1, 𝑠1⟩ ▷4 ⟨𝐶2, 𝑠2⟩, then ⟨𝐶′
1
, 𝑠′

1
⟩(▷4 ∪ ▷5 ∪ ▷1)⟨𝐶′

2
, 𝑠′

2
⟩.

(7) If ⟨𝐶1, 𝑠1⟩ ▷′
4
⟨𝐶2, 𝑠2⟩, then ⟨𝐶′

1
, 𝑠′

1
⟩(▷4 ∪ ▷′

4
∪ ▷′

5
)⟨𝐶′

2
, 𝑠′

2
⟩.

(8) If ⟨𝐶1, 𝑠1⟩ ▷5 ⟨𝐶2, 𝑠2⟩, then ⟨𝐶′
1
, 𝑠′

1
⟩(▷4 ∪ ▷5 ∪ ▷1)⟨𝐶′

2
, 𝑠′

2
⟩.

(9) If ⟨𝐶1, 𝑠1⟩ ▷′
5
⟨𝐶2, 𝑠2⟩, then ⟨𝐶′

1
, 𝑠′

1
⟩(▷5 ∪ ▷′

5
∪ ▷′

4
)⟨𝐶′

2
, 𝑠′

2
⟩.

Proof. We only prove the selected items. The other proofs are similar.

(1) By definition of ▷1, we have 𝐶1 = P[𝐶tgt] (𝐶tgt), 𝐶2 = P[𝐶src] (𝐶src), and 𝑠1 = 𝑠2. We apply

Lemma A.4 to the step ⟨𝐶1, 𝑠1⟩ −→ ⟨𝐶′
1
, 𝑠′

1
⟩.

If the first case holds, P is peeled,𝐶′
1
= P[𝐶tgt] (skip;x := 1;y := 1;x := 0), and 𝑠′

1
= 𝑠1 [y ↦→ 0].

We take 𝐶′
2
= P[𝐶src] (𝐶) where 𝐶 = x := ∗ ; x := 0 ; y := ∗ ; 𝐶src, and 𝑠′

2
= 𝑠′

1
. Since

⟨𝐶src, 𝑠⟩ −→ ∗ ⟨𝐶, 𝑠′
2
⟩, by Lemma A.3, it follows that ⟨P[𝐶src] (𝐶src), 𝑠1⟩ −→ ∗ ⟨P[𝐶src] (𝐶), 𝑠′2⟩.

Then, ⟨𝐶′
1
, 𝑠′

1
⟩ ▷′

2
⟨𝐶′

2
, 𝑠′

2
⟩ follows by definition.

If the second (or third) case holds, we take 𝐶′
2
= P′ [𝐶src] (𝐶src) and 𝑠′2 = 𝑠′

1
. Then, ⟨𝐶2, 𝑠2⟩ −→

∗ ⟨𝐶′
2
, 𝑠′

2
⟩ and ⟨𝐶′

1
, 𝑠′

1
⟩ ▷1 ⟨𝐶′

2
, 𝑠′

2
⟩ follow.

(6) By definition of ▷4, we have 𝐶1 = P[𝐶tgt] (x := 0) and 𝐶2 = P[𝐶src] (𝐶src), where P is peeled,

as well as 𝑠2 = 𝑠1 [x ↦→ 0]. We apply Lemma A.4 to the step ⟨𝐶1, 𝑠1⟩ −→ ⟨𝐶′
1
, 𝑠′

1
⟩.

If the first case holds, then 𝐶′
1

= P[𝐶tgt] (skip) and 𝑠′
1

= 𝑠1 [x ↦→ 0]. We take 𝐶′
2

=

P[𝐶src] (skip) and 𝑠′2 = 𝑠′
1
. Then, ⟨𝐶2, 𝑠2⟩ −→∗ ⟨𝐶′

2
, 𝑠′

2
⟩ follows by Lemma A.3 since we have

⟨𝐶src, 𝑠2⟩ −→ ∗ ⟨skip, 𝑠′
2
⟩. To see that ⟨𝐶′

1
, 𝑠′

1
⟩ ▷1 ⟨𝐶′

2
, 𝑠′

2
⟩ holds, it suffices to note that by

Lemma A.2, 𝐶′
1
= P[𝐶tgt] (skip) = P′ [𝐶tgt] (𝐶tgt) and 𝐶′

2
= P[𝐶src] (skip) = P′ [𝐶src] (𝐶src)

for P′ = P{skip/⊲⊳}.
We note that the third case cannot hold, as P is peeled. If the second case holds, then there

exists peeled P′ ∈ Gctx such that the following hold:

• 𝐶′
1
= P′ [𝐶tgt] (x := 0).

