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INntroduction

The C/C++11 memory model

The out-of-thin-air problem & RCT1

Implementability of (R)C11: compiler optimizations and mapping to hardware
Programmability guarantees: DRF theorems, library abstraction

Verification (short survey of problems and results)



Parallelism is here

"The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in software’/ Herp Sutter (2005)

T T T 1 T T
104 = | e
| -
m =™
- L =i Single-Thread
' - Performance
10° (SpecINT x 102)
102
Number of
10’ Logical Cores
100

1985 1990 1995 2000 2005 2010 2015 2020
Year



Concurrent programming 1s hard!

“If you can get away with it, avoid Using threads.
Threads can be o{ifﬁcu[t 1o use, and tﬁey make _programs

harder to c&zﬁug.”

(Java documentation, ~25 years ago) d

=’ Java



Why?

- Requires a fundamentally different way of thinking

. Interference among threads
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« |Inevitable non-determinism
. Testing is ineffective

- Reproducing bugs and debugging is hard




Concurrent programming

shared memory message passing

interaction by reading and interaction by sending messages to each
writing shared objects in memory other through a communication channel
store/write
load/read

read-modify-write (e.g. CAS, FADD)
lock & unlock



Concurrent programming

shared memory

interaction by reading and
writing shared objects in memory

store/write
load/read
read-modify-write (e.g. CAS, FADD)
lock & unlock



Dekker's mutual exclusion

wants to enter[0] & false, wants to enter[1] & false,turn &0 //or1

wants to enter[0] & true wants to enter[1] & true
while (wants to enter|[1]) { while (wants to enter[0]) {
if (turn #0) { if (turn # 1) {
wants_to_enter[0] < false wants_to_enter[1] < false
while (turn # 0) {// busy wait } while (turn # 1) {// busy wait }
wants_to_enter[0] < true wants_to_enter[1] < true
1} 1}
// critical section // critical section
turn < 1 turn < 0
wants to enter[0] < false wants to enter[1] & false

// remainder section // remainder section



Example
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Demo

int X, Y, a, b;

void threadl() {

X =1;
a =Y,
s
void thread2() {
Y = 1;
b = X3
s

int main () {
int cnt = 0;

do {
X=0; Y = 0;

thread first(threadl):
thread second(thread2):

first.join();
second.join();
cnt++;

} while (a !'=0 || b !'= 0);

printf("%sd\n",cnt);
return 0;

10



How come airplanes don't crasnh?

. There are ways to demand strong semantics when we need it

- We often don't need strong semantics in its full power

Before programming/verification,
we need semantics

“We're really more of a department.”

11



Sequential consistency (SC)

the result of any execution is the same

as zf the (yemtions of all the processors

|
were executed in some Seo]uentia[ order, \'
and the operations of each individual

memory

_processor appear in this sequence in the X0 yis 1

01”6[61" {peciﬁecfﬁy itsyrogmm...

Lamport. 1979. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs. |IEEE
Trans. Comput. https://doi.org/10.1109/TC.1979.1675439

Tn
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The requirements needed to quarantee sequentm[ consistency rule out some
tecﬁniques which can be used to fpeec[ up individual sec]uentm[ _processors. For
some q;zp[ications, acﬁieving seo]uentm[ consistency may not be worth the frice
of Sfowing down the _processors. In this case, one must be aware that
conventional methods for o[esigning mu[tg’pmcess a(qom’tﬁms cannot be relied
upon 1o Joroo[uce correct[y executing programs. Protocols for syncﬁronizz’ng the
_processors must be c[esignec[ at the lowest level of the machine instruction code,

and verifying their correctness becomes a monumental task.

Lamport. 1979. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs. IEEE
Trans. Comput. https://doi.org/10.1109/TC.1979.1675439

13



SC is unrealistic

o fOr better performance/scalability shared-memory implementations perform various
optimizations:
e |ocal store buffers
e OUt-of-order execution

e hierarchies of caches

o« Compilers further stir the pot by performing thread-local program optimizations
e These optimizations are:
e UNODservable in sequential programs

e DUt can be observed by concurrent code!

14



Weak consistency in distributed systems

S ’
». 2

send(X = 1) send(Y = 1)
get(Y) // © get(X) // ©

Email := “dear bob, ...”
Sms := “check your email” b :

Sms // “check your email”
Email // “no new email”

Q
1

o =

15



Weak memory models

- A formal interface between the user and the implementation:
- What are the possible behaviors of a concurrent program?

- More concretely, what values each read may return?

- A weak memory model (WMM) allows all outcomes allowed by SC and more

16



Hardware memory models

- FEach architecture has its own WMM: x86-TSO, ARM. Power, RISC-V...

- Often: subtle differences

« None of them is SC
J

Jji

x86-TSO (<’ AMD POWER :i:=:= ARMv8 ARM
(2010) (2011) (2016)
7T FEEYEEY!
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X30-150

MY

X — 1 Y .= 1 F”:O
a :=Y // © b := X // © Ner-
thread
store
buffers
X :=1 Y := 1 l l
fence() fence()
a :=Y // © b := X // ©
memory X—0 Y0

Sewell, Sarkar, Owens, Zappa Nardelli, Myreen: x86-TSO: a rigorous and usable programmer's model for x86 multiprocessors.
Commun. ACM 53(7) 2010. https://doi.org/10.1145/1785414.1785443



https://doi.org/10.1145/1785414.1785443
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X =1 Y := 1
fence() fence()
a :=Y // © b := X // ©

Sewell, Sarkar, Owens, Zappa Nardelli, Myreen: x86-TSO: a rigorous and usable programmer's model for x86 multiprocessors.

Commun. ACM 53(7) 2010. https://doi.org/10.1145/1785414.1785443
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X =1 Y := 1
fence() fence()
a :=Y // © b := X // ©

Sewell, Sarkar, Owens, Zappa Nardelli, Myreen: x86-TSO: a rigorous and usable programmer's model for x86 multiprocessors.

Commun. ACM 53(7) 2010. https://doi.org/10.1145/1785414.1785443
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X =1 Y := 1
fence() fence()
a :=Y // © b := X // ©

Sewell, Sarkar, Owens, Zappa Nardelli, Myreen: x86-TSO: a rigorous and usable programmer's model for x86 multiprocessors.

Commun. ACM 53(7) 2010. https://doi.org/10.1145/1785414.1785443
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MY

FIFO
Per- X1 Y > 1
thread
store
buffers
X :=1 Y := 1 l l
fence() fence()
a :=Y // © b := X // ©
memory X—0 Y0

Sewell, Sarkar, Owens, Zappa Nardelli, Myreen: x86-TSO: a rigorous and usable programmer's model for x86 multiprocessors.
Commun. ACM 53(7) 2010. https://doi.org/10.1145/1785414.1785443
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MY

FIFO

Per X 1 YT

thread

store

buffers
X :=1 Y := 1 l l
fence() fence()
a :=Y // © b := X // ©

memory X—0 Y~—0

Y1

Sewell, Sarkar, Owens, Zappa Nardelli, Myreen: x86-TSO: a rigorous and usable programmer's model for x86 multiprocessors.
Commun. ACM 53(7) 2010. https://doi.org/10.1145/1785414.1785443
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MY

FIFO

Per X 1 YT

thread

store

buffers
X :=1 Y := 1 l l
fence() fence()
a :=Y // © b := X // ©

memory X—0 Y~—0

Y1

Sewell, Sarkar, Owens, Zappa Nardelli, Myreen: x86-TSO: a rigorous and usable programmer's model for x86 multiprocessors.
Commun. ACM 53(7) 2010. https://doi.org/10.1145/1785414.1785443
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WMM = out-of-order execution?

C1/C2 Store Load
Store N Y
Load N N
C1/C2 Store Load
Store Y Y
Load Y Y

possible reordering for independent accesses

L, Vafeiadis: Explaining Relaxed Memory Models with Program Transformations. FM 2016. https://doi.org/

10.1007/978-3-319-48989-6_29

C <

o
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POWERG6"
BUILT ON

WMM # out-of-order execution

a := X // 1 c :=Y // 1
X =1 lwsync lwsync Y (=1
b :=Y // © d :=X// 0

.+ Because of the 1wsync fences, no intra-process reorderings are possible

- The threads may still observe the writes in different orders

Sarkar, Sewell, Alglave, Maranget, Williams: Understanding POWER multiprocessors. PLDI 2011. https://doi.org/
10.1145/1993498.1993520

20


https://dblp.org/db/conf/pldi/pldi2011.html#SarkarSAMW11
https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/1993498.1993520

WMM = hardware models?
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Read from untaken branch

b :=Y
S a2 X if (b = 42) then
c :=1
V -= 2 else Can this program end with ¢ = 1 ?
' cC := 2
b := 42
X :=Db

Boehm, McKenney: A Relaxed Guide to memory_order_relaxed. 2020. https://open-std.org/JTC1/SC22/WG21/docs/papers/2020/
p2055r0.pdf




Read from untaken branch

b := Y

if (b = 42) then

c :=1
V -= 2 else Can this program end with ¢ = 1 ?
' cC := 2
b := 42

X :=)/42

Boehm, McKenney: A Relaxed Guide to memory_order_relaxed. 2020. https://open-std.org/JTC1/SC22/WG21/docs/papers/2020/

p2055r0.pdf
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Read from untaken branch

=Y
2 o X | if (b = 42) then
c :=1
V -= 2 | else Can this program end with ¢ = 1 ?
' | Cc =2
b := 42

:=)/42

Boehm, McKenney: A Relaxed Guide to memory_order_relaxed. 2020. https://open-std.org/JTC1/SC22/WG21/docs/papers/2020/

p2055r0.pdf

22



Tricky combinations

- Repeated read elimination over a lock:

a = X d — X
lock(L) =A\A> lock(L)
b := X b := a

- Read hoisting (t is a fresh temporary):

t := X
if ¢ then
a := ¢t

if ¢ then A '
a := X




Allowing both 1s wrong!

