
Weak memory models in
programming language semantics

June 21 2024
PODC, Nantes, France

Tutorial

Ori Lahav

1

https://www.cs.tau.ac.il/~orilahav/ orilahav@tau.ac.il

About me

• PhD from TAU in logic in CS

• Postdocs: formal verification (TAU) and
weak memory concurrency (MPI-SWS)

• Now professor at TAU,
main areas of research: programming languages theory, concurrency, verification

• ERC Starting Grant (hiring students/postdocs)

2

https://www.cs.tau.ac.il/~orilahav/
mailto:orilahav@tau.ac.il

1. Introduction

2. The C/C++11 memory model

3. The out-of-thin-air problem & RC11

4. Implementability of (R)C11: compiler optimizations and mapping to hardware

5. Programmability guarantees: DRF theorems, library abstraction

6. Verification (short survey of problems and results)

Agenda

3

“The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software”/ Herb Sutter (2005)

Parallelism is here

4

Concurrent programming is hard!

“If you can get away with it, avoid using threads.
Threads can be difficult to use, and they make programs
harder to debug.”

(Java documentation, ~25 years ago)

5

Why?

• Requires a fundamentally different way of thinking

• Interference among threads

• Inevitable non-determinism

• Testing is ineffective

• Reproducing bugs and debugging is hard

6

Concurrent programming

7

interaction by reading and
writing shared objects in memory

store/write  
load/read  

read-modify-write (e.g. CAS, FADD)  
lock & unlock

shared memory message passing

interaction by sending messages to each
other through a communication channel

Concurrent programming

7

interaction by reading and
writing shared objects in memory

store/write  
load/read  

read-modify-write (e.g. CAS, FADD)  
lock & unlock

shared memory message passing

interaction by sending messages to each
other through a communication channel

Dekker’s mutual exclusion

8

Example

4a

X := 1

a := Y

Y := 1

b := X

X := 1

Y := 1

a := Y

b := X

X := 1

Y := 1

b := X

a := Y

Y := 1

X := 1

a := Y

b := X

Y := 1

X := 1

b := X

a := Y

Y := 1

b := X

X := 1

a := Y

a=0 & b=1 a=1 & b=1a=1 & b=1 a=1 & b=1 a=1 & b=1a=1 & b=0

X := 1
a := Y // 0

Y := 1
b := X // 0

initially, X=Y=0

Demo

10

11

• There are ways to demand strong semantics when we need it

• We often don’t need strong semantics in its full power

How come airplanes don’t crash?

Before programming/verification,
we need semantics

Sequential consistency (SC)

12

…

memory

T1 T2 Tn

x ↦ 0 y ↦ 1 …

...the result of any execution is the same
as if the operations of all the processors
were executed in some sequential order,
and the operations of each individual
processor appear in this sequence in the
order specified by its program...

Lamport. 1979. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs. IEEE
Trans. Comput. https://doi.org/10.1109/TC.1979.1675439

13

The requirements needed to guarantee sequential consistency rule out some
techniques which can be used to speed up individual sequential processors. For
some applications, achieving sequential consistency may not be worth the price
of slowing down the processors. In this case, one must be aware that
conventional methods for designing multiprocess algorithms cannot be relied
upon to produce correctly executing programs. Protocols for synchronizing the
processors must be designed at the lowest level of the machine instruction code,
and verifying their correctness becomes a monumental task.

Lamport. 1979. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs. IEEE
Trans. Comput. https://doi.org/10.1109/TC.1979.1675439

SC is unrealistic
• for better performance/scalability shared-memory implementations perform various

optimizations:
• local store buffers

• out-of-order execution

• hierarchies of caches

• …

• Compilers further stir the pot by performing thread-local program optimizations

• These optimizations are:

• unobservable in sequential programs

• but can be observed by concurrent code!

14

Weak consistency in distributed systems

15

send(X = 1)
get(Y) // 0

send(Y = 1)
get(X) // 0

Email := “dear bob, ...”
Sms := “check your email”

a := Sms // “check your email”
b := Email // “no new email”

Weak memory models

• A formal interface between the user and the implementation:

• What are the possible behaviors of a concurrent program?

• More concretely, what values each read may return?

• A weak memory model (WMM) allows all outcomes allowed by SC and more

16

Hardware memory models

• Each architecture has its own WMM: x86-TSO, ARM, Power, RISC-V…

• Often: subtle differences

• None of them is SC

17

x86-TSO

18

X := 1
a := Y // 0

Y := 1
b := X // 0

memory

T1 T2

X ↦ 0 Y ↦ 0 …

 FIFO
per-

 thread
 store
buffers

X := 1
fence()
a := Y // 0

Y := 1
fence()
b := X // 0

Sewell, Sarkar, Owens, Zappa Nardelli, Myreen: x86-TSO: a rigorous and usable programmer's model for x86 multiprocessors.
Commun. ACM 53(7) 2010. https://doi.org/10.1145/1785414.1785443

https://doi.org/10.1145/1785414.1785443

x86-TSO

18

X := 1
a := Y // 0

Y := 1
b := X // 0

memory

T1 T2

X ↦ 0 Y ↦ 0 …

 FIFO
per-

 thread
 store
buffers

X := 1
fence()
a := Y // 0

Y := 1
fence()
b := X // 0

Sewell, Sarkar, Owens, Zappa Nardelli, Myreen: x86-TSO: a rigorous and usable programmer's model for x86 multiprocessors.
Commun. ACM 53(7) 2010. https://doi.org/10.1145/1785414.1785443

https://doi.org/10.1145/1785414.1785443

x86-TSO

18

X := 1
a := Y // 0

Y := 1
b := X // 0

memory

T1 T2

X ↦ 0 Y ↦ 0 …

 FIFO
per-

 thread
 store
buffers

X := 1
fence()
a := Y // 0

Y := 1
fence()
b := X // 0

Sewell, Sarkar, Owens, Zappa Nardelli, Myreen: x86-TSO: a rigorous and usable programmer's model for x86 multiprocessors.
Commun. ACM 53(7) 2010. https://doi.org/10.1145/1785414.1785443

X ↦ 1

https://doi.org/10.1145/1785414.1785443

x86-TSO

18

X := 1
a := Y // 0

Y := 1
b := X // 0

memory

T1 T2

X ↦ 0 Y ↦ 0 …

 FIFO
per-

 thread
 store
buffers

X := 1
fence()
a := Y // 0

Y := 1
fence()
b := X // 0

Sewell, Sarkar, Owens, Zappa Nardelli, Myreen: x86-TSO: a rigorous and usable programmer's model for x86 multiprocessors.
Commun. ACM 53(7) 2010. https://doi.org/10.1145/1785414.1785443

X ↦ 1

https://doi.org/10.1145/1785414.1785443

x86-TSO

18

X := 1
a := Y // 0

Y := 1
b := X // 0

memory

T1 T2

X ↦ 0 Y ↦ 0 …

 FIFO
per-

 thread
 store
buffers

X := 1
fence()
a := Y // 0

Y := 1
fence()
b := X // 0

Sewell, Sarkar, Owens, Zappa Nardelli, Myreen: x86-TSO: a rigorous and usable programmer's model for x86 multiprocessors.
Commun. ACM 53(7) 2010. https://doi.org/10.1145/1785414.1785443

X ↦ 1 Y ↦ 1

https://doi.org/10.1145/1785414.1785443

x86-TSO

18

X := 1
a := Y // 0

Y := 1
b := X // 0

memory

T1 T2

X ↦ 0 Y ↦ 0 …

 FIFO
per-

 thread
 store
buffers

X := 1
fence()
a := Y // 0

Y := 1
fence()
b := X // 0

Sewell, Sarkar, Owens, Zappa Nardelli, Myreen: x86-TSO: a rigorous and usable programmer's model for x86 multiprocessors.
Commun. ACM 53(7) 2010. https://doi.org/10.1145/1785414.1785443

X ↦ 1 Y ↦ 1

Y ↦ 1

https://doi.org/10.1145/1785414.1785443

x86-TSO

18

X := 1
a := Y // 0

Y := 1
b := X // 0

memory

T1 T2

X ↦ 0 Y ↦ 0 …

 FIFO
per-

 thread
 store
buffers

X := 1
fence()
a := Y // 0

Y := 1
fence()
b := X // 0

Sewell, Sarkar, Owens, Zappa Nardelli, Myreen: x86-TSO: a rigorous and usable programmer's model for x86 multiprocessors.
Commun. ACM 53(7) 2010. https://doi.org/10.1145/1785414.1785443

X ↦ 1 Y ↦ 1

Y ↦ 1

https://doi.org/10.1145/1785414.1785443

WMM = out-of-order execution?

19

C1 / C2

L, Vafeiadis: Explaining Relaxed Memory Models with Program Transformations. FM 2016. https://doi.org/
10.1007/978-3-319-48989-6_29

a := X // 1
Y := 1

b := Y // 1
X := b

C1 / C2
X := 1
a := Y // 0

Y := 1
b := X // 0

possible reordering for independent accesses

https://doi.org/10.1007/978-3-319-48989-6_29
https://doi.org/10.1007/978-3-319-48989-6_29

WMM ≠ out-of-order execution

20

X := 1
a := X // 1
lwsync
b := Y // 0

c := Y // 1
lwsync
d := X // 0

Y := 1

Sarkar, Sewell, Alglave, Maranget, Williams: Understanding POWER multiprocessors. PLDI 2011. https://doi.org/
10.1145/1993498.1993520

• Because of the lwsync fences, no intra-process reorderings are possible

• The threads may still observe the writes in different orders

https://dblp.org/db/conf/pldi/pldi2011.html#SarkarSAMW11
https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/1993498.1993520

WMM = hardware models?

21

X := 1
Y := 1

a := X
b := Y // 1
c := X // 0

X := 1
Y := 1

a := X
b := Y // 1
c := a // 0

compiler

Read from untaken branch

22

a := X

Y := a

b := Y

if (b = 42) then
 c := 1
else
 c := 2
 b := 42

X := b

Can this program end with c = 1 ?

Boehm, McKenney: A Relaxed Guide to memory_order_relaxed. 2020. https://open-std.org/JTC1/SC22/WG21/docs/papers/2020/
p2055r0.pdf

Read from untaken branch

22

a := X

Y := a

b := Y

if (b = 42) then
 c := 1
else
 c := 2
 b := 42

X := b

Can this program end with c = 1 ?

Boehm, McKenney: A Relaxed Guide to memory_order_relaxed. 2020. https://open-std.org/JTC1/SC22/WG21/docs/papers/2020/
p2055r0.pdf

42

Read from untaken branch

22

a := X

Y := a

b := Y

if (b = 42) then
 c := 1
else
 c := 2
 b := 42

X := b

Can this program end with c = 1 ?

Boehm, McKenney: A Relaxed Guide to memory_order_relaxed. 2020. https://open-std.org/JTC1/SC22/WG21/docs/papers/2020/
p2055r0.pdf

42

Tricky combinations

• Repeated read elimination over a lock:

• Read hoisting (t is a fresh temporary):

23

a := X
lock(L)
b := X

a := X
lock(L)
b := a

if c then
 a := X

t := X
if c then
 a := t

Chakraborty, Vafeiadis: Validating optimizations of concurrent C/C++ programs. CGO 2016. https://doi.org/10.1145/2854038.2854051

Allowing both is wrong!
• The combination of the two is unsafe:

• When c is false , X is moved out of the critical region!