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

169:28 Mikhail Svyatlovskiy, Shai Mermelstein, and Ori Lahav

• For every 𝑠3, 𝑠
′
3
and commands 𝐶3,𝐶4, if ⟨P[𝐶tgt] (x := 0), 𝑠3⟩ −→ ⟨P′ [𝐶tgt] (x := 0), 𝑠′

3
⟩, then

⟨P[𝐶3] (𝐶4), 𝑠3⟩ −→ ⟨P′ [𝐶3] (𝐶4), 𝑠′3⟩.
By Lemma 2.5 (applied on ⟨P[𝐶tgt] (x := 0), 𝑠1⟩ −→ ⟨P′ [𝐶tgt] (x := 0), 𝑠′

1
⟩), there exists some

𝑧 ∈ Var such that ⟨P[𝐶tgt] (x := 0), 𝑠3⟩ −→ ⟨P′ [𝐶tgt] (x := 0), 𝑠3 [𝑧 ↦→ 𝑠′
1
(𝑧)]⟩ for every 𝑠3 with

𝑠3 (𝑧) = 𝑠1 (𝑧). Consider two cases:

• Suppose first that 𝑧 ≠ x. We take 𝐶′
2
= P′ [𝐶src] (𝐶src) and 𝑠′2 = 𝑠′

1
[x ↦→ 0] = 𝑠2 [𝑧 ↦→ 𝑠′

1
(𝑧)].

Then, we clearly have ⟨𝐶′
1
, 𝑠′

1
⟩ ▷4 ⟨𝐶′

2
, 𝑠′

2
⟩. Taking 𝑠3 = 𝑠2, we obtain ⟨P[𝐶tgt] (x := 0), 𝑠2⟩ −→

⟨P′ [𝐶tgt] (x := 0), 𝑠′
2
⟩, and so ⟨P[𝐶src] (𝐶src), 𝑠2⟩ −→ ⟨P′ [𝐶src] (𝐶src), 𝑠′2⟩.

• Suppose that 𝑧 = x. We take 𝐶′
2
= P′ [𝐶src] (x := 0 ; y := ∗ ;𝐶src) and 𝑠′2 = 𝑠′

1
[y ↦→ 0]. Then,

we clearly have ⟨𝐶′
1
, 𝑠′

1
⟩ ▷5 ⟨𝐶′

2
, 𝑠′

2
⟩. Taking 𝑠3 = 𝑠1 [y ↦→ 0], we obtain

⟨P[𝐶tgt] (x := 0), 𝑠1 [y ↦→ 0]⟩ −→ ⟨P′ [𝐶tgt] (x := 0), 𝑠′
1
[y ↦→ 0]⟩,

and so

⟨P[𝐶src] (x := 0 ; y := ∗ ;𝐶src), 𝑠1 [y ↦→ 0]⟩ −→ ⟨P′ [𝐶src] (x := 0 ; y := ∗ ;𝐶src), 𝑠′1 [y ↦→ 0]⟩.
Since ⟨𝐶src, 𝑠1 [x ↦→ 0]⟩ −→∗ ⟨x := 0 ; y := ∗ ;𝐶src, 𝑠1 [y ↦→ 0]⟩, by Lemma A.3, it follows that

⟨P[𝐶src] (𝐶src), 𝑠1 [x ↦→ 0]⟩ −→∗ ⟨P[𝐶src] (x := 0 ; y := ∗ ;𝐶src), 𝑠1 [y ↦→ 0]⟩. Together, we ob-
tain that ⟨𝐶2, 𝑠2⟩ −→∗ ⟨𝐶′

2
, 𝑠′

2
⟩. □

Lemma A.6. ⟨skip, 𝑠⟩ ▷ ⟨𝐶, 𝑠′⟩ implies that 𝐶 = skip and 𝑠 = 𝑠′.