- The combination of the two is unsafe:

: t := X t := X
1f ¢ then if ¢ then if ¢ then
a = X a := t a := t
io?ﬁ(;) lock (L) lock (L)

T b := X b := t

- When cis false , X is moved out of the critical region!

- We have to forbid one of the transformations:
- C forbids load hoisting

- LLVM forbids repeated read elimination over a lock

Chakraborty, Vafeiadis: Validating optimizations of concurrent C/C++ programs. CGO 2016. https://doi.org/10.1145/2854038.2854051
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A WMM tor a PL.
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Solving the memory model problem will
require an ambitious and cross-disciplinary
research direction.

BY SARITA V. ADVE AND HANS-J. BOEHM

Memory
Models:

A Case for
Rethinking
Parallel
Languages
and Hardware

Commun. ACM 53, 8 (August 2010).
https://doi.org/10.1145/1582716.1582718

The Problem of Programming Language
Concurrency Semantics

Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-Pharabod,
and Peter Sewell

University of Cambridge

r

.

N

“Disturbingly, 40+ years after the first relaxed-memory hardware was
introduced (the IBM 370/158MP), the field still does not have a credi-
ble proposal for the concurrency semantics of any general-purpose high-
level language that includes high performance shared-memory concur-
rency primitives. This is a major open problem for programming lan-

guage semantics.”

ESOP 2015. https://doi.org/10.1007/978-3-662-46669-8 12

26
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Embracing weak consistency

- Not only a threat, but also an opportunity:
- More scalable algorithms
- Many (most?) concurrent idioms/algorithms do not need SC
. Better understanding of our algorithms
. Better understanding of concurrency

. Local reasoning and more scalable verification

- Open research problems!

27



The C11l memory model



The C/C++11 memory model

. In C/C++11 threads were made a part of the longuage specification

- A careful and sophisticated declarative weak memory model was published:
. O result of several years of effort (starting around 2004)

. building on the experience with the Java memory model

- Main design principles:
. Tell non-expert programmers to avoid data races and provide strong semantics for them

- Leave the semantics of data races completely undefined (“catch-fire”) &
- This way we can allow more flexible implementations and simpler model

- Give experts a way to write very carefully crafted, but portable, synchronization code
that approaches the performance of assembly code




SOMeE resources

. For language lawyers:

* http://www.open-std.org/jtcl/sc22/wqgi4/www/docs/n1548.pdf

- A popularized history:

* Boehm, Adve: You Don’t Know Jack about Shared Variables or Memory Models. Commun. ACM 55.2 (Feb.

2012). https://doi.org/10.1145/2076450.2076465

- Formal treatment:

* Batty, Owens, Sarkar, Sewell, Weber: Mathematizing C++ Concurrency. POPL 2011. http://doi.acm.org/
10.1145/1926385.1926394

* L, Vafeiadis, Kang, Hur, Dreyer: Repairing Sequential Consistency in C/C++11. PLDI 2017. https://doi.org/
10.1145/3140587.3062352

3 Includes paid promotion >

The Foundation of C++
Atomics:

The Knowledge You Need to Correctly
Use C++ Atomics.

FILIPE MULONDE

@ Cppcon %[]] NA

October 1.32:48

Memory Model and Consistency
model, a quick tutorial
* Sequentia | Consistency (SC)
Sequential consistency was originally

defined in 1979 by Leslie Lamport as
follows:

* Concurrent non-atomic accesses, one a write

® Data race — undefined behavior!
T —— L]

30
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Why tocus on C117

- The world is programmed in C/C++.

- CTMis a prototype PL memory model: a solid starting point for other languages:
LLVM, Java 9, WebAssembly, Rust, JavaScript...

- Architecture vendors aim to efficiently implement C11

« One of the most wel
guarantees, algorith

-studied weak memory models: correctness, programmability

ms, verification, ...

31



Main ingredients

- Non-atomic memory accesses (reads/writes):

O
O . | |
cg) . ordinary accesses for data manipulations
- - the majority of accesses in a typical program
% » insensitive to access granularity
-
O .« Locks 8
C
. used to avoid data-races
Fast Slow
3 - Atomic memory accesses (reads/writes/RMWS) - _
O . .
= . used for synchronization Weak Strong
j .
2 reloxed C release/acquire C sc
> . . :
O - Fences for fine-tuned synchronization patterns memory orders

32



Syntax examples (atomics)

e |InC:

- annotate the type, and then all accesses default to SC memory order:

Atomic(Node *) top;

- ANNotate an access:

t = atomic load explicit(top, memory order acquire);

e CAS In C++:

atomic compare exchange weak explicit(&head, &new node->next, new nhode,
memory order release, memory order relaxed);

33



Examples with non-atomics and locks

lock (L) lock (L) 2 =X // 11 b:=vy//1
X 1= 1 a := X // 2 Y =1 X := 1
unlock (L) unlock (L)
a := X // 1 b :=Y // 1 lock(L) uni;ck(L)
if a = 1 then if b = 1 then Y := 1 :
Y :=1 X =1 unlock (L) if (a =1) then
. : b := X // 0

Which of these programs are race-free? How are data races defined?

What are the guarantees for race-free programs?



The tull model.

[-] : CExp — P({res:ValU{L}, A:P(AName),lab: A — Act,sb: P(A x A), fst : A, Ist : A))
[v] def {(v,{a},lab,0,a,a) | a € AName A lab(a) = skip}
[alloc()] et {(¢,{a},lab,0,a,a) | a € AName A £ € Loc A lab(a) = A(¢)}
[[v]z := ] et {(v',{a},lab,0,a,a) | a € AName A lab(a) = Wz (v,v")}
[[v]Z] et {(v',{a},lab,0,a,a) | a € AName A v" € Val Allab(a) = Rz(v,v)}
[CASx vy (v,v5,vp)] Lef {(v',{a},lab,0,a,a) | a € AName A v" € Val A v’ # v, Alab(a) = Ry (v,v')}
U {(vo,{a},lab,0,a,a) | a € AName A lab(a) = RMWx (v, vo, vp) }
[let 2 = By in E>] % {(L, Ay, laby, sby, fsty, Ist1) | (L, Ay, laby, sby, fsty, Ist) € [E1]}
U {(resa, A1 W Ag, laby U laby,sby Usbs U {(Isty, fsty)}, fsty, Ista) |
(v1, Ay, laby,sby, fsty, Ist1) € [Er] A (resa, Az, labg, sbo, fst,, Ista) € [Eafvi/x]]}
[repeat Eend]] = {(resN,Uze v A Ui vy 1abis Uiepn vy sbi U {(Ust, fsta), o, (Istv—1, fsty) }, fsty, Istn) |

Vi. (resz,.AZ, Iabl,sbz,fst lst i) E[E]N(E#N = res; = 0) Aresy # 0}

[E1|| E2] def {(combine(resy, res2), A1 W Az W {asork, Gjoin }, lab1 U laby U {afork — skip, ajoin — skip},
S'bl U Sb2 U {(aforkafStl)a (afork7f3t2)7 (l3t17 ajoin)a (l5t2a ajoin)}: Qfork, ajoin> |
(resi, Ai,sby, fsty, Ist1) € [Eq] A (resa, Ag, sb, fsty, Ista) € [Ea] A afork, Gjoin € AName}

Figure 2. Semantics of closed program expressions.

Bz. hb(z, x) (IrreflexiveHB)

V. totalorder({a € A | iswrites(a)}, mo) A hb, C mo (ConsistentMO)

totalorder({a € A | isSeqCst(a)}, sc) A hbseqcst € SC A MOseqcst C SC (ConsistentSC)

Vb. rf(b) # L <= 3¢, a. iswrites(a) Aisready(b) A hb(a,b) (ConsistentRFdom)

Va,b. rf(b) =a = 3¢, v. iswritey ,(a) A isready, (b) A —=hb(b, a) (ConsistentRF)

Va,b. rf(b) = a A (mode(a) = naV mode(b) = na) = hb(a,b) (ConsistentRFna)

Va,b. rf(b) = a N isSeqCst(b) = isc(a, b) V —isSeqCst(a) A (V. isc(x,b) = —hb(a, z)) (RestrSCReads)

Ba,b. hb(a,b) A mo(rf(b), rf(a)) A locs(a) = locs(b) (CoherentRR)

Ba,b. hb(a,b) A mo(rf(b),a) Aiswrite(a) A locs(a) = locs(b) (CoherentWR)

Ba,b. hb(a,b) A mo(b, rf(a)) Aiswrite(b) A locs(a) = locs(b) (CoherentRW)

Va. isrmw(a) Arf(a) # L = mo(rf(a),a) A fc. mo(rf(a), c) A mo(c, a) (AtomicRMW)

Va,b, . lab(a) =lab(b) = A({) = a=1b (ConsistentAlloc)

where iswrite, , (a) YIX, vo1a. lab(a) € {Wx (¢,v), RMWx (¢, vo1a,v) } iswritey(a) Ll 3y, iswriteg , (a)
isready., (@) % IX, Unew. lab(a) € {Rx (£, v), RMWx (£, v, Uew) } etc.
rsElem(a, b) Lt sameThread(a b) V isrmw(b)
rseq(a) {a} U {b | rsElem(a, b) A mo(a, b) A (Ve. mo(a, c) A mo(e,b) = rsElem(a,c))}

sw (a,b) | mode(a) € {rel,rel_acq,sc} A mode(b) € {acq,rel_acq,sc} A rf(b) € rseq(a)}
hb 4 (sb U sw)*
hb, & (a,b) € hb | iswritey(a) A iswriteys(b) }

L {(a,b) € X | isSeqCst(a) A isSeqCst(b)}

XSequt =
isc(a, b) def iswritejoes(p) (@) A sc(a, b) A Ac. sc(a, c) Asc(c,b) A iswritejocs(s) (C)

Figure 3. Axioms satisfied by consistent C11 executions, Consistent(.A, lab, sb, rf, mo, sc).
c: W(, 1)—f>a R(£,1) | c: W(£,2) —=a:W((1) c:W(€,1)7>a:R(€,1)