• We have to forbid one of the transformations:

• C forbids load hoisting

• LLVM forbids repeated read elimination over a lock

24

t := X
 if c then
 a := t
lock(L)
b := X

t := X
 if c then
 a := t
lock(L)
b := t

if c then
 a := X
lock(L)
b := X

https://doi.org/10.1145/2854038.2854051

A WMM for a PL

25

Psrc

P1tgt Pntgt

P1x86 P1ARM P1Power

…

Compiler optimizations

Assembler

Pnx86 PnARM PnPower

Assembler

…

we want to reason
at this level!

A WMM for a PL

25

WMM

compilers

multicore
architectures

programmers

Psrc

P1tgt Pntgt

P1x86 P1ARM P1Power

…

Compiler optimizations

Assembler

Pnx86 PnARM PnPower

Assembler

…

we want to reason
at this level!

A WMM for a PL

25

• C, C++

• Java

• OCaml

• JavaScript

• WebAssembly

• Linux kernel

• Rust

• LLVM

• …

WMM

compilers

multicore
architectures

programmers

Psrc

P1tgt Pntgt

P1x86 P1ARM P1Power

…

Compiler optimizations

Assembler

Pnx86 PnARM PnPower

Assembler

…

we want to reason
at this level!

26

Commun. ACM 53, 8 (August 2010).
https://doi.org/10.1145/1582716.1582718

ESOP 2015. https://doi.org/10.1007/978-3-662-46669-8_12

https://doi.org/10.1145/1582716.1582718
https://doi.org/10.1007/978-3-662-46669-8_12

Embracing weak consistency

• Not only a threat, but also an opportunity:

• More scalable algorithms

• Many (most?) concurrent idioms/algorithms do not need SC

• Better understanding of our algorithms

• Better understanding of concurrency

• Local reasoning and more scalable verification

• Open research problems!

27

...

...

The C11 memory model

28

The C/C++11 memory model
• In C/C++11 threads were made a part of the language specification

• A careful and sophisticated declarative weak memory model was published:

• a result of several years of effort (starting around 2004)

• building on the experience with the Java memory model

• Main design principles:

• Tell non-expert programmers to avoid data races and provide strong semantics for them

• Leave the semantics of data races completely undefined (“catch-fire”)
• This way we can allow more flexible implementations and simpler model

• Give experts a way to write very carefully crafted, but portable, synchronization code
that approaches the performance of assembly code

29

Some resources
• For language lawyers:

• http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf

• A popularized history:

• Boehm, Adve: You Don’t Know Jack about Shared Variables or Memory Models. Commun. ACM 55.2 (Feb.
2012). https://doi.org/10.1145/2076450.2076465

• Formal treatment:

• Batty, Owens, Sarkar, Sewell, Weber: Mathematizing C++ Concurrency. POPL 2011. http://doi.acm.org/
10.1145/1926385.1926394

• L, Vafeiadis, Kang, Hur, Dreyer: Repairing Sequential Consistency in C/C++11. PLDI 2017. https://doi.org/
10.1145/3140587.3062352

30

...

...

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf
https://doi.org/10.1145/2076450.2076465
http://doi.acm.org/10.1145/1926385.1926394
http://doi.acm.org/10.1145/1926385.1926394
https://doi.org/10.1145/3140587.3062352
https://doi.org/10.1145/3140587.3062352

Why focus on C11?

• The world is programmed in C/C++.

• C11 is a prototype PL memory model: a solid starting point for other languages:
LLVM, Java 9, WebAssembly, Rust, JavaScript…

• Architecture vendors aim to efficiently implement C11

• One of the most well-studied weak memory models: correctness, programmability
guarantees, algorithms, verification,…

31

Main ingredients
• Non-atomic memory accesses (reads/writes):

• ordinary accesses for data manipulations

• the majority of accesses in a typical program

• insensitive to access granularity

• Locks

• used to avoid data-races

• Atomic memory accesses (reads/writes/RMWs)

• used for synchronization

• Fences for fine-tuned synchronization patterns

32

Fast Slow

Weak StrongWeak

relaxed release/acquire sc⊏ ⊏

ex
pe

rt
 m

od
e

memory orders

no
n-

ex
pe

rt
 m

od
e

Syntax examples (atomics)

• In C:

• annotate the type, and then all accesses default to SC memory order:

Atomic(Node *) top;

• Annotate an access:

t = atomic_load_explicit(top, memory_order_acquire);

• CAS in C++:

atomic_compare_exchange_weak_explicit(&head, &new_node->next, new_node,
memory_order_release, memory_order_relaxed);

33

Examples with non-atomics and locks

34

lock(L)
X := 1
unlock(L)

lock(L)
a := X // 2
unlock(L)

a := X // 1
Y := 1

b := Y // 1
X := 1

a := X // 1
if a = 1 then
 Y := 1

b := Y // 1
if b = 1 then
 X := 1

Which of these programs are race-free? How are data races defined?

What are the guarantees for race-free programs?

X := 1
lock(L)
Y := 1
unlock(L)

lock(L)
a := Y // 1
unlock(L)
if (a = 1) then

 b := X // 0

The full model…

35

J�K : CExp ! P(hres : Val [{?},A : P(AName), lab : A ! Act, sb : P(A⇥A), fst : A, lst : Ai)
JvK def

= {hv, {a}, lab, ;, a, ai | a 2 AName ^ lab(a) = skip}
Jalloc()K def

= {h`, {a}, lab, ;, a, ai | a 2 AName ^ ` 2 Loc ^ lab(a) = A(`)}
J[v]Z := v0K def

= {hv0, {a}, lab, ;, a, ai | a 2 AName ^ lab(a) = WZ(v, v0)}
J[v]ZK def

= {hv0, {a}, lab, ;, a, ai | a 2 AName ^ v0 2 Val ^ lab(a) = RZ(v, v0)}
JCASX,Y (v, vo, vn)K

def
= {hv0, {a}, lab, ;, a, ai | a 2 AName ^ v0 2 Val ^ v0 6= vo ^ lab(a) = RY (v, v0)}
[{hvo, {a}, lab, ;, a, ai | a 2 AName ^ lab(a) = RMWX(v, vo, vn)}

Jlet x = E1 in E2K
def
= {h?,A1, lab1, sb1, fst1, lst1i | h?,A1, lab1, sb1, fst1, lst1i 2 JE1K}
[{hres2,A1]A2, lab1 [lab2, sb1 [sb2 [{(lst1, fst2)}, fst1, lst2i |

hv1,A1, lab1, sb1, fst1, lst1i 2 JE1K ^ hres2,A2, lab2, sb2, fst2, lst2i 2 JE2[v1/x]K}
Jrepeat E endK def

= {hresN ,
U

i2[1..N] Ai,
S

i2[1..N] labi,
S

i2[1..N] sbi [{(lst1, fst2), . . . , (lstN�1, fstN)}, fst1, lstN i |
8i. hresi,Ai, labi, sbi, fst i, lst ii 2 JEK ^ (i 6= N =) resi = 0) ^ resN 6= 0}

JE1kE2K
def
= {hcombine(res1, res2),A1]A2] {afork, ajoin}, lab1 [lab2 [{afork 7! skip, ajoin 7! skip},

sb1 [sb2 [{(afork, fst1), (afork, fst2), (lst1, ajoin), (lst2, ajoin)}, afork, ajoini |
hres1,A1, sb1, fst1, lst1i 2 JE1K ^ hres2,A2, sb2, fst2, lst2i 2 JE2K ^ afork, ajoin 2 AName}

Figure 2. Semantics of closed program expressions.
@x. hb(x, x) (IrreflexiveHB)

8`. totalorder({a 2 A | iswrite`(a)},mo) ^ hb` ✓ mo (ConsistentMO)

totalorder({a 2 A | isSeqCst(a)}, sc) ^ hbSeqCst ✓ sc ^moSeqCst ✓ sc (ConsistentSC)

8b. rf(b) 6= ? () 9`, a. iswrite`(a) ^ isread`(b) ^ hb(a, b) (ConsistentRFdom)

8a, b. rf(b) = a =) 9`, v. iswrite`,v(a) ^ isread`,v(b) ^ ¬hb(b, a) (ConsistentRF)

8a, b. rf(b) = a ^ (mode(a) = na _mode(b) = na) =) hb(a, b) (ConsistentRFna)

8a, b. rf(b) = a ^ isSeqCst(b) =) isc(a, b) _ ¬isSeqCst(a) ^ (8x. isc(x, b)) ¬hb(a, x)) (RestrSCReads)
@a, b. hb(a, b) ^mo(rf(b), rf(a)) ^ locs(a) = locs(b) (CoherentRR)

@a, b. hb(a, b) ^mo(rf(b), a) ^ iswrite(a) ^ locs(a) = locs(b) (CoherentWR)

@a, b. hb(a, b) ^mo(b, rf(a)) ^ iswrite(b) ^ locs(a) = locs(b) (CoherentRW)

8a. isrmw(a) ^ rf(a) 6= ? =) mo(rf(a), a) ^ @c. mo(rf(a), c) ^mo(c, a) (AtomicRMW)

8a, b, `. lab(a) = lab(b) = A(`) =) a = b (ConsistentAlloc)

where iswrite`,v(a)
def
= 9X, vold. lab(a) 2 {WX(`, v),RMWX(`, vold, v)} iswrite`(a)

def
= 9v. iswrite`,v(a)

isread`,v(a)
def
= 9X, vnew. lab(a) 2 {RX(`, v),RMWX(`, v, vnew)} etc.

rsElem(a, b)
def
= sameThread(a, b) _ isrmw(b)

rseq(a)
def
= {a} [{b | rsElem(a, b) ^mo(a, b) ^ (8c. mo(a, c) ^mo(c, b)) rsElem(a, c))}

sw
def
= {(a, b) | mode(a) 2 {rel, rel_acq, sc} ^mode(b) 2 {acq, rel_acq, sc} ^ rf(b) 2 rseq(a)}

hb
def
= (sb [sw)+

hb`
def
= {(a, b) 2 hb | iswrite`(a) ^ iswrite`(b)}

XSeqCst
def
= {(a, b) 2 X | isSeqCst(a) ^ isSeqCst(b)}

isc(a, b)
def
= iswritelocs(b)(a) ^ sc(a, b) ^ @c. sc(a, c) ^ sc(c, b) ^ iswritelocs(b)(c)

Figure 3. Axioms satisfied by consistent C11 executions, Consistent(A, lab, sb, rf,mo, sc).

c : W(`, 1)
rf
// a : R(`, 1)

hb
✏✏

d : W(`, 2)

mo
OO

rf
// b : R(`, 2)

c : W(`, 2)

rf ((

mo
// a : W(`, 1)

hb
✏✏

b : R(`, 2)

c : W(`, 1)
rf
// a : R(`, 1)

hb
✏✏

b : W(`, 2)
mo

hh a
rf�! b means a = rf(b)

a
mo��! b means mo(a, b)

a
hb�! b means hb(a, b)violates CoherentRR violates CoherentWR violates CoherentRW

Figure 4. Sample executions violating coherency conditions (Batty et al. 2011).