Proof. We observe that ⟨skip, 𝑠⟩ ▷ ⟨𝐶, 𝑠′⟩ can only match ▷1 with P = skip. By definition of

▷1, we have 𝐶 = P[𝐶src] (𝐶src) = skip and 𝑠 = 𝑠′. □

Finally, suppose that ⟨𝑃 [𝐶tgt], 𝑠⟩ −→ ∗ ⟨skip, 𝑠′⟩. By Lemma A.1 and definition of ▷1, there

exists P ∈ Gctx such that ⟨P[𝐶tgt] (𝐶tgt), 𝑠⟩ −→∗ ⟨skip, 𝑠′⟩ and ⟨P[𝐶tgt] (𝐶tgt), 𝑠⟩ ▷1 ⟨P[𝐶src] (𝐶src), 𝑠⟩.
Then, using Items 1 to 9, this implies there exists ⟨𝐶1, 𝑠1⟩ such that ⟨𝑃 [𝐶tgt], 𝑠⟩ −→∗ ⟨𝐶1, 𝑠1⟩ and
⟨skip, 𝑠′⟩ ▷ ⟨𝐶1, 𝑠1⟩. By Lemma A.6, we conclude that ⟨𝐶1, 𝑠1⟩ = ⟨skip, 𝑠′⟩, and so ⟨𝑃 [𝐶src], 𝑠⟩ −→
∗ ⟨skip, 𝑠′⟩.

A.2 Proof of Lemma 4.26
We denote R′ ≜ { coalesce−−−−−→, coalesce−−−−−→, del-red

′−−−−−→, add-red−−−−→}.

Proposition A.7. If 𝑡 R′−→ 𝑡 ′, then 𝑡 = 𝑡1 ; 𝑡2 ; 𝑡3, 𝑡 ′ = 𝑡1 ; 𝑡 ′
2

; 𝑡3, and 𝑡2 R loc−−→ 𝑡 ′
2
for some 𝑡1, 𝑡2, 𝑡3, 𝑡 ′2.

Proposition A.8. If 𝑡2 R loc−−→ 𝑡 ′
2
and 𝑡1 ; 𝑡2 ; 𝑡3 is defined, then 𝑡1 ; 𝑡2 ; 𝑡3

R′−→ 𝑡1 ; 𝑡 ′
2

; 𝑡3.

Proposition A.9.
R loc−−→ ⊆ R′−→.

Proposition A.10. If 𝑡1 ⇒ 𝑡 ′
1
, 𝑡2 ⇒ 𝑡 ′

2
and 𝑡1 ; 𝑡2 is defined, then 𝑡1 ; 𝑡2 ⇒ 𝑡 ′

1
; 𝑡 ′

2
.

The ⊆ inclusion of Lemma 4.26 is established next.

Proposition A.11. ⇒ ⊆ R′−→∗ .

Proof. Suppose that 𝑡 ⇒ 𝑡 ′. The proof proceeds by induction on the proof of 𝑡 ⇒ 𝑡 ′. In the base

case, we have 𝑡 = 𝑡 ′, so we are done.

For the induction step, we have 𝑡 = 𝑡1 ; 𝑡2 and 𝑡
′ = 𝑡 ′

1
; 𝑡 ′

2
such that 𝑡1

R loc−−→? 𝑡 ′
1
and 𝑡2 ⇒ 𝑡 ′

2
. By the

induction hypothesis we have 𝑡2
R′−→∗ 𝑡 ′

2
. By Prop. 4.19, as 𝑡 ′

1
; 𝑡 ′

2
is defined, 𝑡1 ; 𝑡 ′

2
is also defined. So

we can apply Prop. 4.12 to obtain 𝑡1 ; 𝑡2
R′−→∗ 𝑡1 ; 𝑡 ′

2
. Next, 𝑡1 ; 𝑡 ′

2

R′−→? 𝑡 ′
1

; 𝑡 ′
2
follows by Prop. A.8. We

conclude that 𝑡1 ; 𝑡2
R′−→∗ 𝑡 ′

1
; 𝑡 ′

2
. □

Proposition A.12.
R′−→ ⊆ ⇒.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

Compositional Semantics for Shared-Variable Concurrency (Extended Version) 169:29