Jmo hby) X\ hby TS hby 0, means mo(a.b)
d: W(ﬁ, 2) ? b: R(f, 2) b: R(g’ 2) b- W(ﬁ, 2) a N eans o(a,
' a — b means hb(a,bd)

a5 b means a= rf(b)

violates CoherentRR violates CoherentWR violates CoherentRW

Figure 4. Sample executions violating coherency conditions (Batty et al. 2011).

rb = rf"l' mo (reads-before)
eco = (rf UmoUrb)™ (extended coherence order)
rs 2 [W;sb|;oc: [WT"]; (rf; rmw)*  (release sequence)
sw = [E;I;il]x]( [I(:lbs}[Dg‘D I‘S[égﬁcq] (synchronizes with)
hb = (sbUsw)™t (happens-before)
sb|£10c = Sb \ sb|1ec
scb = sb U sb|410c; hb; 8b|£10c U hb|yoc Umo U rh
PSChase = ([ES°] U [F*¢];hb’) ; scb; ([ES¢] U hb’; [F5¢])
pscg = [F°]; (hb U hb; eco; hb); [F5°]
psc = PSChase U PSCF

Definition 1. An execution G is called RC11-consistent if it
is complete and the following hold:

e hb; eco’ is irreflexive. (COHERENCE)
e rmw N (rb;mo) = (. (ATOMICITY)
e psc is acyclic. (SC)
® sb U rf is acyclic. (NO-THIN-AIR)
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Declarative memory models

.« Possible program behaviors are represented by directed graphs

X :=1
lock (L)
Y :=1
unlock (L)

e [he model defines:

lock (L)

a :=Y // 1
unlock (L)

if (a =

1) then

b := X // 0

e coONsistent execution graphs

e raCy execution graphs

>

W x 0 WyO
W x 1 Lock(L)
J/ \‘ :g J/' ". ~~~"‘
Lock(L) S xRyl
o ‘.;,v“, g :’."
: . J/ .7 ol ..'.: s J/v.
“Wy1~ % Unlock(L)
Unlock(L) RxO0

— program-order po
--* reads-from rf
""" > |ock order lo
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Execution grapns

events: reads, writes, RMWs, reads-from
lock/unlock, fences relation

G =<(E,po,rf,lo,...)

orogram lock
order order

. Thereis a standard translation:

program — set of candidate execution graphs

- Read values are not constrained at this stage

. Except for po, relations are existentially guantitied
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Well-formedness

- Program order po: partial order, per-thread total, initialization
nefore everything

. reads-from rf: from a writing event to a reading event, value
and location should match, every read reads from some write,
an RMW cannot read from itself

. lock order lo: among lock and unlock events of the same lock,
oartial order, per-lock total, properly interleavead

Wy1~ < Unlock(L)

W xO0 WyO
W x 1 Lock(L)
Lock(L) S xRy’

4
3 ,°
PR .
o '0 ‘ L 4
o .O ‘ L 4
- 0
e’ K ' A 4
L 4
0. ‘
* ?
‘0‘ o )
o‘ :' L}
v ; X

L 4

Unlock(L) RxO0

— program-order po
-==*> reads-from rf
""" > |ock order lo
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Happens-betore

. The most central derived relation:

hb=(poUloU...)"

more to be
added later

. Intuitively represents “knowledge”, “synchronization”, “causality”

transitive
closure
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Execution-graph consistency

assuming only non-atomics & locks

The following patterns should never occur:

hb

hb should be irreflexive no reads from later writes

hb

a thread may not read from a write
if it is aware of a later write to the same variable

\/
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X := 1 iOff(t)
iO?E(;) unlock(L)
- if (a = 1) then
unlock(L) b oo X
WxO0 WyO0 WxO0 WyO0 WxO0 WyO0
Lock(L) Wx 1. Lock(L)
l...,. l \“ o l ......
xRy Lock(L) . 7 .»Ry1
| L l - 4‘ ly
. Unlock(L) Wy 1” © . Unlock(L)
< X . “‘1 l . “‘ l
Unlock(L) RxO0 Unlock(L) »Rx0 Unlock(L) R X 1

INnconsistent INconsistent consistent



Data-races :

W x 1 . _.»Ry
e
Wy 1 RxO0
.« Two events are conflicting:
racy

e gccess the same location

e Ot least oneis a write

. A data-race = two conflicting events:

. Ot least one is non-atomic

- unordered by hb

Wx 1~ Lock(L)

A} o A
‘. N .
4 :' .
IS | |

Lock(L) . . .»Ry1’

.0
$ v _*
‘{0;’ R4
¢"'\ v.
L 4
s’ o N
L 4

Wy1~" < ™ Unlock(L)
vl "% l
Unlock(L) R x 1
Not racy




Allowed behaviors

A behavior of a program is allowed it one of the following holds:
. [tis obtained by some consistent execution graph of the program

. Some consistent execution graph of the program has a data race

- Side note: What is a behavior? l y

« Often taken to be the final values of the local variables

- But, there are other options...

catch-fire
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Example

X :=1
lock (L)
Y :=1
unlock (L)

lock (L)

a :=Y // 1

unlock (L)

if (a=1) then
b := X // ©

behavior a=1 & b=0 disallowed

Lock(L)

. ) .
¥y
\ ' «
N, s
A a “
L .
Y ‘ L 4 “
o
§  } . %
\ R 4 |
,
\
o
o

| ) IS
IS

]
o )
S xRy 1.
L 2 ’0
*
*
IS

|

“Unlock(L) || iWy1°" “. Unlock(L)
‘ l W | - l
Unlock(L) RxO0 Unlock(L) »*RxO0
Inconsistent Inconsistent

+ no consistent graph of this program is racy




Fast Slow

Atomic accesses - -

Strong

reloxed C release/acquire C sc

- All atomics guarantee coherence

. accesses to each location are in a total order (that extends hb) where each read reads
from the last write

- Release/Acquire enforce synchronization

. via another case in the definition of hb

- SC accesses ensure a global total order among them
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Coherence guarantees for atomics

aka SC-per-location

For every location X, there exists a relation Sy such that:
. Sy is a total order on all accesses to X
. S, contains hb when restricted to accesses to X

. rfrelates every read r from X to the Sy-maximal write that is Sy-before r

disallowed
patterns:
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Example: Coherence

o a :=Xrlx // 1] c :=Xrlx // 2
X i=1rlx b := X rlx // 2| d := X rlx // 1
WX 1=z:22---»R x 1 Rx2<4-----2:Wx 2
Rx 24 T"*Rx1

coherence forbids this behavior

X :

2 rlx

— program-order po
=% reads-from rf

47



Example: IRIW (independent-reads-independent-writes)

a :=Xrlx // 1] c :=Yrlx // 1
X :=1rl . =

: b :=Yrlx // 0| d := X rlx // © Y 1 rlx

1 1

W xO0 WyO0
'
|~ R —  program-order po

L »Rx1 N Ry T eeeee Wyt | ---* reads-from rf
3 4 J R J 4 3

, Ryo” “Rx0/%

coherence allows this behavior



Alternative formulation of coherence

- include modification order (aka coherence order) in execution graphs: G = (E, po, rf, lo, mo, . . .)

. mo = Uy moy where each moy is a total order on all writes to X

. forbid the following six patterns:

R
mo mo
W X .
mo mo . ~~~~ rf
RMWX< """ W X""';WX mO:
k~ ," *
B i W x=---3Rx
l’f rf

- This is equivalent to the previous formulation with a total order on all accesses to X

49



A more concise formulation

- Reads-before (aka from-read) relation:

W X -,
rb = (rf™!; mo) \ id : ’”f

mao

W X €&=—R X
rb

relation
composition

. Coherence:

acyclic(hb | U rf U mo U rb)

same—location

.+ Compare to a standard declarative formulation of SC: acyclic(po U rf U mo U rb)
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Another concise formulation

. Extended coherence relation:

eco =f Umo U rb)™ = rf UmoUrb U@mo;rf) U (rb;rf)
- Coherence:

v, . .
eco ’ hb' is irreflexive

. Compare to another standard declarative formulation of SC: acyclic(eco U hb)

- There is also an alternative equivalent definition that avoids mo altogether:

L, Vafeiadis: Owicki-Gries Reasoning for Weak Memory Models. ICALP 2015. http://plv.mpi-sws.org/ogra/full-paper.pdf

(appendix B)
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Fast Slow

Synchronization via atomic accesses Wegk-l I

Strong

reloxed C release/acquire C sc

t

- Release/Acquire (and SC) accesses form “synchronization edges”:

sw=rf N (W€ x RICA)

hb=(poUloUswuyU...)"

. The full definition of sw is more involved, allowing more synchronization patterns:

. using relaxed accesses + release/acquire fences

. using “release sequences” (definition was changed in C++20)
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Examples: MP (message passing)

1

X <

X <

int Y
int X

O
0

a := X
if (a=1) then
b :=Y

int 'Y = 0

atomickinty> X = 0

42
1 rlx

a := X rlx
if (a=1) then
b :=Y

behavior a=1 & b=0 allowed ?

3

X <

intY =0
atomickint> X = 0

- a := X acq

i izrel if (a=1) then

B b :=Y
WyO W xO0

Wy 42 ',WRX‘I
L
Wx1"~ ‘RyO
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Examples: MP (message passing)

1

X <

X <

int Y
int X

O
0

a := X
if (a=1) then
b :=Y

int 'Y = 0

atomickinty> X = 0

42
1 rlx

a := X rlx
if (a=1) then
b :=Y

behavior a=1 & b=0 allowed ?

3

X <

intY =0
atomickint> X = 0

- a := X acq

i izrel if (a=1) then

B b :=Y
WyO W xO0

Wy 42 ',WRX‘I
L
Wx1"~ ‘RyO
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Examples: MP (message passing)

1

X <

X <

int Y
int X

O
0

a := X
if (a=1) then
b :=Y

int 'Y = 0

atomickinty> X = 0

42
1 rlx

a := X rlx
if (a=1) then
b :=Y

behavior a=1 & b=0 allowed ?