Declarative memory models
• Possible program behaviors are represented by directed graphs

36

X := 1
lock(L)
Y := 1
unlock(L)

lock(L)
a := Y // 1
unlock(L)
if (a = 1) then

 b := X // 0

reads-from rf
program-order po

lock order lo

W x 1

W x 0 W y 0

Lock(L)

R y 1Lock(L)

W y 1

Unlock(L)

Unlock(L)

R x 0
• The model defines:

• consistent execution graphs

• racy execution graphs

Execution graphs

• There is a standard translation:

program set of candidate execution graphs

• Read values are not constrained at this stage

• Except for , relations are existentially quantified

↦

po
37

 G = ⟨E, po, rf , lo , …⟩

events: reads, writes, RMWs,
lock/unlock, fences

reads-from
relation

lock
order

program
order

Well-formedness

• Program order : partial order, per-thread total, initialization
before everything

• reads-from : from a writing event to a reading event, value
and location should match, every read reads from some write,
an RMW cannot read from itself

• lock order : among lock and unlock events of the same lock,
partial order, per-lock total, properly interleaved

po

rf

lo

38

reads-from rf
program-order po

lock order lo

W x 1

W x 0 W y 0

Lock(L)

R y 1Lock(L)

W y 1

Unlock(L)

Unlock(L)

R x 0

Happens-before

• The most central derived relation:

39

more to be
added later

transitive
closure

 = hb (po ∪ lo ∪ …)+

• Intuitively represents “knowledge”, “synchronization”, “causality"

assuming only non-atomics & locks

Execution-graph consistency

The following patterns should never occur:

40

R x

W x

hb
W x

rf
hb

a thread may not read from a write
if it is aware of a later write to the same variable

hb

W x R xhb

rf
no reads from later writes

hb

 should be irreflexivehb

hb

41

inconsistent

W x 1

W x 0 W y 0

Lock(L)

R y 1Lock(L)

W y 1

Unlock(L)

Unlock(L)

R x 0

consistent

W x 1

W x 0 W y 0

Lock(L)

R y 1Lock(L)

W y 1

Unlock(L)

Unlock(L)

R x 1

W x 1

W x 0 W y 0

Lock(L)

R y 1Lock(L)

W y 1

Unlock(L)

Unlock(L)

R x 0

inconsistent

X := 1
lock(L)
Y := 1
unlock(L)

lock(L)
a := Y
unlock(L)
if (a = 1) then

 b := X

Data-races

42

• Two events are conflicting:

• access the same location

• at least one is a write

• A data-race = two conflicting events:

• at least one is non-atomic

• unordered by hb

W x 1

W x 0 W y 0

R y 1

W y 1 R x 0

W x 1

W x 0 W y 0

Lock(L)

R y 1Lock(L)

W y 1

Unlock(L)

Unlock(L)

R x 1

racy

not racy

Allowed behaviors

43

A behavior of a program is allowed if one of the following holds:

• It is obtained by some consistent execution graph of the program

• Some consistent execution graph of the program has a data race

• Side note: What is a behavior?

• Often taken to be the final values of the local variables

• But, there are other options…

catch-fire

Example

44

X := 1
lock(L)
Y := 1
unlock(L)

lock(L)
a := Y // 1
unlock(L)
if (a=1) then

 b := X // 0

behavior a=1 & b=0 disallowed

W x 1

W x 0 W y 0

Lock(L)

R y 1Lock(L)

W y 1

Unlock(L)

Unlock(L)

R x 0

inconsistent

+ no consistent graph of this program is racy

W x 1

W x 0 W y 0

Lock(L)

R y 1Lock(L)

W y 1

Unlock(L)

Unlock(L)

R x 0

inconsistent

Atomic accesses
Fast Slow

Weak StrongWeak

relaxed release/acquire sc⊏ ⊏

• All atomics guarantee coherence

• accesses to each location are in a total order (that extends) where each read reads
from the last write

• Release/Acquire enforce synchronization

• via another case in the definition of

• SC accesses ensure a global total order among them

hb

hb

45

aka SC-per-location

Coherence guarantees for atomics

For every location X, there exists a relation such that:

• is a total order on all accesses to X

• contains when restricted to accesses to X

• relates every read r from X to the -maximal write that is -before r

Sx

Sx

Sx hb

rf Sx Sx

46

R x W x
Sx

rf

W x W x
Sx

rf

Sx
R xR/W x R/W x

Sx

hb

disallowed
patterns:

Example: Coherence

47

R x 1 R x 2

R x 1R x 2

W x 2W x 1

coherence forbids this behavior

X := 1 rlx a := X rlx // 1
b := X rlx // 2

c := X rlx // 2
d := X rlx // 1

X := 2 rlx

reads-from rf
program-order po

Example: IRIW (independent-reads-independent-writes)

48

W x 0 W y 0

R x 1 R y 1

R x 0R y 0

W y 1W x 1

coherence allows this behavior

X := 1 rlx a := X rlx // 1
b := Y rlx // 0

c := Y rlx // 1
d := X rlx // 0

Y := 1 rlx

reads-from rf
program-order po

1

2

3 4

2

4 3

1

49

• include modification order (aka coherence order) in execution graphs:

• where each is a total order on all writes to X

• forbid the following six patterns:

• This is equivalent to the previous formulation with a total order on all accesses to X

G = ⟨E, po, rf, lo, mo, . . . ⟩

mo = ∪x mox mox

Alternative formulation of coherence

R x

W x

hb

mo

W x

rfW x W xhb

mo

R x

W x

hb

mo

W x

rf

rf
R x

RMW x W xrf

mo

W x W x
hb

mo

rf
R xRMW x W x

mo

rf

mo
W x

50

• Reads-before (aka from-read) relation:

• Coherence:

acyclic()

• Compare to a standard declarative formulation of SC: acyclic()

rb = (rf−1 ; mo) ∖ id

hb |same−location ∪ rf ∪ mo ∪ rb

po ∪ rf ∪ mo ∪ rb

A more concise formulation

R x

W x

rb

mo

W x

rf

relation
composition

51

• Extended coherence relation:

• Coherence:

 is irreflexive

• Compare to another standard declarative formulation of SC: acyclic()

• There is also an alternative equivalent definition that avoids altogether:

L, Vafeiadis: Owicki-Gries Reasoning for Weak Memory Models. ICALP 2015. http://plv.mpi-sws.org/ogra/full-paper.pdf
(appendix B)

eco = (rf ∪ mo ∪ rb)+ = rf ∪ mo ∪ rb ∪ (mo ; rf) ∪ (rb ; rf)

eco ; hb?

eco ∪ hb

mo

Another concise formulation

http://plv.mpi-sws.org/ogra/full-paper.pdf

Synchronization via atomic accesses

• Release/Acquire (and SC) accesses form “synchronization edges”:

• The full definition of is more involved, allowing more synchronization patterns:

• using relaxed accesses + release/acquire fences

• using “release sequences” (definition was changed in C++20)

sw

52

 = sw rf ∩ (W⊒rel × R⊒acq)

 = hb (po ∪ lo ∪ sw ∪ . . .)+

Fast Slow

Weak StrongWeak

relaxed release/acquire sc⊏ ⊏

Examples: MP (message passing)

53

int Y = 0
int X = 0

Y := 42
X := 1

a := X
if (a=1) then

 b := Y

int Y = 0
atomic<int> X = 0

Y := 42
X := 1 rlx

a := X rlx
if (a=1) then

 b := Y

int Y = 0
atomic<int> X = 0

Y := 42
X := 1 rel

a := X acq
if (a=1) then

 b := Y

W y 42

W y 0 W x 0

R x 1

W x 1 R y 0behavior a=1 & b=0 allowed ?

1

2

3

Examples: MP (message passing)

53

int Y = 0
int X = 0

Y := 42
X := 1

a := X
if (a=1) then

 b := Y

int Y = 0
atomic<int> X = 0

Y := 42
X := 1 rlx

a := X rlx
if (a=1) then

 b := Y

int Y = 0
atomic<int> X = 0

Y := 42
X := 1 rel

a := X acq
if (a=1) then

 b := Y

W y 42

W y 0 W x 0

R x 1

W x 1 R y 0behavior a=1 & b=0 allowed ?

1

2

3

Examples: MP (message passing)

53

int Y = 0
int X = 0

Y := 42
X := 1

a := X
if (a=1) then

 b := Y

int Y = 0
atomic<int> X = 0

Y := 42
X := 1 rlx

a := X rlx
if (a=1) then

 b := Y

int Y = 0
atomic<int> X = 0

Y := 42
X := 1 rel

a := X acq
if (a=1) then

 b := Y

W y 42

W y 0 W x 0

R x 1

W x 1 R y 0behavior a=1 & b=0 allowed ?

1

2

3

Examples: MP (message passing)

53

int Y = 0
int X = 0

Y := 42
X := 1

a := X
if (a=1) then

 b := Y

int Y = 0
atomic<int> X = 0

Y := 42
X := 1 rlx

a := X rlx
if (a=1) then

 b := Y

int Y = 0
atomic<int> X = 0

Y := 42
X := 1 rel

a := X acq
if (a=1) then

 b := Y

W y 42

W y 0 W x 0

R x 1

W x 1 R y 0behavior a=1 & b=0 allowed ?

1

2

3

hb

SC accesses

• SC accesses can be used to provide sequentially consistent semantics when needed

• Roughly, there should exist a total order on all SC accesses in which every read reads from
the last write

• The precise semantics is much more complicated

• It has been a rich source of bugs in the model, and it is currently under another revision…

sc

54

Fast Slow

Weak StrongWeak

relaxed release/acquire sc⊏ ⊏

Example: SB (store buffer)

55

X := 1 sc
a := Y sc // 0

Y := 1 sc
b := X sc // 0

• Allowed with release/acquire atomic accesses

• Disallowed when all 4 accesses are sc

W x 1

W x 0 W y 0

W y 1

R y 0 R x 0

Example: IRIW (independent-reads-independent-writes)

56

X := 1 a := X // 1
b := Y // 0

c := Y // 1
d := X // 0

Y := 1

• Allowed with release/acquire atomic accesses

• Disallowed when all 6 accesses are sc

W x 0 W y 0

R x 1 R y 1

R x 0R y 0

W y 1W x 1

Fixing SC accesses in C11

57

X := 1 sc a := X acq // 1
b := Y sc // 0

c := Y acq // 1
d := X sc // 0

Y := 1 sc

• In the original C11 model this behavior was disallowed (the order had to agree with)

• But it is allowed on POWER multicores after compilation mapping!

• The C/C++11 was weakened in order to solve this problem

L, Vafeiadis, Kang, Hur, Dreyer: Repairing Sequential Consistency in C/C++11. PLDI 2017. https://doi.org/10.1145/3140587.3062352

sc hb

https://doi.org/10.1145/3140587.3062352

atomic_thread_fence(memory_order_seq_cst)

SC fences

• SC-fences provide another way to enforce SC semantics when needed

• Consistency essentially requires that there exists a total order on all SC fences in the

graph that is a part of :

 =

scF
hb

hb (po ∪ lo ∪ sw ∪ scF)+

58

SC fences
• Weak behaviors can be forbidden by placing SC-fences:

• SC-fences are often preferred by expert developers, making SC accesses rather useless…

• SC-fences can be encoded as release/acquire RMWs (e.g., FADD(F,0)) to a distinguished, otherwise
unused location

59

X := 1 rlx
SC-fence
a := Y rlx // 0

Y := 1 rlx
SC-fence
b := X rlx // 0

X := 1 rlx
a := X rlx // 1
SC-fence
b := Y rlx // 0

c := Y rlx // 1
SC-fence
d := X rlx // 0

Y := 1 rlx

Recap: The C11 memory model

• Catch-fire: races on non-atomics undefined behavior

• Relaxed atomics for racy (but non-synchronizing) accesses

• Atomics ensure coherence

• Locks and release/acquire atomics for synchronization

• SC atomics / fences for ensuring a global total order

⟹

60

Fast Slow

Weak StrongWeak

relaxed release/acquire sc⊏ ⊏

The out-of-thin-air problem &
RC11

61

The out-of-thin-air problem
• The model presented so far is too weak.