Proof. Suppose that ⟨𝑠, 𝜃, 𝑐⟩ = 𝑡 R′−→ 𝑡 ′. By Prop. A.7, we have 𝑡 = 𝑡1 ; 𝑡2 ; 𝑡3, 𝑡
′ = 𝑡1 ; 𝑡 ′

2
; 𝑡3, and

𝑡2
R loc−−→ 𝑡 ′

2
for some 𝑡1, 𝑡2, 𝑡3, 𝑡

′
2
. We derive 𝑡 ⇒ 𝑡 ′ as follows:

𝑡1
R loc−−→? 𝑡1

𝑡2
R loc−−→? 𝑡 ′

2

𝑡3
R loc−−→? 𝑡3 ⟨𝑐 (𝑠), 𝜃, 𝜀⟩ ⇒ ⟨𝑐 (𝑠), 𝜃, 𝜀⟩

𝑡3 ⇒ 𝑡3

𝑡2 ; 𝑡3 ⇒ 𝑡 ′
2

; 𝑡3

𝑡1 ; 𝑡2 ; 𝑡3 ⇒ 𝑡1 ; 𝑡 ′
2

; 𝑡3

□

The ⊇ inclusion of Lemma 4.26, i.e., that 𝑡 R′−→∗ 𝑡 ′ implies 𝑡 ⇒ 𝑡 ′, is proved by induction on the

number of rewrite steps in
R′−→∗

. Proposition A.12 establishes the base case, and Prop. A.14 gives

us the induction step.

Proposition A.13.
R′−→ ;

R loc−−→ ⊆ ⇒.

Proof. We analyze the possible cases of the rules used in both rewrites. First, we demonstrate

here the case of 𝑡 coalesce−−−−−→ 𝑡 ′ coalesce
loc−−−−−−→ 𝑡 ′′. In this case we have:

𝑡 = ⟨𝑠, 𝜃, 𝑐1 ·𝑚1 · W(𝑥, 𝑣) ·𝑚2 · 𝑐2⟩ coalesce−−−−−→ ⟨𝑠, 𝜃, 𝑐1 · W(𝑥, 𝑣) · 𝑐2⟩ = 𝑡 ′ =

⟨𝑠, 𝜃,𝑚′
1
· W(𝑥 ′, 𝑣 ′) ·𝑚′

2
⟩ coalesce

loc−−−−−−→ ⟨𝑠, 𝜃, W(𝑥 ′, 𝑣 ′)⟩ = 𝑡 ′′

where 𝑚1,𝑚2 ∈ CmpChro, (𝑚1 · W(𝑥, 𝑣) ·𝑚2) (𝑐1 (𝑠)) = 𝑐1 (𝑠) [𝑥 ↦→ 𝑣], 𝑚′
1
,𝑚′

2
∈ CmpChro and

(𝑚′
1
· W(𝑥 ′, 𝑣 ′) ·𝑚′

2
) (𝑠) = 𝑠 [𝑥 ′ ↦→ 𝑣 ′]. It follows that 𝑐1, 𝑐2 are component chronicles, and (𝑐1 ·

𝑚1 · W(𝑥, 𝑣) ·𝑚2 · 𝑐2) (𝑠) = (𝑐1 · W(𝑥, 𝑣) · 𝑐2) (𝑠) = (𝑚′
1
· W(𝑥 ′, 𝑣 ′) ·𝑚′

2
) (𝑠) = 𝑠 [𝑥 ′ ↦→ 𝑣 ′]. Therefore,

𝑡 coalesce
loc−−−−−−→ 𝑡 ′′. By Propositions A.9 and A.12, it follows that 𝑡 ⇒ 𝑡 ′′.