3

X <

intY =0
atomickint> X = 0

- a := X acq

i izrel if (a=1) then

B b :=Y
WyO W xO0
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Examples: MP (message passing)

1

X <

X <

int Y
int X

O
0

a := X
if (a=1) then
b :=Y

int 'Y = 0

atomickinty> X = 0

42
1 rlx

a := X rlx
if (a=1) then
b :=Y

behavior a=1 & b=0 allowed ?

3

X <

int 'Y = 0

atomickint> X = 0

42
1 rel

a := X acq
if (a=1) then
b :=Y
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SC accesses F—

Weak Strong

reloxed C release/acquire C sc

- SC accesses can be used to provide sequentially consistent semantics when needed '

- Roughly, there should exist a total order s¢ on all SC accesses in which every read reads from
the last write

psc 1s acyclic.

.« The precise semantics is much more complicatead
sb|£10c £ sb \ sblioc

scb = sb U sb|£10c; hb; 8b| 410 U hb|yoc Umo U rh
PSChase = ([ES°] U [F5¢];hb?) ; scb; ([ES¢] U hb’; [F5°])
pscg = [F*°]; (hb U hb; eco; hb); [F*°]

A
PSC = PSChase U PSCF

. |t has been a rich source of bugs in the model, and it is currently under another revision...

54



Example: SB (store bultter)

X (=1 sc Y (=1 sc W Xf) W y'O
a :=Y sc // © b := X sc // ©
- Allowed with release/acquire atomic accesses RyoO RxO0

. Disallowed when all 4 accesses are sc



Example: IRIW (independent-reads-independent-writes)

a := X // 1 c :=Y // 1
¢ = Y . = 1
Xoi=d b =Y // 0 d := X // @
WxO0 WyO
| |
- Allowed with release/acquire atomic accesses / X ,
| Wx1=====---- > R x 1 . Ry 1 €=------- Wy 1
- Disallowed when all 6 accesses are sc l R l
Ryo” “Rx0
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Fixing oC accesses 1n C11

Q
1

= X acq // 1
b :=Y sc // 0| d:

@
1

Y acqg // 1

X X sc // ©

Y := 1 sc

1l sc

- In the original C11 model this behavior was disallowed (the order sc had to agree with hb)

- Butitis allowed on POWER multicores after compilation mapping!

- The C/C++11 was weakened in order to solve this problem

L, Vafeiadis, Kang, Hur, Dreyer: Repairing Sequential Consistency in C/C++11. PLDI 2017. https://doi.org/10.1145/3140587.3062352

S/
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SC fences

atomic thread fence(memory order seqg cst)

. SC-fences provide another way to enforce SC semantics when needed

. Consistency essentially requires that there exists a total order scg on all SC fences in the

graph that is a part of hb:

hb=(poUloUswUscg )™
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SC fences

- Weak behaviors can be forbidden by placing SC-fences:

X := 1 rlx Y := 1 rlx
SC-fence SC-fence
a :=Yrlx // 0 b := X rlx // ©

a := Xrlx // 1 c :=Yrlx // 1
1 rlx SC-fence SC-fence Y :
b :=Y rlx // © d := X rlx // ©

X :

1 rlx

- SC-fences are often preferred by expert developers, making SC accesses rather useless...

- SC-fences can be encoded as release/acquire RMWs (e.g., FADD(F,0)) to a distinguished, otherwise
unused location
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Recap: The C11 memory model

. Catch-fire: races on non-atomics = undefined behavior 6

- Relaxed atomics for racy (but non-synchronizing) accesses

. Atomics ensure coherence Fast ; Slow

- Locks and release/acquire atomics for synchronization Weak Strong

| | relaxed C release/acquire C sc
- SC atomics / fences for ensuring a global total order faco



The out-of-thin-air proplem &
RC11



The out-of-thin-air problem

- The model presented so far is too weak.
. Values might appear “out-of-thin-air”!

- For the same reason, the DRF guarantee is broken (we will discuss later).

std: :atomic<int> x
std::atomic<int> vy

0;
0;

// Thread 1

int rl = y.load(std: :memory_order_relaxed); // A
X.store(rl, std::memory_order_relaxed); // B

// Thread 2

int r2 = x.load(std: :memory_order_relaxed); // C
y.store(r2, std::memory_order_relaxed); // D
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Example: LB (load buftter)

W x O WyO
a :=Xrlx // 1 b :=Yrlx // 1 Aﬁii:::>x<::::iis
Y (=1 rl X :=1rl
rix FiX R)I1v\ /,R)lﬂ
Wy 1 T WX 1

- C11 allows this behavior, for a good reason:

- We want to compile relaxed accesses to plain machine accesses

- Hardware models (POWER / ARM) allow it
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Example: LB (load buftter)

W x O WyO
a :=Xrlx // 1 b :=Yrlx // 1 Aﬁii:::>x<::::iis
Y := 1 X :=brl
ar‘X PX R)[1v~~~ /'R)l/-l
Wy 1 W X T

- But, it means that it also allows the above behavior
- The two behaviors are represented by the same execution graph!

- The value 1 appears “out-of-thin-air”
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The hardware solution

a := X // 1 b :=Y // 1
Y := 1 X :=1
a := X // 1 b :=Y // 1
Y = a3 X :=Db

. Hardware models forbid: (dep U rf) cycles

W x O WyO
Rx1‘ ,Ry1
Wy1- ’ \"Wx1

W x O WyO
Rx1‘ ,Ry1
*l R l*

Wy 1 W X

---» dependency dep
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The hardware solution

- Hardware execution graph maintain dependency relation among events
. This is not a viable option for a PL since compilers may remove syntactic dependencies

- Devising a good “semantic” notion of dependency is an open challenge

o
|

X // 1

1 + a - a X

o
|
<
~
N~
=

Y // 1 =N\ 2 :=X//1
\

1 +b -0D |
compiler
optimization

|
=
>
[
=




The out-of-thin-air problem

« The C++14 standard states:

“Imjo[emenmtions should ensure that no "out-of-tﬁin—air” values are comfuteo[ that circu[ar[y

cfejoem{ on their own comjaumtion.”

- But doesn't give a sufficiently formal definition...

“Disturﬁing[y, 40+ years after the ﬁrst re[axec[-memory hardware was introduced (the IBM
370/158MP), the ﬁe[o[ still does not have a credible jmyosa[ for the COncurrency semantics of

any genera[:pumose ﬁigﬁ-[eve[ [anguage that includes ﬁz’gﬁ ferformance sﬁarec[-memory
concurrency jorimitives. This is a mcg’or open Jﬂroﬂem for frogramming [anguage semantics.”

Batty, Memarian, Nienhuis, Pichon-Pharabod, Sewell: The Problem of Programming Language Concurrency Semantics. ESOP 2015. https://doi.org/
10.1007/978-3-662-46669-8 12
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RC11: a conservative approach

. Disallow (po U rf) cycles altogether.
- Implementation cost: forbid RW-reodering for relaxed accesses
. Importantly, reodering of non-atomic accesses is still sound!

. Different strategies and their performance implications were investigated:

Ou, Demsky: Towards understanding the costs of avoiding out-of-thin-air results. OOPSLA 2018. https://doi.org/

10.1145/3276506

- The obtained model is called RC11 (“repaired C117).

Boehm, Demsky: Outlawing ghosts: avoiding out-of-thin-air results. MSPC 2014. https://doi.org/10.1145/2618128.2618134
L, Vafeiadis, Kang, Hur, Dreyer: Repairing Sequential Consistency in C/C++11. PLDI 2017. https://doi.org/10.1145/3140587.3062352

68


https://doi.org/10.1145/2618128.2618134
https://doi.org/10.1145/3140587.3062352

Alternative proposals

. Solving the out-o

-thin-air problem without changing the compilation schemes requires a major

revision of the sto

ndarad

- We cannot have a per-execution definition: validity of one execution depends on what happens in

other executions

« SOMe prominent

* Chakraborty, Vafeia

e Jeffrey, Riely, Batty

oroposals:

dis. Grounding thin-air reads with event structures. POPL 2019. https://doi.org/10.1145/3290383

, Cooksey, Kaysin, Podkopaev. The leaky semicolon: compositional semantic dependencies for relaxed-

memory concurrency. POPL 2022. https://doi.org/10.1145/3498716

* Kang, Hur, L, Vafeia

dis, Dreyer. A promising semantics for relaxed-memory concurrency. POPL 2017. https://doi.org/

10.1145/3009837.3009850
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RC11

. In the rest of this presentation, we mostly assume RC11: (po U rf) is acyclic

- This model has been extensively studied in recent years:

. acyclicity of (po U rf) allows adaptations of existing techniques

. we think about the system executing the program “in-order” on top of a non-standard
memory system
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Operationalizing RC11

. Sto

gra

te is the execution

oh produced so far

« Non-deterministic choice

where to read from (and
where to place writes in the
modification order)

- Consistency is checked at

every step

« This memory system is

synchronized with an “in-
order” program semantics

1 rlx
Y rlx // ©

c <<

1 rlx
Xrlx // ©

7



Operationalizing RC11

« State is the execution

graph produced so far

« Non-deterministic choice

where to read from (and
where to place writes in the
modification order)

- Consistency is checked at

every step

« This memory system is

synchronized with an “in-
order” program semantics

=X

WZXO0

WYO

Gy

Initial state

1 rlx
Y rlx // ©

1 rlx
Xrlx // ©



Operationalizing RC11

« State is the execution

graph produced so far

« Non-deterministic choice

where to read from (and
where to place writes in the
modification order)

- Consistency is checked at

every step

« This memory system is

synchronized with an “in-
order” program semantics

X =1 rlx
=2 :=Y rlx // ©

WxO0 WYO WxO0 WYO
W X 1
1 : WXI1
G, . G,

Initial state

1 rlx
Xrlx // ©



« State is the execution d

« Non-deterministic choice

Operationalizing RC11

X :=1 rlx
Y rlx // © b

graph produced so far .