• Values might appear “out-of-thin-air”!

• For the same reason, the DRF guarantee is broken (we will discuss later).

62

63

a := X rlx // 1
Y := 1 rlx

b := Y rlx // 1
X := 1 rlx

• C11 allows this behavior, for a good reason:

• We want to compile relaxed accesses to plain machine accesses

• Hardware models (POWER / ARM) allow it

R x 1

W x 0 W y 0

R y 1

W x 1W y 1

Example: LB (load buffer)

64

• But, it means that it also allows the above behavior

• The two behaviors are represented by the same execution graph!

• The value 1 appears “out-of-thin-air”

a := X rlx // 1
Y := a rlx

b := Y rlx // 1
X := b rlx R x 1

W x 0 W y 0

R y 1

W x 1W y 1

Example: LB (load buffer)

The hardware solution

65

a := X // 1
Y := a

b := Y // 1
X := b

a := X // 1
Y := 1

b := Y // 1
X := 1

R x 1

W x 0 W y 0

R y 1

W x 1W y 1

R x 1

W x 0 W y 0

R y 1

W x 1W y 1

dependency dep• Hardware models forbid: cycles(dep ∪ rf)

The hardware solution
• Hardware execution graph maintain dependency relation among events

• This is not a viable option for a PL since compilers may remove syntactic dependencies

• Devising a good “semantic” notion of dependency is an open challenge

66

a := X // 1
Y := 1

b := Y // 1
X := 1

a := X // 1
Y := 1 + a - a

b := Y // 1
X := 1 + b - b

compiler
optimization

The out-of-thin-air problem
• The C++14 standard states:

“Implementations should ensure that no "out-of-thin-air" values are computed that circularly
depend on their own computation.”

• But doesn’t give a sufficiently formal definition…

“Disturbingly, 40+ years after the first relaxed-memory hardware was introduced (the IBM
370/158MP), the field still does not have a credible proposal for the concurrency semantics of
any general-purpose high-level language that includes high performance shared-memory
concurrency primitives. This is a major open problem for programming language semantics.”
Batty, Memarian, Nienhuis, Pichon-Pharabod, Sewell: The Problem of Programming Language Concurrency Semantics. ESOP 2015. https://doi.org/
10.1007/978-3-662-46669-8_12

67

https://doi.org/10.1007/978-3-662-46669-8_12
https://doi.org/10.1007/978-3-662-46669-8_12

RC11: a conservative approach

• Disallow cycles altogether.

• Implementation cost: forbid RW-reodering for relaxed accesses

• Importantly, reodering of non-atomic accesses is still sound!

• Different strategies and their performance implications were investigated:
Ou, Demsky: Towards understanding the costs of avoiding out-of-thin-air results. OOPSLA 2018. https://doi.org/
10.1145/3276506

• The obtained model is called RC11 (“repaired C11”).

(po ∪ rf)

68

Boehm, Demsky: Outlawing ghosts: avoiding out-of-thin-air results. MSPC 2014. https://doi.org/10.1145/2618128.2618134
L, Vafeiadis, Kang, Hur, Dreyer: Repairing Sequential Consistency in C/C++11. PLDI 2017. https://doi.org/10.1145/3140587.3062352

https://doi.org/10.1145/2618128.2618134
https://doi.org/10.1145/3140587.3062352

Alternative proposals

• Solving the out-of-thin-air problem without changing the compilation schemes requires a major
revision of the standard

• We cannot have a per-execution definition: validity of one execution depends on what happens in
other executions

• Some prominent proposals:

• Chakraborty, Vafeiadis. Grounding thin-air reads with event structures. POPL 2019. https://doi.org/10.1145/3290383

• Jeffrey, Riely, Batty, Cooksey, Kaysin, Podkopaev. The leaky semicolon: compositional semantic dependencies for relaxed-
memory concurrency. POPL 2022. https://doi.org/10.1145/3498716

• Kang, Hur, L, Vafeiadis, Dreyer. A promising semantics for relaxed-memory concurrency. POPL 2017. https://doi.org/
10.1145/3009837.3009850

69

https://doi.org/10.1145/3290383
https://doi.org/10.1145/3498716
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/3009837.3009850

RC11

70

• In the rest of this presentation, we mostly assume RC11: is acyclic

• This model has been extensively studied in recent years:

• acyclicity of allows adaptations of existing techniques

• we think about the system executing the program “in-order” on top of a non-standard
memory system

(po ∪ rf)

(po ∪ rf)

X := 1 rlx
a := Y rlx // 0

Y := 1 rlx
b := X rlx // 0

71

• State is the execution
graph produced so far

• Non-deterministic choice
where to read from (and
where to place writes in the
modification order)

• Consistency is checked at
every step

• This memory system is
synchronized with an “in-
order” program semantics

Operationalizing RC11

initial state

G0

W X 0 W Y 0

X := 1 rlx
a := Y rlx // 0

Y := 1 rlx
b := X rlx // 0

71

• State is the execution
graph produced so far

• Non-deterministic choice
where to read from (and
where to place writes in the
modification order)

• Consistency is checked at
every step

• This memory system is
synchronized with an “in-
order” program semantics

Operationalizing RC11

initial state

G0

W X 0 W Y 0

G1

W X 0 W Y 0

W X 1

1 : 𝖶𝚇1

X := 1 rlx
a := Y rlx // 0

Y := 1 rlx
b := X rlx // 0

71

• State is the execution
graph produced so far

• Non-deterministic choice
where to read from (and
where to place writes in the
modification order)

• Consistency is checked at
every step

• This memory system is
synchronized with an “in-
order” program semantics

Operationalizing RC11

initial state

G0

W X 0 W Y 0

G1

W X 0 W Y 0

W X 1

G2

W X 0 W Y 0

W X 1

R Y 0

1 : 𝖶𝚇1 1 : 𝖱𝚈0

X := 1 rlx
a := Y rlx // 0

Y := 1 rlx
b := X rlx // 0

71

• State is the execution
graph produced so far

• Non-deterministic choice
where to read from (and
where to place writes in the
modification order)

• Consistency is checked at
every step

• This memory system is
synchronized with an “in-
order” program semantics

Operationalizing RC11

initial state

G0

W X 0 W Y 0

G1

W X 0 W Y 0

W X 1

G2

W X 0 W Y 0

W X 1

R Y 0

W X 0 W Y 0

W X 1 W Y 1

R Y 0

G3
1 : 𝖶𝚇1 1 : 𝖱𝚈0 2 : 𝖶𝚈1

X := 1 rlx
a := Y rlx // 0

Y := 1 rlx
b := X rlx // 0

71

• State is the execution
graph produced so far

• Non-deterministic choice
where to read from (and
where to place writes in the
modification order)

• Consistency is checked at
every step

• This memory system is
synchronized with an “in-
order” program semantics

Operationalizing RC11

initial state

G0

W X 0 W Y 0

G1

W X 0 W Y 0

W X 1

G2

W X 0 W Y 0

W X 1

R Y 0

W X 0 W Y 0

W X 1 W Y 1

R Y 0

G3

W X 0 W Y 0

W X 1 W Y 1

R X 0R Y 0

G4
1 : 𝖶𝚇1 1 : 𝖱𝚈0 2 : 𝖶𝚈1 2 : 𝖱𝚇0

X := 1 rlx
a := Y rlx // 0

Y := 1 rlx
b := X rlx // 0

71

• State is the execution
graph produced so far

• Non-deterministic choice
where to read from (and
where to place writes in the
modification order)

• Consistency is checked at
every step

• This memory system is
synchronized with an “in-
order” program semantics

Operationalizing RC11

Operationalizing RC11

72

• Observation:

• we don’t need the full execution graph in the state

• we only need the part that can affect consistency of later accesses

• This leads to more compact presentations (somewhat similar to distributed implementations)

• Note: The state space remains infinite (for program with loops)

• important implications for algorithmic verification

• Next, we demonstrate this idea for the RA fragment

Fast Slow

Weak StrongWeak

relaxed release/acquire sc⊏ ⊏

The RA memory model
• An well-studied fragment of C11 is RA (intricate but not overwhelmingly detailed)

• Ensures causal consistency & coherence

• Supports “flag-based synchronization”

• Allows WR-reordering

• Threads can disagree about the order of writes: non-multi-copy-atomic

• Locks can be implemented using RMWs

• SC-fences can be encoded as RMWs to a distinguished otherwise unused location

73

Y := 42
X := 1

a := X
if (a=1) then

 b := Y // 0

Declarative RA

• When restricting RC11 to only release/acquire accesses:

• =

• Four disallowed patterns:

• Concise formulation: acyclic()

hb (po ∪ rf)+

hb |same−location ∪ mo ∪ rb

74

hb R x

W x

hb

mo

W x

rfW x W xhb

mo

RMW x W x
mo

rf

mo
W x

Operational formulation

• Memory: Timeline per location (represents)

• Populated with immutable messages holding values

• Each view points to msgs on each timeline

• Threads have views — cannot read from “the past”

• Msgs have views for enforcing causal propagation

• Simulates the graph-based operational semantics

mo

75

Kang, Hur, L, Vafeiadis, Dreyer: A promising semantics for relaxed-memory concurrency. POPL 2017. https://doi.org/
10.1145/3009837.3009850
Dvir, Kammar, L: A Denotational Approach to Release/Acquire Concurrency. ESOP 2024. https://doi.org/10.1007/978-3-031-57267-8_5

x1x0

x

y

z

y0

z0

x2

y1

Thread view

A view-based semantics

https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1007/978-3-031-57267-8_5

Operational formulation

• Memory: Timeline per location (represents)

• Populated with immutable messages holding values

• Each view points to msgs on each timeline

• Threads have views — cannot read from “the past”

• Msgs have views for enforcing causal propagation

• Simulates the graph-based operational semantics

mo

75

Kang, Hur, L, Vafeiadis, Dreyer: A promising semantics for relaxed-memory concurrency. POPL 2017. https://doi.org/
10.1145/3009837.3009850
Dvir, Kammar, L: A Denotational Approach to Release/Acquire Concurrency. ESOP 2024. https://doi.org/10.1007/978-3-031-57267-8_5

x1x0

x

y

z

y0

z0

x2

y1

Thread view

A view-based semantics

https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1007/978-3-031-57267-8_5

x0

x

y

z

y0

z0

T1 T2

T1

X := x1

x0

x

y

z

y0

z0

T1 T2

x1

must be placed after thread’s view

may be placed before others

copies thread’s view

When writing, the message:

76

X := x1 rel
Y := y1 rel

X := x2 rel
a := Y acq // y1
b := X rlx // x1

x0

x

y

z

y0

z0

T1 T2

x1 T1

Y := y1

x0

x

y

z

y0

z0

T1 T2

x1

y1

must be placed after thread’s view

may be placed before others

copies thread’s view

When writing, the message:

77

X := x1 rel
Y := y1 rel

X := x2 rel
a := Y acq // y1
b := X rlx // x1

x0

x

y

z

y0

z0

T1 T2

x1

y1

x2x0

x

y

z

y0

z0

T1 T2

x1

y1

T2

X := x2

must be placed after thread’s view

may be placed before others

copies thread’s view

When writing, the message:

78

X := x1 rel
Y := y1 rel

X := x2 rel
a := Y acq // y1
b := X rlx // x1

x2x0

x

y

z

y0

z0

T1 T2

x1

y1

x2x0

x

y

z

y0

z0

T1 T2

x1

y1

T2

a := Y // y1

cannot be before thread’s view

may be before others

When reading, the message:

inherits the copy of the view

and the thread:

79

X := x1 rel
Y := y1 rel

X := x2 rel
a := Y acq // y1
b := X rlx // x1

x2x0

x

y

z

y0

z0

T1 T2

x1

y1

x2x0

x

y

z

y0

z0

T1 T2

x1

y1

T2

b := X // x1

cannot be before thread’s view

may be before others

When reading, the message:

inherits the copy of the view

and the thread:

80

X := x1 rel
Y := y1 rel

X := x2 rel
a := Y acq // y1
b := X rlx // x1

Implementability of (R)C11

81

82

The (R)C11 memory model

compilers

multicore
architectures

programmers

82

The (R)C11 memory model

compilers

multicore
architectures

programmers

Compiler optimizations

• A formal analysis of soundness of optimizations in C11:

Vafeiadis, Balabonski, Chakraborty, Morisset, Zappa Nardelli: Common Compiler Optimisations are Invalid in the C11
Memory Model and what we can do about it. POPL 2015. https://doi.org/10.1145/2676726.2676995

• In RC11:

L, Vafeiadis, Kang, Hur, Dreyer: Repairing Sequential Consistency in C/C++11. PLDI 2017. https://doi.org/
10.1145/3140587.3062352

• A lot of focus on optimizations on atomics (eliminations and reorderings)

• Current compilers mostly optimize non-atomics

83

https://doi.org/10.1145/2676726.2676995
https://doi.org/10.1145/3140587.3062352
https://doi.org/10.1145/3140587.3062352

Transformation soundness

• Standard notion of soundness of local program transformations:

 if for every program context

• For catch-fire semantics (as (R)C11), it implies:

• if is not racy, then is not racy (the compiler must not introduce races)

• if is racy, then is sound for every (the compiler may exploit races)

Csrc ⇝ Ctgt 𝖡𝖾𝗁𝖺𝗏𝗂𝗈𝗋𝗌(P[Ctgt]) ⊆ 𝖡𝖾𝗁𝖺𝗏𝗂𝗈𝗋𝗌(P[Csrc]) P

Csrc Ctgt

Csrc Csrc ⇝ Ctgt Ctgt

84

Allowed eliminations in RC11

85

together with access strengthening RC11 allows, e.g.:

WW W: X := 1 rel ; X := 2 rlx X := 2 rel

RR R: a := X acq ; b := X rlx a := X acq ; b := a

WR W: X := 1 rlx ; a := X acq X := 1 rlx ; a := 1

 X := 1 rlx ; a := X sc X := 1 sc ; a := 1

⇝ ⇝
⇝ ⇝
⇝ ⇝

⇝

⇝
⇝

⇝
⇝

Allowed read-write reordering in RC11

86

thanks to
“catch-fire”

e.g.,

RR: a := X ; b := Y acq b := Y acq ; a := X

WW: X := 1 rel ; Y := 2 Y := 2 ; X := 1 rel

WR: X := 1 rel ; b := Y acq b := Y acq ; X := 1 rel

RW: a := X ; Y := 1 Y := 1 ; a := X

⇝
⇝

⇝
⇝

“roach motel”“roach motel”

X ; Y Y ; X ⇝

lock(L)

a := X

Y := 1

unlock(L)

lock(L)

b := Y

X := b

unlock(L)

Optimizing non-atomics
Thanks to catch-fire, non-atomics can be generally optimized as sequential code

87

lock(L)

a := X

Y := 1

unlock(L)

lock(L)

b := Y

X := b

unlock(L)

Optimizing non-atomics
Thanks to catch-fire, non-atomics can be generally optimized as sequential code

① ③
② ④

87

lock(L)

a := X

Y := 1

unlock(L)

lock(L)

b := Y

X := b

unlock(L)

Optimizing non-atomics
Thanks to catch-fire, non-atomics can be generally optimized as sequential code

① ③
② ④

①, ② → ③, ④ or ③, ④ → ①, ②well-locked

87

lock(L)

a := X

Y := 1

unlock(L)

lock(L)

b := Y

X := b

unlock(L)

Optimizing non-atomics
Thanks to catch-fire, non-atomics can be generally optimized as sequential code

① ③
② ④

①, ② → ③, ④ or ③, ④ → ①, ②well-locked

87

lock(L)

a := X

Y := 1

unlock(L)

lock(L)

b := Y

X := b

unlock(L)

Optimizing non-atomics
Thanks to catch-fire, non-atomics can be generally optimized as sequential code

① ③
② ④

①, ② → ③, ④ or ③, ④ → ①, ②well-locked

 Switching ① and ② makes no difference!

87

lock(L)

a := X

Y := 1

unlock(L)

lock(L)

b := Y

X := b

unlock(L)

Optimizing non-atomics
Thanks to catch-fire, non-atomics can be generally optimized as sequential code

① ③
② ④

①, ② → ③, ④ or ③, ④ → ①, ②well-locked

 Switching ① and ② makes no difference!

87

lock(L)

a := X

Y := 1

unlock(L)

lock(L)

b := Y

X := b

unlock(L)

Optimizing non-atomics
Thanks to catch-fire, non-atomics can be generally optimized as sequential code

① ③
② ④

①, ② → ③, ④ or ③, ④ → ①, ②well-locked

e.g., ② → ③ → ④ → ①not well-locked

 Switching ① and ② makes no difference!

87

lock(L)

a := X

Y := 1

unlock(L)

lock(L)

b := Y

X := b

unlock(L)

Optimizing non-atomics
Thanks to catch-fire, non-atomics can be generally optimized as sequential code

① ③
② ④

①, ② → ③, ④ or ③, ④ → ①, ②well-locked

e.g., ② → ③ → ④ → ①not well-locked

 Switching ① and ② makes no difference!

 Switching ① and ② makes a difference,
 but the program is wrong (racy)!

87

Load introduction is unsound
• But, irrelevant load introduction is unsound in catch-fire semantics!

• This is something compilers actually perform :(

88

Load introduction is unsound
• But, irrelevant load introduction is unsound in catch-fire semantics!

• This is something compilers actually perform :(

88

unsigned x, sum = 0;
foo(n, &x);
for (unsigned i = 0; i < n; i++)
 sum += x;

Load introduction is unsound
• But, irrelevant load introduction is unsound in catch-fire semantics!

• This is something compilers actually perform :(

88

unsigned x, sum = 0;
foo(n, &x);
for (unsigned i = 0; i < n; i++)
 sum += x;

unsigned x, sum = 0;
foo(n, &x);

sum = x * n;

GCC, LLVM

Load introduction is unsound
• But, irrelevant load introduction is unsound in catch-fire semantics!

• This is something compilers actually perform :(

88

unsigned x, sum = 0;
foo(n, &x);
for (unsigned i = 0; i < n; i++)
 sum += x;

unsigned x, sum = 0;
foo(n, &x);

sum = x * n;

n = 0

GCC, LLVM

Load introduction is unsound
• But, irrelevant load introduction is unsound in catch-fire semantics!

• This is something compilers actually perform :(

88

unsigned x, sum = 0;
foo(n, &x);
for (unsigned i = 0; i < n; i++)
 sum += x;

unsigned x, sum = 0;
foo(n, &x);

sum = x * n;

A load from x introduced!

n = 0

GCC, LLVM

Load introduction is unsound
• But, irrelevant load introduction is unsound in catch-fire semantics!

• This is something compilers actually perform :(

88

unsigned x, sum = 0;
foo(n, &x);
for (unsigned i = 0; i < n; i++)
 sum += x;

unsigned x, sum = 0;
foo(n, &x);

sum = x * n;

A load from x introduced!

n = 0
n = 0 →  

spawn a thread writing to x

GCC, LLVM

Load introduction is unsound
• But, irrelevant load introduction is unsound in catch-fire semantics!

• This is something compilers actually perform :(

88

unsigned x, sum = 0;
foo(n, &x);
for (unsigned i = 0; i < n; i++)
 sum += x;

unsigned x, sum = 0;
foo(n, &x);

sum = x * n;

A load from x introduced!

n = 0
n = 0 →  

spawn a thread writing to x

no data race

data race

GCC, LLVM

Undefined value as a solution?

• Execute “in-order” and read “undefined value” for every race

89

a = b = 1 alloweda = b = 1 disallowed

compilera := X

Y := 1

b := Y

X := b

Y := 1

a := X

b := Y

X := b

Undefined value as a solution?

• Execute “in-order” and read “undefined value” for every race

89

a = b = 1 alloweda = b = 1 disallowed

compiler

RW reordering is unsound in this model

a := X

Y := 1

b := Y

X := b

Y := 1

a := X

b := Y

X := b

Our Solution: An intermediate memory model
Lee, Cho, Margalit, Hur, L: Putting Weak Memory in Order via a Promising Intermediate Representation. PLDI 2023. https://doi.org/
10.1145/3591297

90

https://doi.org/10.1145/3591297
https://doi.org/10.1145/3591297

source (C/C++) model:
in-order

compiler IR model:
out-of-order

⊇

Our Solution: An intermediate memory model
Lee, Cho, Margalit, Hur, L: Putting Weak Memory in Order via a Promising Intermediate Representation. PLDI 2023. https://doi.org/
10.1145/3591297

90

https://doi.org/10.1145/3591297
https://doi.org/10.1145/3591297

source (C/C++) model:
in-order

compiler IR model:
out-of-order

programming & reasoning

⊇

Our Solution: An intermediate memory model
Lee, Cho, Margalit, Hur, L: Putting Weak Memory in Order via a Promising Intermediate Representation. PLDI 2023. https://doi.org/
10.1145/3591297

90

https://doi.org/10.1145/3591297
https://doi.org/10.1145/3591297

source (C/C++) model:
in-order

compiler IR model:
out-of-order

programming & reasoning

compiler optimizations

⊇

Our Solution: An intermediate memory model
Lee, Cho, Margalit, Hur, L: Putting Weak Memory in Order via a Promising Intermediate Representation. PLDI 2023. https://doi.org/
10.1145/3591297

90

https://doi.org/10.1145/3591297
https://doi.org/10.1145/3591297

source (C/C++) model:
in-order

compiler IR model:
out-of-order

• In-order source model

- Undefined behavior on WW & WR races

- Based on RC11

programming & reasoning

compiler optimizations

⊇

Our Solution: An intermediate memory model
Lee, Cho, Margalit, Hur, L: Putting Weak Memory in Order via a Promising Intermediate Representation. PLDI 2023. https://doi.org/
10.1145/3591297

90

https://doi.org/10.1145/3591297
https://doi.org/10.1145/3591297

source (C/C++) model:
in-order

compiler IR model:
out-of-order

• In-order source model

- Undefined behavior on WW & WR races

- Based on RC11

• Out-of-order IR model

- Undefined behavior on WW races

- Undefined value on WR races

- Based on the “promising semantics”

programming & reasoning

compiler optimizations

⊇

Our Solution: An intermediate memory model
Lee, Cho, Margalit, Hur, L: Putting Weak Memory in Order via a Promising Intermediate Representation. PLDI 2023. https://doi.org/
10.1145/3591297