We demonstrate also the case of 𝑡 add-red−−−−→ 𝑡 ′ coalesce
loc−−−−−−→ 𝑡 ′′. In this case we have:

𝑡 = ⟨𝑠, 𝜃, 𝑐1 · 𝑐2⟩ add-red−−−−→ ⟨𝑠, 𝜃, 𝑐1 · W(𝑥, 𝑣) · 𝑐2⟩ = 𝑡 ′ = ⟨𝑠, 𝜃,𝑚′
1
· W(𝑥 ′, 𝑣 ′) ·𝑚′

2
⟩ coalesce

loc−−−−−−→ ⟨𝑠, 𝜃, W(𝑥 ′, 𝑣 ′)⟩ = 𝑡 ′′

where 𝑐1 (𝑠) (𝑥) = 𝑣 , 𝑚′
1
,𝑚′

2
∈ CmpChro and (𝑚′

1
· W(𝑥 ′, 𝑣 ′) · 𝑚′

2
) (𝑠) = 𝑠 [𝑥 ′ ↦→ 𝑣 ′]. It follows

that 𝑐1, 𝑐2 are component chronicles. We also observe that (𝑐1 · 𝑐2) (𝑠) = (𝑐1 · W(𝑥, 𝑣) · 𝑐2) (𝑠) =

(𝑚′
1
· W(𝑥 ′, 𝑣 ′) · 𝑚′

2
) (𝑠) = 𝑠 [𝑥 ′ ↦→ 𝑣 ′]. Now, if W(𝑥 ′, 𝑣 ′) is present inside 𝑐1 · 𝑐2, we can rewrite

⟨𝑠, 𝜃, 𝑐1 · 𝑐2⟩ into ⟨𝑠, 𝜃, W(𝑥 ′, 𝑣 ′)⟩ using coalesceloc. Otherwise, 𝑠 (𝑥 ′) = 𝑣 ′, and we derive 𝑡 ⇒ 𝑡 ′′ as
follows:

⟨𝑠, 𝜃, 𝜀⟩ add-red
loc−−−−−−→ ⟨𝑠, 𝜃, W(𝑥 ′, 𝑣 ′)⟩

⟨𝑠, 𝜃, 𝑐1 · 𝑐2⟩ del-red
loc−−−−−→ ⟨𝑠, 𝜃, 𝜀⟩ ⟨𝑠, 𝜃, 𝜀⟩ ⇒ ⟨𝑠, 𝜃, 𝜀⟩

⟨𝑠, 𝜃, 𝑐1 · 𝑐2⟩ ⇒ ⟨𝑠, 𝜃, 𝜀⟩
⟨𝑠, 𝜃, 𝑐1 · 𝑐2⟩ ⇒ ⟨𝑠, 𝜃, W(𝑥 ′, 𝑣 ′)⟩

□

Proposition A.14.
R′−→ ; ⇒ ⊆ ⇒.

Proof. Suppose that 𝑡 R′−→ 𝑡 ′ ⇒ 𝑡 ′′. We prove that 𝑡 ⇒ 𝑡 ′′ by induction on |𝑡 | + |𝑡 ′′ | (where |𝑡0 | is
defined as the length of the chronicle of 𝑡0 for every trace 𝑡0). In the base case, we have |𝑡 | + |𝑡 ′′ | = 0,

which implies 𝑡 = 𝑡 ′′ = ⟨𝑠, 𝜃, 𝜀⟩ (by Prop. 4.19) for some state 𝑠 and store 𝜃 , and we are done.

For the induction step, we have |𝑡 | + |𝑡 ′′ | > 0. First, if 𝑡 ′ = 𝑡 ′′, then by Prop. A.12, 𝑡 R′−→ 𝑡 ′ implies

𝑡 ⇒ 𝑡 ′ = 𝑡 ′′, and we are done. Otherwise, we have 𝑡 ′ = 𝑡 ′
1

; 𝑡 ′
2
and 𝑡 ′′ = 𝑡 ′′

1
; 𝑡 ′′

2
such that 𝑡 ′

1

R loc−−→? 𝑡 ′′
1

and 𝑡 ′
2
⇒ 𝑡 ′′

2
. We may also assume that |𝑡 ′

1
| + |𝑡 ′′

1
| ≥ 1. By Prop. A.7, we have 𝑡 = 𝑢1 ; 𝑢2 ; 𝑢3 and

𝑡 ′ = 𝑢1 ; 𝑢′
2

; 𝑢3, such that 𝑢2

R loc−−→ 𝑢′
2
.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

169:30 Mikhail Svyatlovskiy, Shai Mermelstein, and Ori Lahav

We observe that |𝑢′
2
| ≤ 1, so 𝑢′

2
is contained in either 𝑡 ′

1
or 𝑡 ′

2
. Consider the two cases:

• 𝑢′
2
is contained in 𝑡 ′

1
: In this case, there exists 𝑢′

3
such that 𝑢3 = 𝑢′

3
; 𝑡 ′

2
. By Prop. A.8, we have

(𝑢1 ; 𝑢2 ; 𝑢′
3
) R′−→ (𝑢1 ; 𝑢′

2
; 𝑢′

3
) = 𝑡 ′

1

R loc−−→? 𝑡 ′′
1
. Consider two cases:

– 𝑡 ′
1
≠ 𝑡 ′′

1
: Then, by Prop. A.13 we have (𝑢1 ;𝑢2 ;𝑢′

3
) ⇒ 𝑡 ′′

1
. Since we have 𝑡 = (𝑢1 ;𝑢2 ;𝑢′

3
) ; 𝑡 ′

2
,

by Prop. A.10, it follows that 𝑡 ⇒ 𝑡 ′′.
– 𝑡 ′

1
= 𝑡 ′′

1
: Then, we have 𝑢1 = 𝑢1, 𝑢2

R loc−−→ 𝑢′
2
and 𝑢′

3
= 𝑢′

3
. Together with 𝑡 ′

2
⇒ 𝑡 ′′

2
, it follows

that 𝑡 ⇒ 𝑡 ′′.
• 𝑢′

2
is contained in 𝑡 ′

2
: In this case, there exists 𝑢′

1
such that 𝑢1 = 𝑡 ′

1
; 𝑢′

1
. By Prop. A.8, we have

(𝑢′
1

;𝑢2 ;𝑢3) R′−→ (𝑢′
1

;𝑢′
2

;𝑢3) = 𝑡 ′
2
⇒ 𝑡 ′′

2
. We have |𝑢′

1
; 𝑢2 ; 𝑢3 | + |𝑡 ′′

2
| < |𝑡 ′ | + |𝑡 ′′ | (the difference

is |𝑡 ′
1
| + |𝑡 ′′

1
|), and by the induction hypothesis we obtain (𝑢′

1
; 𝑢2 ; 𝑢3) ⇒ 𝑡 ′′

2
. Together with

𝑡 ′
1

R loc−−→? 𝑡 ′′
1
, it follows that 𝑡 ⇒ 𝑡 ′′. □

Proposition A.15. If 𝑡 ⇒ (𝑡 ′
1

; 𝑡 ′
2
), then there exist 𝑡1, 𝑡2 such that 𝑡 = 𝑡1 ; 𝑡2, 𝑡1 ⇒ 𝑡 ′

1
, 𝑡2 ⇒ 𝑡 ′

2
.

Proof. We consider the steps in proof of 𝑡 ⇒ 𝑡 ′, which contain rewrites of the form 𝑢𝑖
R loc−−→? 𝑢′

𝑖 ,

and put them in one sequence until we have |𝑢′
1

; 𝑢′
2
; ... ;𝑢′

𝑛 | = |𝑡 ′
1
|. If we cannot take the next step,

as we have |𝑢′
1

; 𝑢′
2
; ... ;𝑢′

𝑛 | < |𝑡 ′
1
| and |𝑢′

1
; 𝑢′

2
; ... ;𝑢′

𝑛+1
| > |𝑡 ′

1
|, we observe that this can only happen if

|𝑢′
𝑛+1

| > 1. This implies no rule from R loc
was applied, and 𝑢𝑛+1 = 𝑢′

𝑛+1
. So we can split 𝑢𝑛+1 into

two parts to satisfy the length condition.

It follows that (𝑢1 ; 𝑢2; ... ;𝑡𝑛) = 𝑡1 ⇒ 𝑡 ′
1
, and similar for other claims. □

Received 2023-11-16; accepted 2024-03-31

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 169. Publication date: June 2024.

	Abstract
	1 Introduction
	2 Syntax, Operational Semantics, and Contextual Refinement
	3 Concrete Denotational Semantics
	4 Abstract Semantics
	4.1 Compositionality
	4.2 Adequacy
	4.3 Full Abstraction
	4.4 Full Abstraction Without Snapshots

	5 Semantics for RMW-Free Contexts
	6 Related and Future Work
	Acknowledgments
	References
	A Proofs
	A.1 Proof for Example 4.28
	A.2 Proof of Lemma 4.26