where to read from (and
where to place writes in the Wx0 W7YO Wx0 WYO Wx0 WYO
modification order) i

» Consistency is checked at
every step W x 1 W X 1 K

« This memory system is l K
synchronized with an “in- Ryo &
order” program semantics

Initial state

1 rlx
Xrlx // ©
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Operationalizing RC11

. Sto

gra

te is the execution

Oh produced so far

Non-deterministic choice
where to read from (and
where to place writes in the
modification order)

- Consistency is checked at

every step

« This memory system is

synchronized with an “in-
order” program semantics

X :=1 rlx Y := 1 rlx
a :=Yrlx // ompb := X rlx // ©
Wx0 WYO Wx0 WYO Wx0 WY WX0 WYO
W x 1 W x 1 ," W x 1 ," Wy 1
Ryo & Ryo &
1: WX1 1 : RYO 2 1 WY1
G Y - O - G

Initial state




Operationalizing RC11

Sto
gro

te is the execution

Oh produced so far

Non-deterministic choice
where to read from (and
where to place writes in the
modification order)

Consistency is checked at
every step

This memory system is
synchronized with an “in-
order” program semantics

X :=1 rlx Y := 1 rlx
a :=Yrlx // © b := X rlx // ©
WxO0 WYO WxO0 WYO WxO0 WxO0 WYO WxO0
W x 1 W x 1 ,' W x 1 ," Wy 1 ‘
Ryo & Ryo & Ryo &
: : RY 2 : WY1 :
G() 1: WX1 Gl 1 0> G2 " » G3 2 RXO>

Initial state
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Operationalizing RC11

- Observation:
- we don't need the full execution graph in the state

- we only need the part that can affect consistency of later accesses

- This leads to more compact presentations (somewhat similar to distributed implementations)

- Note: The state space remains infinite (for program with loops)

- important implications for algorithmic verification c ot Slow
Weak Strong
- Next, we demonstrate this idea for the RA fragment relaxed C release/acquire C sc

1)
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The RA memory model

- An well-studied fragment of C11is RA (intricate but not overwhelmingly detailed)
- Ensures causal consistency & coherence

. Supports “flag-based synchronization” 3 .= X

if.(a=1) then
b :=Y // ©

< <
"o
NN

N

. Allows WR-reordering

- Threads can disagree about the order of writes: non-multi-copy-atomic

- Locks can be implemented using RMWs

.« SC-fences can be encoded as RMWs to a distinguished otherwise unused location
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Declarative RA

- When restricting RC11 to only release/acquire accesses:

- hb=(poUrf)"

. Four disallowed patterns:

mo mo

-----

mO

. Concise formulation: acyclic(hb | U mo U rb)

same—location
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Thread view

Operational formulation «>Y

A view-pbased semantics

- Memory: Timeline per location (represents mo)

- Populated with immutable messages holding values
- Each view points to msgs on each timeline

- Threads have views — cannot read from “the past” Yy
- Msgs have views for enforcing causal propagation

- Simulates the graph-based operational semantics

Z

Kang, Hur, L, Vafeiadis, Dreyer: A promising semantics for relaxed-memory concurrency. POPL 2017. https://doi.org/
10.1145/3009837.3009850

Dvir, Kammar, L: A Denotational Approach to Release/Acquire Concurrency. ESOP 2024. https://doi.org/10.1007/978-3-031-57267-8 5 .
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Thread view

Operational tormulation O

A view-pbased semantics

- Memory: Timeline per location (represents mo)

- Populated with immutable messages holding values
- Each view points to msgs on each timeline

- Threads have views — cannot read from “the past” Yy
- Msgs have views for enforcing causal propagation

- Simulates the graph-based operational semantics

Z

Kang, Hur, L, Vafeiadis, Dreyer: A promising semantics for relaxed-memory concurrency. POPL 2017. https://doi.org/
10.1145/3009837.3009850

Dvir, Kammar, L: A Denotational Approach to Release/Acquire Concurrency. ESOP 2024. https://doi.org/10.1007/978-3-031-57267-8 5 .



https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1007/978-3-031-57267-8_5

x0

z0

X2 rel

Y acq // vyl
b := X rlx // x1

x1 rel
yl rel

When writing., the message:

) must be placed after thread’s view
) may be placed before others

) copies thread's view
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z0

X2 rel

Y acq // vyl
X rlx // x1

x1 rel
yl rel

o
|

When writing., the message:

) must be placed after thread’s view
) may be placed before others

) copies thread's view
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z0

X2 rel

Y acq // vyl
b := X rlx // x1

x1 rel
yl rel

When writing., the message:

) must be placed after thread’s view
) may be placed before others

) copies thread's view

z0

/8



X2 rel

= X rlx // x1
X - f a :=Y // yl X
yO v1 " When reading, the message:
) cannot be before thread’s view
Y Y
) may be before others
and the thread:
zO
) inherits the copy of the view
Z Z

z0
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X := x2 rel
x1 rel

1 rel a :=Y acqg // vyl
Y = b := X rlx // x1

d
X1 g
,x-!!!!!!!!!!————————}——> b := X // x1

y1 When reading, the message:

) cannot be before thread’s view

) may be before others

and the thread:
z0 z0O

) inherits the copy of the view



Implementapility of (R)C11
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Compiler optimizations

- A formal analysis of soundness of optimizations in C11:

Vafeiadis, Balabonski, Chakraborty, Morisset, Zappa Nardelli: Common Compiler Optimisations are Invalid in the C11

Memory Model and what we can do about it. POPL 2015. https://doi.org/10.1145/2676726.2676995

» |n RCT1:

L, Vafeiadis, Kang, Hur, Dreyer: Repairing Sequential Consistency in C/C++11. PLDI 2017. https://doi.org/
10.1145/3140587.3062352

- A lot of focus on optimizations on atomics (eliminations and reorderings)

- Current compilers mostly optimize non-atomics
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Transtformation soundness

- Standard notion of soundness of local program transformations:

Coe v G

o I Behaviors(P[C,]) C Behaviors(P[C;

.]) for every program context P

- For catch-fire semantics (as (R)C11), it implies:

. if Cy, is NOt racy, then C,,, is not racy (the compiler must not introduce races)

. if Cg,e is racy, then €, w G, is sound for every C,, (the compiler may exploit races)
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Allowed eliminations in RC11

RY; R
WSS RSC¢ > . |SC

~> RO

W W¢
WO; Racq

w> WO
w> O

together with access strengthening RC11 allows, e.g.:

WW w» W: X
RR ~» R: a :

WR w» W: X
X :

1 rel ; X :
X acq ; b :
1 rlx ; a :
1 rlx ; a :

2 rlx w» X :
X rlx »» a :

X acq «» X :

X sc

~» X

2 rel

X acq ; b :

1 rlx ; a :

1 sc

; a
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Allowed read-write reordering in RC11

thanks to
X3;3Y w»Y ;X ‘catch-fire”
Y oL O
\ RyZ wy2
RO! 01 C rlx 01,09 C rlx A (0 =naV o, = na) |
WOt 01 # sc V 0y # sc 0o C rlx
-9 ‘roach motel”

RR: a (=X 3; b :=Yacg~» b :=Y acqg ; a := X

WW: X =1 rel ;Y :=2wY =2 ; X :=1 rel
WR: X :=1rel ; b :=Yacg- b :=Y acg ; X :=1 rel
RW: a (=X 3;Y =1 wY =1 ; a =X



Optimizing non-atomics

Thanks to catch-fire, non-atomics can be generally optimized as sequential code

lock (L) lock (L)
a := X b :=Y
Y :=1 X :=Db
unlock(L) unlock (L)



Optimizing non-atomics

Thanks to catch-fire, non-atomics can be generally optimized as sequential code

unlock(L) unlock (L)
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Optimizing non-atomics

Thanks to catch-fire, non-atomics can be generally optimized as sequential code

lock(L) lock(L) well-locked M), 2 -®, @ or @@ -1, 2

unlock(L) unlock (L)
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Optimizing non-atomics

Thanks to catch-fire, non-atomics can be generally optimized as sequential code

lock (L)

S s

unlock(L)

X :=b <:>

unlock (L)

well-locked 1) @283 @ or ® @ - 1) 2
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Optimizing non-atomics

Thanks to catch-fire, non-atomics can be generally optimized as sequential code

Switching @ and @ makes no difference!

lock(L) lock(L) well-locked M), 2 -®, @ or @, @ —- 1,2

SN M-

unlock(L) unlock (L)




Optimizing non-atomics

Thanks to catch-fire, non-atomics can be generally optimized as sequential code

Switching @ and @ makes no difference!

well-locked 1) @283 @ or ® @ - 1) 2

87



Optimizing non-atomics

Thanks to catch-fire, non-atomics can be generally optimized as sequential code

Switching @ and @ makes no difference!

well-locked 1) @283 @ or ® @ - 1) 2

: 4 not well-locked €9, @—-2@—-@ - @
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Optimizing non-atomics

Thanks to catch-fire, non-atomics can be generally optimized as sequential code

Switching @ and @ makes no difference!

well-locked 1) @283 @ or ® @ - 1) 2

cr
I
o <<

: 4 not well-locked €9,@-2>Q@—->®@ - @

Switching ) and 2 makes a difference,
but the program is wrong (racy)!
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[.oad introduction is unsound

« But irrelevant load introduction is unsound in catch-fire semantics!

- This is something compilers actually perform :(
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[.oad introduction is unsound

- But irrelevant load introduction is unsound in catch-fire semantics!

- This is something compilers actually perform :(

|
S

unsigned x, sum

foo(n, &x);

for (unsigned 1
sum += X;

O; 1 < n; 1++)

88



[.oad introduction is unsound

« But irrelevant load introduction is unsound in catch-fire semantics!

- This is something compilers actually perform :(

unsigned x, sum = 0; unsignhed x, sum
foo(n, &x); GCC, LLVM - foo(n, &x);

for (unsigned 1 = 0; 1 < n; 1++) W

sum += X; sum = X * n;

9,
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[.oad introduction is unsound

« But irrelevant load introduction is unsound in catch-fire semantics!