90

https://doi.org/10.1145/3591297
https://doi.org/10.1145/3591297

source (C/C++) model:
in-order

compiler IR model:
out-of-order

• In-order source model

- Undefined behavior on WW & WR races

- Based on RC11

• Out-of-order IR model

- Undefined behavior on WW races

- Undefined value on WR races

- Based on the “promising semantics”

programming & reasoning

RW reordering

compiler optimizations

⊇

Our Solution: An intermediate memory model
Lee, Cho, Margalit, Hur, L: Putting Weak Memory in Order via a Promising Intermediate Representation. PLDI 2023. https://doi.org/
10.1145/3591297

90

https://doi.org/10.1145/3591297
https://doi.org/10.1145/3591297

source (C/C++) model:
in-order

compiler IR model:
out-of-order

• In-order source model

- Undefined behavior on WW & WR races

- Based on RC11

• Out-of-order IR model

- Undefined behavior on WW races

- Undefined value on WR races

- Based on the “promising semantics”

programming & reasoning

RW reordering

load
introduction

compiler optimizations

⊇

Our Solution: An intermediate memory model
Lee, Cho, Margalit, Hur, L: Putting Weak Memory in Order via a Promising Intermediate Representation. PLDI 2023. https://doi.org/
10.1145/3591297

90

https://doi.org/10.1145/3591297
https://doi.org/10.1145/3591297

91

The (R)C11 memory model

compilers

multicore
architectures

programmers

91

The (R)C11 memory model

compilers

multicore
architectures

programmers

Implementability on multicore hardware

92

https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html

https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html

Mapping correctness

93

• : mapping a program to a given hardware

• A mapping is correct if

(|C |) C

𝖡𝖾𝗁𝖺𝗏𝗂𝗈𝗋𝗌PL(C) ⊆ 𝖡𝖾𝗁𝖺𝗏𝗂𝗈𝗋𝗌Hardware((|C |))

x86-TSO

C11

ARMv7

ARMv8

RISC-V

POWER
…

Ocaml

Podkopaev, L, Vafeiadis: Bridging the gap between programming languages and hardware weak memory
models. POPL 2019. https://doi.org/10.1145/3290382

An intermediate memory model

94

• IMM model as a common denominator of existing hardware weak memory models

x86-TSO

C11

ARMv7

ARMv8

RISC-V

POWER
…

Ocaml

IMM

https://doi.org/10.1145/3290382

Podkopaev, L, Vafeiadis: Bridging the gap between programming languages and hardware weak memory
models. POPL 2019. https://doi.org/10.1145/3290382

An intermediate memory model

94

• IMM model as a common denominator of existing hardware weak memory models

x86-TSO

C11

ARMv7

ARMv8

RISC-V

POWER
…

Ocaml

IMM

https://doi.org/10.1145/3290382

Programming guarantees

• Data-race-freedom (DRF) theorems

• Library abstraction

95

Motivation for the DRF guarantee
• Weak memory models are complex

• most programmers do not understand the underlying model

• We would like to provide a defensive programming discipline for non-experts:

• ensures strong and more intuitive semantics

• can be followed without understanding the full underlying weak memory model

• This was a main design goal for C11, let’s make it more formal…

96

97

If a program P satisfies:

• has only non-atomics and locks

• is race-free

Then:

• P has only SC behaviors

First attempt

The DRF guarantee X := 1
lock(L)
Y := 1
unlock(L)

lock(L)
a := Y
unlock(L)
if (a=1) then

 b := X

no consistent execution graph
has conflicting events unordered by hb

97

If a program P satisfies:

• has only non-atomics and locks

• is race-free

Then:

• P has only SC behaviors

First attempt

The DRF guarantee X := 1
lock(L)
Y := 1
unlock(L)

lock(L)
a := Y
unlock(L)
if (a=1) then

 b := X

no consistent execution graph
has conflicting events unordered by hb

• Is this good enough?

97

If a program P satisfies:

• has only non-atomics and locks

• is race-free

Then:

• P has only SC behaviors

First attempt

The DRF guarantee X := 1
lock(L)
Y := 1
unlock(L)

lock(L)
a := Y
unlock(L)
if (a=1) then

 b := X

no consistent execution graph
has conflicting events unordered by hb

• Is this good enough?

• Definition of races still requires to understand execution graphs, consistency, …hb

97

If a program P satisfies:

• has only non-atomics and locks

• is race-free

Then:

• P has only SC behaviors

First attempt

The DRF guarantee X := 1
lock(L)
Y := 1
unlock(L)

lock(L)
a := Y
unlock(L)
if (a=1) then

 b := X

no consistent execution graph
has conflicting events unordered by hb

• Is this good enough?

• Definition of races still requires to understand execution graphs, consistency, …hb

• We also want to allow the use of atomics for avoiding races

Second attempt

The DRF guarantee

98

X := 1
lock(L)
Y := 1
unlock(L)

lock(L)
a := Y
unlock(L)
if (a=1) then

 b := X

in every SC operational trace of P there are
no consecutive conflicting

accesses by different threads

…

memory

T1 T2 Tn

x ↦ 0 y ↦ 1 …

If a program P satisfies:

• has only non-atomics and locks

• is race-free under SC

Then:

• P has only SC behaviors

• Is this good enough?

• Definition of races still requires to understand execution graphs, consistency, …

• We also want to allow the use of atomics for avoiding races

hb

Final formulation

The DRF guarantee

99

in every SC operational trace of P,
all consecutive conflicting accesses by
different threads are marked as SC in P

…

memory

T1 T2 Tn

x ↦ 0 y ↦ 1 …

If a program P satisfies:

• has only non-atomics and locks

• all races under SC semantics are
on sc atomic accesses

Then:

• P has only SC behaviors

• Is this good enough?

• Definition of races still requires to understand execution graphs, consistency, …

• We also want to allow the use of atomics for avoiding races

hb

X := 1
Y := 1 sc

a := Y sc
if (a=1) then

 b := X

Other DRF guarantees

• The assumption of the DRF guarantee is sometimes expensive to satisfy

• The conclusion is also very strong

• We would like to use another semantics instead of SC in the role of the strong semantics

• Let’s see how it works for the Release/Acquire model (DRF-RA)

100

The DRF-RA guarantee

101

X := 1
Y := 1 rel

a := Y acq
if (a=1) then

 b := X

in every RA-consistent execution graph of P,
every pair of conflicting accesses unordered by

are marked as rel/acq in P
hb

If a program P satisfies:

• all races under RA semantics are
on rel/acq atomic accesses

Then:

• P has only RA behaviors

There is also a formulation using the
RA view-based semantics:

• A race = thread accesses X but not
aware of the latest msg

• The assumptions above are global, which hinders modularity

• A local version can consider a set of locations

• Let P[:= sc] denote the program P where all accesses to are strengthened to sc

Loc

Loc Loc

102

a := pop(S)
X := a
Y := 1 sc

b := pop(S)
c := Y sc
if (c=1) then

 d := X

Dolan, Sivaramakrishnan, Madhavapeddy: Bounding data races in space and time. PLDI 2018. https://doi.org/
10.1145/3192366.3192421

Cho, Lee, Hur, L: Modular data-race-freedom guarantees in the promising semantics. PLDI 2021. https://doi.org/
10.1145/3453483.3454082

If:

• all races of P[:= sc] on locations in under RC11 semantics are on accesses marked as sc in P

Then:

• every behavior of P is a behavior of P[:= sc]

Loc Loc

Loc

Loc = {𝚇, 𝚈}

Local DRF-SC guarantee

https://doi.org/10.1145/3192366.3192421
https://doi.org/10.1145/3192366.3192421
https://doi.org/10.1145/3453483.3454082
https://doi.org/10.1145/3453483.3454082

Local DRF-RA guarantee

• Let P[:= ra] denote the program P where all accesses to are strengthened to rel/acqLoc Loc

103

Cho, Lee, Hur, L: Modular data-race-freedom guarantees in the promising semantics. PLDI 2021. https://doi.org/
10.1145/3453483.3454082

If:

• all races of P[:= ra] on locations in under RC11 semantics are on accesses marked as rel/acq in P

Then:

• every behavior of P is a behavior of P[:= ra]

Loc Loc

Loc

a := pop(S)
X := a
Y := 1 rel

b := pop(S)
c := Y acq
if (c=1) then

 d := X

Loc = {𝚇, 𝚈}

https://doi.org/10.1145/3453483.3454082
https://doi.org/10.1145/3453483.3454082

Library abstraction

• Experts develop optimized concurrent objects implementations (aka libraries)

• once and for all establish correctness w.r.t. their specifications

• Clients of these implementations reason about program behaviors assuming only the specifications

• Essential in programming, and even more critical in complicated concurrency models

This part is based on:

Singh, L: An Operational Approach to Library Abstraction under Relaxed Memory Concurrency. POPL 2023.
https://doi.org/10.1145/3571246

104

https://doi.org/10.1145/3571246

Code as specification
• Specification = reference implementation

• Simpler (and less efficient) than the implementation

• Derive a reference implementation from a standard sequential specification (assuming
SC):

Take some sequential implementation of and wrap each method in an atomic block

e.g., enqueue(v) { … } enqueue(v) { atomic { … } }

Spec

Spec

→

105

specification construct

Library correctness

• We aim to have contextual refinement:

for every program ,

• We assume that the client and the library use disjoint set of locations

• What correctness condition ensures contextual refinement?

P 𝖡𝖾𝗁𝖺𝗏𝗂𝗈𝗋𝗌(P[L]) ⊆ 𝖡𝖾𝗁𝖺𝗏𝗂𝗈𝗋𝗌(P[L♯])

106

L L♯

⊑

implementation specification

as a library correctness condition under SC

Linearizability

For concurrent data-structures, under SC, linearizability ensures refinement:

Filipović, O’Hearn, Rinetzky, Yang: Abstraction for concurrent objects. Theoretical Computer Science 2010. https://doi.org/
10.1016/j.tcs.2010.09.021

• If is linearizable wrt a sequential specification , then for every program ,
 under SC

• The converse direction also holds

L Spec P
𝖡𝖾𝗁𝖺𝗏𝗂𝗈𝗋𝗌(P[L]) ⊆ 𝖡𝖾𝗁𝖺𝗏𝗂𝗈𝗋𝗌(P[L♯(Spec)])

107

the reference implementation
derived from Spec

https://doi.org/10.1016/j.tcs.2010.09.021
https://doi.org/10.1016/j.tcs.2010.09.021

Linearizability = history inclusion
Linearizability of wrt holds iff , where:

• is the reference implementation derived from the sequential specification

• denotes the most general client:
concurrently and repeatedly call the methods of the library with arbitrary arguments

• History is a restriction of an operational trace to call/return

• denotes the set of histories induced by traces of program

L Spec 𝖧𝗂𝗌𝗍𝗈𝗋𝗂𝖾𝗌(MGC[L]) ⊆ 𝖧𝗂𝗌𝗍𝗈𝗋𝗂𝖾𝗌(MGC[L♯(Spec)])

L♯(Spec) Spec

MGC

𝖧𝗂𝗌𝗍𝗈𝗋𝗂𝖾𝗌(P) P

108

example trace induced history

T1:call f(42)
T2:call f(1)
T1:return f 0

T1:call f(42)
T1:WX42
T2:call f(1)
T1:RY0
T1:return f 0

→

f(v) {
 X := v
 a := Y
 return(a)
}

A more general abstraction theorem (for SC)

• Refinement via linearizability is a particular instance

• This theorem also allows non-atomic specifications

109

L L♯

⊑

If ,
then for every program ,

𝖧𝗂𝗌𝗍𝗈𝗋𝗂𝖾𝗌(MGC[L]) ⊆ 𝖧𝗂𝗌𝗍𝗈𝗋𝗂𝖾𝗌(MGC[L♯])
P 𝖡𝖾𝗁𝖺𝗏𝗂𝗈𝗋𝗌(P[L]) ⊆ 𝖡𝖾𝗁𝖺𝗏𝗂𝗈𝗋𝗌(P[L♯])

implementation specification

Example: SC assumption is essential!