- This is something compilers actually perform :(

n =0
unsigned x, sum = 0; unsignhed x, sum
foo(n, &x); GCC, LLVM - foo(n, &x);

for (unsigned 1 = 0; 1 < n; 1++) W

sum += X; sum = X * n;

9,
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[.oad introduction is unsound

« But irrelevant load introduction is unsound in catch-fire semantics!

- This is something compilers actually perform :(

n =0
unsigned x, sum = 0; unsigned x, sum = 0;
foo(n, &x); GCC, LLVM - foo(n, &x);
for (unsigned 1 = 0; 1 < n; 1++) W

Sum += X; sum = X * n,

N

C A load from x introduced! )
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[.oad introduction is unsound

- But irrelevant load introduction is unsound in catch-fire semantics!

- This is something compilers actually perform :(

n=0 -
n = 0 spawn a thread writing to x

0; \\\::§§§\unsigned X, sum = 0;
foo(n, &x): GCC, LLVM

foo(n, &x);
for (unsigned 1 = 0; 1 < n; 1++) W

sum += X; sum = X * n;

N

( A load from x introduced! )

88

unsigned x, sum




[.oad introduction is unsound

« But irrelevant load introduction is unsound in catch-fire semantics!

- This is something compilers actually perform :(

~ data race
n =0 —
n = @ spawn a thread writing to x )
unsigned x, sum = 0; unsigned > , sum = 0;
foo(n, &x); GCC, LLVM foo(n, &x);
for (unsigned 1 = 0; 1 < n; 1++) W
sum += X; sum = X * n;

N

NO data race ( A load from x introduced! )
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Undefined value as a solution?

. Execute “in-order” and read “undefined value” for every race

a := X b := Y compiler

-\~

a =b =1 disallowed

d

b

b :=Y
X := b
1 allowed

89



Undefined value as a solution?

. Execute “in-order” and read “undefined value” for every race

a := X b :=Y compiler Y ;=1
Y :=1 X :=Db W a := X
a = b = 1 disallowed a=>b

RW reordering is unsound in this model

b :=Y
X := b
1 allowed

89



Our Solution: An intermediate memory model

Lee, Cho, Margalit, Hur, L: Putting Weak Memory in Order via a Promising Intermediate Representation. PLDI 2023. https://doi.org/
10.1145/3591297
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( programming & reasoning )

/

source (C/C++) model:
in-order

e |N-order source model

- Undefined behavior on WW & WR races

- Based on RC11

~ RW reordering
’ u __ O rd m Od ‘,:,4«:"?

compiler IR model:
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N

- Undefined behavior on WW races

- Undefined value on WR races
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Our Solution: An intermediate memory model

Lee, Cho, Margalit, Hur, L: Putting Weak Memory in Order via a Promising Intermediate Representation. PLDI 2023. https://doi.org/
10.1145/3591297

( orogramming & reasoning )

/

source (C/C++) model:
in-order

e |N-order source model
- Undefined behavior on WW & WR races
- Based on RC11

~ RW reordering

compiler IR model - Undefined behavior on WW races

out-of-order load
- Undefined value on WR races ¥ introduction
< compiler optimizations > - Based on the “promising semantics
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Implementability on multicore hardware

https://www.cl.cam.ac.uk/~pes?0/cpp/cppOxmappings.ntml

Rna D
erx D
R2cd D
F7*°)
RMW™*
RMacd

R) £ MOV (from memory) (W="°']) £ MOV (to memory) I

W¢|) = MOV;MFENCE (RMW|) = CMPXCHG

N N NN O

214

2 1d;¢

= 1d;cmp;bc;isync
A

= lwsync

W) £ st
W) £ st
W) £ lusync;st

F*°)) £ sync

(
(
(
(

) = L:lwarx;cmp;bc Le;stwcx.;bc L;Le:

) = (RMW*'*|); isync
) = lwsync; (RMW™*|)

RMW>°?*'|) = 1wsync; (RMW™™|); isync

F7=¢)) £ No operation (F*¢)) £ MFENCE

Figure 8. Compilation to TSO.

Leading sync

Figure 9. Compilation of non-SC primitives to Power.

Trailing sync

(R
()

(RMW=®|)

2 sync; (R*?)) (R>C
2 sync;st (w=*

) = 1d;sync

) = (W™));sync

= sync; (RMW*?)  (RMW*°|) = (RMW™']);sync

Figure 10. Compilations of SC accesses to Power.
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Mapping correctness

- (C) : mapping a program C to a given hardware

- A mapping is correct if Behaviorsp; (C) C Behaviorsy,, . swar.(( C])
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An intermediate memory model

Podkopaeyv, L, Vafeiadis: Bridging the gap between programming languages and hardware weak memory

models. POPL 2019. https://doi.org/10.1145/3290382

- IMM model as a common denominator of existing hardware weak memory models

94
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An intermediate memory model

Podkopaeyv, L, Vafeiadis: Bridging the gap between programming languages and hardware weak memory

models. POPL 2019. https://doi.org/10.1145/3290382

- IMM model as a common denominator of existing hardware weak memory models

X36-150

Ocaml
\ ARMV/
C1 > IMM >~ ARMvVS
/ RISC-V
POWER
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Programming guarantees

- Data-race-freedom (DRF) theorems

- Library abstraction



Motivation for the DRF guarantee

- Weak memory models are complex

- most programmers do not understand the underlying model
- We would like to provide a defensive programming discipline for non-experts:
+ ensures strong and more intuitive semantics

. can be followed without understanding the full underlying weak memory model

- This was a main design goal for C11, let's make it more formal...
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lock (L)

The DRF guarantee X = 1 iy

lock (L) '
-lrst attempt voi= R
I unlock(L) 1i)(a=%2 then

It a program P satisfies:

- has only non-atomics and locks

. is race-free NO consistent execution grapn

has conflicting events unordered by hb
Then:

- P has only SC behaviors



lock (L)

The DRF guarantee X = 1

First attemipt

It a program P satisfies:

- has only non-atomics and locks

. s race-free

Then:

- P has only SC behaviors

. |s this good enough?

Y :=1
unlock(L)

NO consistent execution grap
has conflicting events unordered

A

oy hb

lock (L)

a :=Y

unlock (L)

if (a=1) then
b := X
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The DRF guarantee X = 1

lock (L)
» Y := 1
F1rst attemipt unlock(L)

It a program P satisfies:

- has only non-atomics and locks

. is race-free NO consistent execution grapn

has conflicting events unordered by Ab
Then:

- P has only SC behaviors

. |s this good enough?

lock (L)

a :=Y

unlock (L)

if (a=1) then
b := X

. Definition of races still requires to understand execution graphs, consistency, hb...
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The DRF guarantee X = 1

lock (L)

- Y (=1
r1rst attempt unlock(L)

It a program P satisfies:

- has only non-atomics and locks

. is race-free NO consistent execution grapn

has conflicting events unordered by Ab
Then:

- P has only SC behaviors

- |s this good enough?

lock (L)

a :=Y

unlock (L)

if (a=1) then
b := X

. Definition of races still requires to understand execution graphs, consistency, hb...

- We also want to allow the use of atomics for avoiding races
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The DRF guarantee e L CY
v o2 1 unlock(L)
Second attempt = if (a=1) then
unlock(L) b oo X
It a program P satisfies:
T4 T2 Tn
- has only non-atomics and locks a 8
. is race-free under SC in every SC operational trace of P there are .__ .. ’
no consecutive conflicting \Z |
Then: accesses by different threads

8 memory

x—0 y— 1

- P has only SC behaviors

- |s this good enough?

Py -‘ ) A ANA A () MYA () () AVYA VYA A lAYA BNa () AN AN (Yr\r) AAY A (1) ) ¥ )
[/ \_/ \_/ W, \_/ \_/ \_ W \_/ \_ \ N ,

- We also want to allow the use of atomics for avoiding races
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The DRF guarantee \ oY s
X =1 .
v oo- 1 if (a=1) then
Final formulation =1 sc b 1= X
It a program P satisfies:
T1 T2 Tn
oo 8 8
- all races under SC semantics are ° ¢
ON SC AtOMIC dccesses in every SC operational trace of P, >
all consecutive conflicting accesses by
Then: different threads are marked as sc in P 8 memory
- P has only SC behaviors x>0 ye 1

- |s this good enough?



Other DRF guarantees

- The assumption of the DRF guarantee is sometimes expensive to satisfty
- The conclusion is also very strong
- We would like to use another semantics instead of SC in the role of the strong semantics

. Let’s see how it works for the Release/Acquire model (DRF-RA)
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The DRE-RA guarantee . . | s vy
o if (a=1) then
Y := 1 rel h s X
It a program P satisfies:
+ all races under RA semantics are in every RA-consistent execution graph of P,

on rel/acqg atomiC ACCEeSSeS every pair o

Then:

- P has only RA behaviors

- conflicting accesses unordered by hb

are marked as rel/acqin P

« Arace =thread acce

aware of the latest msg

RA view-based semantics:

sses X but not
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Local DRF-SC guarantee s :-pos || b izt

X += A C := Y sc
:_ if (c=1) then
- The assumptions above are global, which hinders modularity Y =1 sc d := X
. A local version can consider a set Loc of locations Loc = (X.Y)

. Let P[Loc := sc] denote the program P where all accesses to Loc are strengthened to sc

f-

. all races of P[Loc = sc] on locations in Loc under RC11 semantics are on accesses marked as scin P

Then:

. every behavior of P is a behavior of P[Loc := sc]

Dolan, Sivaramakrishnan, Madhavapeddy: Bounding data races in space and time. PLDI 2018. https://doi.org/
10.1145/3192366.3192421

Cho, Lee, Hur, L: Modular data-race-freedom guarantees in the promising semantics. PLDI 2021. https://doi.org/

10.1145/3453483.3454082 102
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Local DRF-RA guarantee .o | izt

C :=Y acg

X := a o
- if (c=1) then
Y := 1 rel 4 := X
Loc = {X,Y}

. Let P[Loc = ra] denote the program P where all accesses to Loc are strengthened to rel/acq

-
. all races of P[Loc := ra] on locations in Loc under RC11 semantics are on accesses marked as rel/acqin P
Then:

. every behavior of P is a behavior of P[Loc := ra]

Cho, Lee, Hur, L: Modular data-race-freedom guarantees in the promising semantics. PLDI 2021. https://doi.org/
10.1145/3453483.3454082

103


https://doi.org/10.1145/3453483.3454082
https://doi.org/10.1145/3453483.3454082

[.ibrary abstraction

- Experts develop optimized concurrent objects implementations (aka libraries)
- once and for all establish correctness w.r.t. their specifications
- Clients of these implementations reason about program behaviors assuming only the specifications

- Essential in programming, and even more critical in complicated concurrency models

This part is based on:

Singh, L: An Operational Approach to Library Abstraction under Relaxed Memory Concurrency. POPL 2023.
https://doi.org/10.1145/3571246
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Code as specification

- Specification = reference implementation

- Simpler (and less efficient) than the implementation

. Derive a reference implementation from a standard sequential specification Spec (assuming
SC):

Take some sequential implementation of $Spec and wrap each method in an atomic block

e.g., enqueue(v) { .. } — enqueue(v) { atomic { .. } }

specification construct
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Library correctness

implementation specification

- We aim to have contextual refinement:

for every program P, Behaviors(P[L]) C Behaviors(P[Lﬂ])

- We assume that the client and the library use disjoint set of locations

- What correctness condition ensures contextual refinement?
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[inearizability

as a liprary correctness condition under SC

For concurrent data-structures, under SC, linearizability ensures refinement:

r(x)

r(x)

r(y)

w(x)

r(y)

Filipovi¢, O’'Hearn, Rinetzky, Yang: Abstraction for concurrent objects. Theoretical Computer Science 2010. https://doi.org/

10.1016/].t¢s.2010.09.021

- If L is linearizable wrt a sequential specification Spec, then for every program P,

Behaviors(P[L]) C Behaviors(P[Lﬁ(Spec)]) under SC

the reference implementation
derived from Spec

. The converse direction also holds
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Linearizapility = history inclusion

Linearizability of L wrt Spec holds iff Histories(MGC|L]) C Hlstorles(MGC[Lﬁ(Spec)]) where:

‘ Lﬁ(Spec) s the reference implementation derived from the sequential specification Spec

- MGC denotes the most general client:
concurrently and repeatedly call the methods of the library with arbitrary arguments

. History is a restriction of an operational trace to call/return

g Tl:call f(42) A
f(v) { T1:WX42 T1:call (42)
X 1=V T2:call f(1) T2:call f(1)
3 =Y T1:RYO — Tl:return f ©

Tl:return £ ©

return(a)

: . eompewace  induedhistoy

. Histories(P) denotes the set of histories induced by traces of program P

\_ J
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A more general apstraction theorem (for SC)

Theorem

f Histories(MGCIL]) C Histories(MGC[L")),
then for every program P, Behaviors(P[L]) C Behaviors(P[Lﬂ])

- Refinement via linearizability is a particular instance
- This theorem also allows non-atomic specifications

L LF
A A
C

implementation specification
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Example: SC assumption is essentiall

Assumptions: foo() A
X :=1 rel
. foo and bar must be }return()
called at most once
by different threads
. bar must be called bar() {
after foo in the a := X acq
return(a)
execution order }

specification
1.
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Example: SC assumption is essentiall

Assumptions:

- foo and bar must be

called at most once
by different threads

- bar must be called
after foo in the
execution order

foo() {

return()

bar() {
pick a€{0,1}
return(a)

}

implementation

L

foo() {
X :=1 rel

return()

¥

bar() {
a := X acg
return(a)

}

specification

1.
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Example: SC assumption is essentiall

Assumptions:

- foo and bar must be

called at most once
by different threads

- bar must be called
after foo in the
execution order

foo() {

return()

bar() {
pick a€{0,1}
return(a)

}

implementation

L

foo() {
X :=1 rel

return()

¥

bar() {
a := X acg
return(a)

}

specification

1.

Histories(MGC|L])

Histories(MGC[L*])

T1
T1
T2

T1
T1
T2

:call foo()
:return foo

:call bar()
T2:

return bar ©

:call foo()
:return foo

:call bar()
T2:

return bar 1
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Example: SC assumption is essentiall

Assumptions:

- foo and bar must be called at
most once by different threads 7 = 1 rlx a :=Y rlx
fOO() 1f (a=1) then
.= bar() // 1

bar must be called after foo in

C
the execution order Y :=1 rlx d = Z rix // ©
foo() { ot This behavior is:
}Peturn() return()
J . impossible with the specification L
bar() { bar() { . . . .
bick ae{e,1} a = X acq . but, possible with the implementation L!
return(a) return(a)
} }
implementation specification

L L*
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Example: SC assumption is essentiall

Assumptions:

- foo and bar must be called at
most once by different threads a := Y acq
| foo() ]
bar must be called after foo in if (a=1) then
. Y := 1 rel
the execution order c := bar() // ©
foo() { ot This behavior is:
}Peturn() reéurn()
) . impossible with the specification L
bar() { bar() { . . . .
pick ac{e,1)} a 1= X acg . but, possible with the implementation L!
return(a) return(a)
} }
implementation specification

L L*

12



What can we do about it? s

- Under WMM client-library interaction is not fully captured by call/return histories

- We can work with partial orders (akin to execution graphs) rather than sequential histories:

* Batty, Dodds, Gotsman: Library abstraction for C/C++ concurrency. POPL 2013. https://d0i.org/10.1145/2429069.2429099

* Doherty, Dongol, Wehrheim, Derrick: Making Linearizability Compositional for Partially Ordered Executions. |[FM 2018.
https://doi.org/10.1007/978-3-319-98938-9 7

- Or enrich sequential histories with more information:

* Burckhardt, Gotsman, Musuvathi, Yang: Concurrent Library Correctness on the TSO Memory Model. ESOP 2012. https://
dOi.Org/lo.1007/978—3—642—28869—2 5

* Khyzha, L: Abstraction for Crash-Resilient Objects. ESOP 2022. https://doi.org/10.1007/978-3-030-99336-8_10
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Enriched histories for RC11

a := Y acg
if (a=1) then
c :=bar() // ©

foo()
Y := 1 rel

.+ The read Y=1 imposes hb order, so T2 must be aware of foo()'s effect when bar () is called

- We will expose this in histories by including propagations of call/return

real-time order # happens before
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A propagation semantics for RC11

- A novel operational semantics for (a fragment of) RC11

when an event of one thread becomes visible to another

thread
- We include propagation of the call/return events in \2 \6 /7

memory traces

. Explicit point-to-point propagation transitions marking N o
\4 5 /
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Example: MP

o a := X acq
; i izrgil if (a=1) then
B b :=Y acq // ©
some possible traces:
Acquire fragment:
T1:Wy42 In the Release/Acquire fragment
. T1:Wy42 T1:Wx1 . propagation follows hb
T1:Wy42 ,
e T1:Wx1 T1-T2: Wy42
T2:Rx@ T1-T2:Wy42 T1-T2:Wx1 . read from the mo-maximal write
T2:Rx0 T2:Rx1 that was propagated to the thread

T2:Ry42
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Example with function calls

foo() {
X :=1 rel

return()

}

bar() {
a := X acg
return(a)

}

foo()
Y :=

1 rel

a :=Y acg
if (a=1) then
c := bar()

we include propagations of calls/
returns in histories

0 possible trace

Tl:call foo()
T1:Wx1

Tl:return foo
T1:Wyl

T1-T2:call foo()
T1-T2:Wx1
T1-T2:return foo()
T1-T2: Wyl

T2:Ryl

T2:call bar()

T2:Rx1
T2:return bar 1
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Example

induced enriched histories of MGC

foo() { foo() { Tl:call foo()

o]0

return() X J=c= 1 rel Tl:return foo T1l:call foo()
} }Pe urn() T1-T2:call foo() Tl:return foo

T1-T2:return foo() T2:call bar()

bar() { bar() { T2:call bar() T2:return bar 1
pick ae{@,1} a := X acq T2:return bar ©
return(a) return(a)
¥ }

implementation specification

L L*
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Abstraction theorem for RC11

Theorem

f Histories(MGCI[L]) C Historiesc MGC[L"]),
then for every program P, Behaviors(P[L]) C Behaviors(P[Lﬂ]) under SC

Theorem

f PHistories(MGC[L]) C PHistories(MGC[Lﬁ]),
then for every program P, Behaviors(P[L]) C Behaviors(P[Lﬂ]) under RC11

where PHistories(P) denotes the set of enriched histories (with calls/returns/call

oropagations/return propagations) induced by traces of program P

19



Application: RCU

Linux

- Simple lock-based specification for basic Read-Copy-Update (RCU) primitives under RCT1

. unlike existing declarative ad-hoc specifications

- RCU in client programs on RC11 can be understood via locks

- We used the th

e FDR4 refinement checker library correctness for a simple RCU

implementatio

N from:

FDR4

Alglave, Maranget, McKenney, Parri, Stern: Frightening Small Children and Disconcerting Grown-ups: Concurrency in the Linux Kernel.
ASPLOS 2018. https://doi.org/10.1145/3173162.3177156
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Restricted clients

Libraries often have “calling policies”
(e.g., single producer, consume only non-empty collections, ...)

public member function
sta:list::pop__front
void pop front();

Delete first element
Removes the first element in the list container, effectively reducing its size by one.

Exception safety

If the container is not empty, the function never throws exceptions (no-throw guarantee).
Otherwise, it causes undefined behavior.
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Restricted clients push(1)

a := pop()

- We would like a stronger theorem:

Theorem

if PHistories(MGC

poilcy

[L]) C PHistories(MGC,,;;,[L*]),
then for every program P that adheres to the policy, Behaviors(P[L]) C Behaviors(P[Lﬂ]) under RC11

. To show that P adheres to policy, should we use L or LF?