110

Assumptions:

• foo and bar must be
called at most once
by different threads

• bar must be called
after foo in the
execution order

foo() {
 X := 1 rel
 return()
}

bar() {
 a := X acq
 return(a)
}

specification

L♯

Example: SC assumption is essential!

110

Assumptions:

• foo and bar must be
called at most once
by different threads

• bar must be called
after foo in the
execution order

foo() {
 X := 1 rel
 return()
}

bar() {
 a := X acq
 return(a)
}

specification

L♯

foo() {
 return()
}

bar() {
 pick a∊{0,1}
 return(a)
}

implementation

L

Example: SC assumption is essential!

110

Assumptions:

• foo and bar must be
called at most once
by different threads

• bar must be called
after foo in the
execution order

foo() {
 X := 1 rel
 return()
}

bar() {
 a := X acq
 return(a)
}

specification

L♯

foo() {
 return()
}

bar() {
 pick a∊{0,1}
 return(a)
}

implementation

L

𝖧𝗂𝗌𝗍𝗈𝗋𝗂𝖾𝗌(MGC[L])
=

𝖧𝗂𝗌𝗍𝗈𝗋𝗂𝖾𝗌(MGC[L♯])

T1:call foo()
T1:return foo
T2:call bar()
T2:return bar 0

T1:call foo()
T1:return foo
T2:call bar()
T2:return bar 1

Example: SC assumption is essential!

111

Z := 1 rlx
foo()
Y := 1 rlx

a := Y rlx
if (a=1) then

 c := bar() // 1
 d := Z rlx // 0

Assumptions:

• foo and bar must be called at
most once by different threads

• bar must be called after foo in
the execution order

foo() {
 X := 1 rel
 return()
}

bar() {
 a := X acq
 return(a)
}

specification

L♯

foo() {
 return()
}

bar() {
 pick a∊{0,1}
 return(a)
}

implementation

L

This behavior is:

• impossible with the specification

• but, possible with the implementation !

L♯

L

Example: SC assumption is essential!

112

foo()
Y := 1 rel

a := Y acq
if (a=1) then

 c := bar() // 0

Assumptions:

• foo and bar must be called at
most once by different threads

• bar must be called after foo in
the execution order

This behavior is:

• impossible with the specification

• but, possible with the implementation !

L♯

L

foo() {
 X := 1 rel
 return()
}

bar() {
 a := X acq
 return(a)
}

specification

L♯

foo() {
 return()
}

bar() {
 pick a∊{0,1}
 return(a)
}

implementation

L

What can we do about it?

• Under WMM client-library interaction is not fully captured by call/return histories

• We can work with partial orders (akin to execution graphs) rather than sequential histories:

• Batty, Dodds, Gotsman: Library abstraction for C/C++ concurrency. POPL 2013. https://doi.org/10.1145/2429069.2429099

• Doherty, Dongol, Wehrheim, Derrick: Making Linearizability Compositional for Partially Ordered Executions. IFM 2018.
https://doi.org/10.1007/978-3-319-98938-9_7

• Or enrich sequential histories with more information:

• Burckhardt, Gotsman, Musuvathi, Yang: Concurrent Library Correctness on the TSO Memory Model. ESOP 2012. https://
doi.org/10.1007/978-3-642-28869-2_5

• Khyzha, L: Abstraction for Crash-Resilient Objects. ESOP 2022. https://doi.org/10.1007/978-3-030-99336-8_10

113

https://doi.org/10.1145/2429069.2429099
https://doi.org/10.1007/978-3-319-98938-9_7
https://doi.org/10.1007/978-3-642-28869-2_5
https://doi.org/10.1007/978-3-642-28869-2_5
https://doi.org/10.1007/978-3-030-99336-8_10

Enriched histories for RC11

• The read Y=1 imposes order, so T2 must be aware of foo()’s effect when bar() is called

• We will expose this in histories by including propagations of call/return

real-time order ⇏ happens before

hb

114

foo()
Y := 1 rel

a := Y acq
if (a=1) then

 c := bar() // 0

A propagation semantics for RC11

• A novel operational semantics for (a fragment of) RC11

• Explicit point-to-point propagation transitions marking
when an event of one thread becomes visible to another
thread

• We include propagation of the call/return events in
memory traces

115

Example: MP

116

Y := 42 rel
X := 1 rel

a := X acq
if (a=1) then

 b := Y acq // 0

T1:Wy42
T1:Wx1
T1→T2:Wy42
T1→T2:Wx1
T2:Rx1
T2:Ry42

some possible traces:

T1:Wy42
T1:Wx1
T2:Rx0

T1:Wy42
T1:Wx1
T1→T2:Wy42
T2:Rx0

In the Release/Acquire fragment:

• propagation follows

• read from the -maximal write
that was propagated to the thread

hb

mo

Example with function calls

117

foo()
Y := 1 rel

a := Y acq
if (a=1) then

 c := bar()

foo() {
 X := 1 rel
 return()
}

bar() {
 a := X acq
 return(a)
}

a possible trace

T1:call foo()
T1:Wx1
T1:return foo
T1:Wy1
T1→T2:call foo()
T1→T2:Wx1
T1→T2:return foo()
T1→T2:Wy1
T2:Ry1
T2:call bar()
T2:Rx1
T2:return bar 1We include propagations of calls/

returns in histories
we include propagations of calls/

returns in histories

Example

118

T1:call foo()
T1:return foo
T1→T2:call foo()
T1→T2:return foo()
T2:call bar()
T2:return bar 0

possible for but not for !L L♯

T1:call foo()
T1:return foo
T2:call bar()
T2:return bar 1

induced enriched histories of MGC

foo() {
 X := 1 rel
 return()
}

bar() {
 a := X acq
 return(a)
}

specification
L♯

foo() {
 return()
}

bar() {
 pick a∊{0,1}
 return(a)
}

implementation
L

Abstraction theorem for RC11

where denotes the set of enriched histories (with calls/returns/call
propagations/return propagations) induced by traces of program

𝖯𝖧𝗂𝗌𝗍𝗈𝗋𝗂𝖾𝗌(P)
P

119

If ,
then for every program , under SC

𝖧𝗂𝗌𝗍𝗈𝗋𝗂𝖾𝗌(MGC[L]) ⊆ 𝖧𝗂𝗌𝗍𝗈𝗋𝗂𝖾𝗌(MGC[L♯])
P 𝖡𝖾𝗁𝖺𝗏𝗂𝗈𝗋𝗌(P[L]) ⊆ 𝖡𝖾𝗁𝖺𝗏𝗂𝗈𝗋𝗌(P[L♯])

If ,
then for every program , under RC11

𝖯𝖧𝗂𝗌𝗍𝗈𝗋𝗂𝖾𝗌(MGC[L]) ⊆ 𝖯𝖧𝗂𝗌𝗍𝗈𝗋𝗂𝖾𝗌(MGC[L♯])
P 𝖡𝖾𝗁𝖺𝗏𝗂𝗈𝗋𝗌(P[L]) ⊆ 𝖡𝖾𝗁𝖺𝗏𝗂𝗈𝗋𝗌(P[L♯])

Application: RCU

• Simple lock-based specification for basic Read-Copy-Update (RCU) primitives under RC11

• unlike existing declarative ad-hoc specifications

• RCU in client programs on RC11 can be understood via locks

• We used the the FDR4 refinement checker library correctness for a simple RCU
implementation from:

120

Alglave, Maranget, McKenney, Parri, Stern: Frightening Small Children and Disconcerting Grown-ups: Concurrency in the Linux Kernel.
ASPLOS 2018. https://doi.org/10.1145/3173162.3177156

https://doi.org/10.1145/3173162.3177156

Restricted clients

Libraries often have “calling policies”
(e.g., single producer, consume only non-empty collections, …)

121

Restricted clients
• We would like a stronger theorem:

•

• To show that adheres to policy, should we use or ?

• We want it to be so that the theorem can be applied without any knowledge of !

• Circular argument? induction works!

P L L♯

L♯ L

122

push(1)
a := pop()

If ,

then for every program that adheres to the policy, under RC11

𝖯𝖧𝗂𝗌𝗍𝗈𝗋𝗂𝖾𝗌(MGCpoilcy[L]) ⊆ 𝖯𝖧𝗂𝗌𝗍𝗈𝗋𝗂𝖾𝗌(MGCpoilcy[L♯])
P 𝖡𝖾𝗁𝖺𝗏𝗂𝗈𝗋𝗌(P[L]) ⊆ 𝖡𝖾𝗁𝖺𝗏𝗂𝗈𝗋𝗌(P[L♯])

Restricted clients
• We would like a stronger theorem:

•

• To show that adheres to policy, should we use or ?

• We want it to be so that the theorem can be applied without any knowledge of !

• Circular argument? induction works!

P L L♯

L♯ L

122

push(1)
a := pop()

If ,

then for every program that adheres to the policy, under RC11

𝖯𝖧𝗂𝗌𝗍𝗈𝗋𝗂𝖾𝗌(MGCpoilcy[L]) ⊆ 𝖯𝖧𝗂𝗌𝗍𝗈𝗋𝗂𝖾𝗌(MGCpoilcy[L♯])
P 𝖡𝖾𝗁𝖺𝗏𝗂𝗈𝗋𝗌(P[L]) ⊆ 𝖡𝖾𝗁𝖺𝗏𝗂𝗈𝗋𝗌(P[L♯])

• If the following hold:

1.

2.

3.

4.

• Then:

𝖯𝖧𝗂𝗌𝗍𝗈𝗋𝗂𝖾𝗌(MGCpoilcy[L]) ⊆ 𝖯𝖧𝗂𝗌𝗍𝗈𝗋𝗂𝖾𝗌(MGCpoilcy[L♯])

MGCpoilcy[L] is not racy

𝖯𝖧𝗂𝗌𝗍𝗈𝗋𝗂𝖾𝗌(P[L♯]) ⊆ 𝖯𝖧𝗂𝗌𝗍𝗈𝗋𝗂𝖾𝗌(MGCpoilcy[L♯])

P[L♯] is not racy

𝖡𝖾𝗁𝖺𝗏𝗂𝗈𝗋𝗌(P[L]) ⊆ 𝖡𝖾𝗁𝖺𝗏𝗂𝗈𝗋𝗌(P[L♯])

123

client
obligations

developer
obligations

The final abstraction theorem

LDRF-RA via library abstraction

124

writeX(v) {
 X := v rel
 return()
 }

readX() {
 a := X acq
 return(a)
 }

Specification

L♯

writeX(v) {
 X := v
 return()
 }

readX() {
 a := X
 return(a)
 }

Implementation

L

124

 = set of locations accesses solely by the library

call methods in a way that avoids
races between writeX and readX

Loc

MGCpoilcy =

developer obligation:
𝖯𝖧𝗂𝗌𝗍𝗈𝗋𝗂𝖾𝗌(MGCpoilcy[L]) ⊆ 𝖯𝖧𝗂𝗌𝗍𝗈𝗋𝗂𝖾𝗌(MGCpoilcy[L♯])

client obligation:
𝖯𝖧𝗂𝗌𝗍𝗈𝗋𝗂𝖾𝗌(P[L♯]) ⊆ 𝖯𝖧𝗂𝗌𝗍𝗈𝗋𝗂𝖾𝗌(MGCpoilcy[L♯])

𝖡𝖾𝗁𝖺𝗏𝗂𝗈𝗋𝗌(P[L]) ⊆ 𝖡𝖾𝗁𝖺𝗏𝗂𝗈𝗋𝗌(P[L♯])
conclusion:

all races of P[:= ra] on locations

in under RC11 semantics are on
accesses marked as rel/acq in P

Loc
Loc

every behavior of P is a behavior of P[:= ra]Loc

Example

Library specification under WMM

• Sequential specifications tell us nothing about the synchronization induced by the library

• How to specify the different options?

125

X := 42 rlx
enqueue(q,1)

a := dequeue(q) // 1
c := X rlx // 0

X := 1 rlx
a := dequeue(q) // ⊥

enqueue(q,1)
c := X rlx // 0

X := 1 rlx
enqueue(q,1)

enqueue(q,2)
A := X rlx // 0

b := dequeue(q) // 1
c := dequeue(q) // 2

Library specification under WMM

• Declarative library specifications with specialized synchronization relations:

Raad, Doko, Rozic, L, Vafeiadis: On library correctness under weak memory consistency: specifying and verifying concurrent libraries
under declarative consistency models. POPL 2019. https://doi.org/10.1145/3290381

• An operational approach?

• What can serve as reference implementation for different options?

• A per-object lock gives us the strongest queue: real-time order ⇒ happens-before

126

https://doi.org/10.1145/3290381

RC11 library specification constructs

• We propose partial locks: locks that induce only intra-library synchronization

• If we wrap a sequential implementation (using non-atomics) in a partial per-object lock, we
obtain a queue that does not provide any synchronization to its clients

e.g., enqueue(v) { … } enqueue(v) { locklib(L) { … } }

• By using release/acquire accesses in the specification we can express stronger queues

→

127

specification construct

Verification under WMM
A short (and very partial) survey

128

Verification questions and approaches for WMM

1. Theoretical decidability

2. Model checking and testing

3. Program logics

4. Robustness

129

gu
ar
an

te
es

automation

manual interactive fully automatic

bo

un
de

d

fu

ll

What do we verify?

• Program never crashes

• Provides mutual exclusion

• Correctly implements a
concurrent data structure

• …

1

2

3

4

Theoretical verification
• Assume finite-state programs (but with loops!)

• There may still be infinitely many memory states
(unbounded buffers, unbounded execution graphs)

• Is state reachability is decidable? What is its complexity?

• The answer depends on the underlying memory model

130

1

Theoretical verification under SC

131

For programs with a bounded data domain, this problem is clearly decidable:

• Reduction to reachability in finite-state systems

• PSPACE-complete

∥ ∩)(
𝖶𝚇1

𝖱𝚈0

𝖶𝚉0

𝖶𝚇0

𝖱𝚉1 𝖱𝚉0

𝖱𝚈1

𝖶𝚈1

𝖱𝚇0

𝖶𝚉1

𝖶𝚈0

𝖱𝚉0 𝖱𝚉1

𝖱𝚇1

𝖱𝚇0,𝖱𝚈0,𝖱𝚉0
𝖶𝚇0,𝖶𝚈0,𝖶𝚉0

𝖱𝚇1,𝖱𝚈0,𝖱𝚉0
𝖶𝚇1,𝖶𝚈0,𝖶𝚉0

𝖶𝚇1 𝖶𝚉1

𝖶𝚈1

𝖶𝚉1

𝖶𝚈1

𝖶𝚇1

𝖱𝚇1,𝖱𝚈1,𝖱𝚉0
𝖶𝚇1,𝖶𝚈1,𝖶𝚉0

𝖱𝚇1,𝖱𝚈1,𝖱𝚉1
𝖶𝚇1,𝖶𝚈1,𝖶𝚉1

𝖱𝚇0,𝖱𝚈1,𝖱𝚉1
𝖶𝚇0,𝖶𝚈1,𝖶𝚉1

𝖱𝚇0,𝖱𝚈0,𝖱𝚉1
𝖶𝚇0,𝖶𝚈0,𝖶𝚉1

1

Some results for weak memory modes

132

Sequential
Consistency

x86-TSO

SRA

RA

WRA

1

Reachability under x86-TSO is decidable:

• via a dual semantics (load-buffers instead of store buffers) that forms a WSTS

Abdulla, Atig, Bouajjani, Ngo: A Load-Buffer Semantics for Total Store Ordering. Log. Methods Comput.
2018. https://doi.org/10.23638/LMCS-14(1:9)2018

Reachability under RA is undecidable:

• reduction from Post correspondence problem

Abdulla, Arora, Atig, Krishna: Verification of programs under the release-acquire semantics. PLDI 2019.
https://doi.org/10.1145/3314221.3314649

Reachability under WRA/SRA is decidable:

• via a potential-based semantics that forms a WSTS

L, Boker: What's Decidable About Causally Consistent Shared Memory? ACM Trans. Program. Lang. Syst.
2022. https://doi.org/10.1145/3505273

https://doi.org/10.23638/LMCS-14(1:9)2018
https://doi.org/10.1145/3314221.3314649
https://doi.org/10.1145/3505273

Model checking
• Given a loop-free program (usually after loop unrolling), exhaustively verify that all its runs do not violate

safety assertions

• Naively checking all traces is infeasible (for both time and memory)

• Remedies:

• stateless verification: explore all executions without storing in memory the executions explored so far

• partial order reduction: explore one candidate from each equivalence class

133

2

a := X

b := Y

Y := 1

X := 1

a=0 & b=0

a := X

b := Y

X := 1

Y := 1

a=0 & b=0

b := Y

a := X

Y := 1

X := 1

a=0 & b=0

b := Y

a := X

X := 1

Y := 1

a=0 & b=0

≈ ≈ ≈

Abdulla, Aronis, Jonsson, Sagonas: Optimal dynamic partial order reduction. POPL 2014. https://doi.org/10.1145/2535838.2535845

https://doi.org/10.1145/2535838.2535845

Y:=1

b := Y

X := 1

a=0 & b=0

a := X

• Explore consistent execution graphs rather than traces (also for SC!)

• Execution graphs track less redundant order and represent equivalence classes

2

a := X

b := Y

Y := 1

X := 1

a=0 & b=0

a := X

b := Y

X := 1

Y := 1

a=0 & b=0

b := Y

a := X

Y := 1

X := 1

a=0 & b=0

b := Y

a := X

X := 1

Y := 1

a=0 & b=0

≈ ≈ ≈

Partial order reduction using execution graphs

134

Kokologiannakis, Raad, Vafeiadis: Model checking for weakly consistent libraries. PLDI 2019. https://doi.org/10.1145/3314221.3314609

Kokologiannakis, Marmanis, Gladstein, Vafeiadis: Truly stateless, optimal dynamic partial order reduction. POPL 2021. https://
doi.org/10.1145/3498711

Luo, Demsky: C11Tester: a race detector for C/C++ atomics. ASPLOS 2021. https://doi.org/10.1145/3445814.3446711.

https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1145/3498711
https://doi.org/10.1145/3498711

2

135

A related problem
• Given an execution graph G check whether it is consistent under a memory model M

• Some weak memory models make this problem easier!

• Given only program-order and reads-from relations:

• Checking for SC-consistency is NP-complete

• Checking for RA-consistency is in PTIME

po rf

Chakraborty, Krishna, Mathur, Pavlogiannis: How Hard Is Weak-Memory Testing? POPL 2024. https://doi.org/10.1145/3632908

W x 0 W y 0

R x 1 R y 1

R x 0R y 0

W y 1W x 1

https://doi.org/10.1145/3632908

Program logics

• A (mostly) manual approach for syntax-guided verification

• Derivation rules that provide reasoning principles

3

{P}C1{Q} {Q}C2{R}
{P}C1; C2{R}

{P ∧ b}C{P}
{P}𝗐𝗁𝗂𝗅𝖾 b 𝖽𝗈 C{P ∧ ¬b}

136

3Owicki-Gries / rely-guarantee logics

137

• SC-based reasoning is unsound

• Develop specialized assertions for expressing
invariants on top of an operational
presentation of the memory model

Dalvandi, Doherty, Dongol, Wehrheim: Owicki-Gries Reasoning for C11 RAR. ECOOP 2020. https://doi.org/10.4230/LIPIcs.ECOOP.2020.11

L, Dongol, Wehrheim: Rely-Guarantee Reasoning for Causally Consistent Shared Memory. CAV 2023. https://doi.org/10.1007/978-3-031-37706-8_11

https://doi.org/10.4230/LIPIcs.ECOOP.2020.11
https://doi.org/10.1007/978-3-031-37706-8_11

Seperation logics 3

138

Vafeiadis, Narayan: Relaxed separation logic: a program logic for C11 concurrency. OOPSLA 2013. https://doi.org/10.1145/2509136.2509532

Dang, Jourdan, Kaiser, Dreyer: RustBelt meets relaxed memory. POPL 2020. https://doi.org/10.1145/3371102

Dang, Jung, Choi, Nguyen, Mansky, Kang, Dreyer: Compass: strong and compositional library specifications in relaxed memory separation
logic. PLDI 2022. https://doi.org/10.1145/3519939.3523451

• Concurrent separation logic is designed to reason about DRF programs

• So it is trivially sound under models that satisfy the DRF guarantee

• Extensions allow reasoning about synchronization primitives of RC11

• In particular, ownership transfer is possible via rel/acq synchronization

https://doi.org/10.1145/2509136.2509532
https://doi.org/10.1145/3371102
https://doi.org/10.1145/3519939.3523451

• Many (useful) programs are robust:

all program behaviors allowed by RC11 are in fact also allowed by SC

4Robustness

139

• Many (useful) programs are robust:

all program behaviors allowed by RC11 are in fact also allowed by SC

4

verification under
weak memory = robustness+verification under

SC

Robustness

139

Execution-graph robustness against RC11 is PSPACE-complete

input program in RC11
verification

problem in PromelaRocker
SPIN

model
checker

not robust

robust

4

Idea: run an instrumented program under SC that monitors whether some step is allowed
under RC11 but not under SC

L, Margalit: Robustness against release/acquire semantics. PLDI 2019. https://doi.org/10.1145/3314221.3314604
Margalit, L: Verifying observational robustness against a c11-style memory model. POPL 2021. https://doi.org/10.1145/3434285

140

https://doi.org/10.1145/3314221.3314604
https://doi.org/10.1145/3434285

Conclusion
We talked about:

1. The C/C++11 memory model

2. The out-of-thin-air problem & RC11

3. Implementability of (R)C11: compiler optimizations and mapping to hardware

4. Programmability guarantees: DRF theorems, library abstraction

5. Verification

Weak memory models are not only a threat, but also an opportunity to better understand concurrency!

141

Conclusion
We talked about:

1. The C/C++11 memory model

2. The out-of-thin-air problem & RC11

3. Implementability of (R)C11: compiler optimizations and mapping to hardware

4. Programmability guarantees: DRF theorems, library abstraction

5. Verification

Weak memory models are not only a threat, but also an opportunity to better understand concurrency!

141