. We want it to be L¥ so that the theorem can be applied without any knowledge of L'

 Circular argument? induction works!
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The final abstraction theorem

—~
+\°§3-

. |t the following hold:

1. PHistories(MGC,,;,[L]) C PHistories(MGC,;,[L*])

developer
2 MGCPOile[L] s not racy obligations
3. PHistories(P[L*]) C PHistories(MGC,,;,[L*])
client

4. P[L"is not racy obligations m

. Then: Behaviors(P[L]) C Behaviors(P[L])
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[.LDRF-RA via library abstraction

writex(v) { writex(v) {

X := vV rel X 1=V
return() return()
} }

readx() A readx() {
a := X acg a := X
return(a) return(a)
} }

Specification Implementation

L? L

all races of P[Loc := ra] on locations

in Loc under RC11 semantics are on
accesses marked as rel/acqin P

Loc = set of locations accesses solely by the library

MGC,

= call methods in a way that avoids

oilcy
races between writeyx and ready
developer obligation: v
PHistories(MGC,,;,.,[L]) C PHistories(MGC,,;.,[L*])

client obligation:
PHistories(P[L*]) C PHistories(MGC,;.,[L*])

conclusion:
Behaviors(P[L]) C Behaviors(P[Lﬁ])

every behavior of P is a behavior of P[Loc := ra]
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Library specitication under WMM

Example

. Sequential specifications tell us nothing about the synchronization induced by the library

X := 42 rlx a := dequeue(q) // 1 X = 1 rlx enqueue(q,l)

enqueue(q,1) c := X rlx // © a := dequeue(q) // L|| ¢ :=Xrlx // ©
X := 1 rlx enqueue(qg,2) b := dequeue(q) // 1
enqueue(qg,1) A :=Xrlx // © c := dequeue(q) // 2

ow to specify the different options?
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Library specitication under WMM

- Declarative library specifications with specialized synchronization relations:

Raad, Doko, Rozic, L, Vafeiadis: On library correctness under weak memory consistency: specifying and verifying concurrent libraries

under declarative consistency models. POPL 2019. https://doi.org/10.1145/3290381

- An operational approach?

- What can serve as reference implementation for different options?

- A per-object lock gives us the strongest queue: real-time order = happens-before
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RC11 library specification constructs

specification construct

- We propose partial locks: locks that induce only intra-library synchronization

. |f we wrap a seqguential implementation (using non-atomics) in a partial per-object lock, we
obtain a queue that does not provide any synchronization to its clients

e.g., enqueue(v) { .. } = enqueue(v) { lockiip(L) { .. } }

- By using release/acquire accesses in the specification we can express stronger queues
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Verlification under WMM

A short (and very partial) survey



Veritication questions and approaches tor WMM

What do we verity?

e Program never crashes

e Provides mutual exclusion =
({p
e Correctly implements a 3
concurrent data structure c
o
. O
-
(@)
D
‘ Theoretical decidability O
D)
‘ Model checking and testing 2

manual interactive  fully automatic

automation
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Theoretical verification

- Assume finite-state programs (but with loops!)

- There may sti

(unbounded

| be infinitely many memory states
ouffers, unbounded execution graphs)

. [s state reachability is decidable? What is its complexity?

- The answer depends on the underlying memory model
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Theoretical verification under SC

) RX1,RY1,RZ1
t wxo wxLwylwzl C
-~ Wz/ I Nm
RZ;\/RZO
() RX1,RY1,RZ0 D RXO,RY1,RZ1
1 wzo ‘ ‘ wxtwyiwzo C WX0,WY1,WZ1
0) WY1 % X WY1
t RyO RX1,RYO0,RZ0 D RXO0,RYO,RZ1
RY1 C WXl,WYO,WZO WX0,WYO,WZ1
\U%
() RX0,RY0,RZ0
wxo.wyo.wzo C

For programs with a bounded data domain, this problem is clearly decidable:

o Reduction to reachability in finite-state systems

e PSPACE-complete
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Some results for weak memory modes

Reachability under x86-TSO is decidable:

. via a dual semantics (load-buffers instead of store buffers) that forms a WSTS

Abdulla, Atig, Bouajjani, Ngo: A Load-Buffer Semantics for Total Store Ordering. Log. Methods Comput.

2018. https://doi.org/10.23638/LMCS-14(1:9)2018

Reachability under RA is undecidable:

. reduction from Post correspondence problem

Abdulla, Arora, Atig, Krishna: Verification of programs under the release-acquire semantics. PLDI 2019.

https://doi.org/10.1145/3314221.3314649

Reachability under WRA/SRA is decidable:

. via a potential-based semantics that forms a WSTS

L, Boker: What's Decidable About Causally Consistent Shared Memory? ACM Trans. Program. Lang. Syst.

2022. https://doi.org/10.1145/3505273

—

bba
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Model checking

- Given a loop-free program (usually after loop unrolling), exhaustively verity that all its runs do not violate
safety assertions

o Naively checking all traces is infeasible (for both time and memory)

« Remedies:

. stateless verification: explore all executions without storing in memory the executions explored so far

- partial order reduction: explore one candidate from each equivalence class

a =X a=X b:=Y b=Y
} | } }
b=Y b:=Y a:.=X a:=X
l N/ l NG ' N““ }

Y =1 X =1 Y =1 X = 1
} | } }

X =1 Y =1 X =1 Y =1
a=0 & b=0 a=0 & b=0 a=0 & b=0 a=0 & b=0

Abdulla, Aronis, Jonsson, Sagonas: Optimal dynamic partial order reduction. POPL 2014. https://doi.org/10.1145/2535838.2535845
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Partial order reduction using execution grapns

o EXxplore consistent execution graphs rather than traces (also for SC!)

e EXxecution graphs track less redundant order and represent equivalence classes

a: =X a.=X b=Y b=Y ,m
} } } } y g
b=Y bi=Y a =X a =X a: =X b=Y
| ~ l ~ | ~ l } }
Y =1 ~/ X =1 g Y =1 m~/ X =1 Y:=1 X =1
1 1 1 1 N
X =1 Y =1 X =1 Y =1 )
a=0 & b=0 a=0 & b=0 a=0 & b=0 a=0 & b=0 a=0 & b=0

Kokologiannakis, Raad, Vafeiadis: Model checking for weakly consistent libraries. PLDI 2019. https://doi.org/10.1145/3314221.3314609

Kokologiannakis, Marmanis, Gladstein, Vafeiadis: Truly stateless, optimal dynamic partial order reduction. POPL 2021. https://
doi.org/10.1145/3498711

Luo, Demsky: Cl1Tester: a race detector for C/C++ atomics. ASPLOS 2021. https://doi.org/10.1145/3445814.3446711.
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A related problem

- Given an execution graph G check whether it is consistent under a memory model M

e SOme weak memory models make this problem easier!

« Given only program-order po and reads-from rf relations:

o Checking for SC-consistency is NP-complete

o Checking for RA-consistency is in PTIME

Chakraborty, Krishna, Mathur, Pavlogiannis: How Hard Is Weak-Memory Testing? POPL 2024. https://doi.org/10.1145/3632908
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Program logics

- A (mostly) manual approach for syntax-guided verification

- Derivation rules that provide reasoning principles

PrCQr  1Q1GIR)

P1C; GR}

{IPADIC{P}

{ PYwhile b do C{P A —b)

Inv, (Vo) =
Inv, (Var) £ oV Hist(x, [(37, _, Var)])

3h. HiSt(y, h) * (0,_, V()) € h x VVl,vl # 0. (?Jl,_, Vl) ch= E|V37 L Vl. Ian(V37)

Thread 1 proof outline:

{SGGH(T(. Vo) * Hist(z, [(0,_, V,)]) * V, C Vj % InV,,(W))‘}

Tlna] = 37

{3Va7 I Vo Seen(m, Va7) * Hist(z, [(37,_, Va7)])}

{80011(77, V37) * ‘In\’g:(V;n) }

{Seen(m, V37) * Ih. Hist(y, h) * ...}

Ylat] = 1

(3Vi 3 Var. Seen(m, V2) + Hist(y, h w [(1,_, V2)]) *[Inva (Var)]}
{80011(77, Vi) * Inv, (Vo) }

open Inv,

Thread 2 proof outline:

{Seen(m-, Vo) * Invy(Vo)\ * '<>}

repeat y(a¢);

{3V1, Viz, Va. Vo 3 V4 3 Vir # Seen(r, Va) # v, (Var )| + ol
{Seen(m, V) * Va7 C Vo + Hist(x, [(37, _, Va7)])}

L [nal

{z. Seen(m, V5) * z = 37« Hist(x, [(37,_, V37)])}
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Owicki-Gries / rely-guarantee logics

Init: d :=0; f := 0;
{f=10Af=20Ad=,0Ad=,0}

Thread 1 Thread 2 .« SC-based reasoning is unsoundad

{f #21ANd=; 0} {lf =1(d=25)} o | |
1:d:=5; 3:do rl <A f until r1 = 1; - Develop specialized assertions for expressing
{f %2 1R/\ d =15} {d =25} invariants on top of an operational

2: =" dir2 e d; oresentation of the memory model

{true} {r2 =5}

{r2 =5}

Dalvandi, Doherty, Dongol, Wehrheim: Owicki-Gries Reasoning for C11 RAR. ECOOP 2020. https://doi.org/10.4230/LIPlcs.ECOOP.2020.11

L, Dongol, Wehrheim: Rely-Guarantee Reasoning for Causally Consistent Shared Memory. CAV 2023. https://doi.org/10.1007/978-3-031-37706-8 11
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Seperation logics .

Concurrent separation logic is designed to reason about DRF programs

- Soitis trivially sound under models that satisty the DRF guarantee
- Extensions allow reasoning about synchronization primitives of RC11

. In particular, ownership transfer is possible via rel/acqg synchronization

Invariant: 3vs, G. Queue(q, vs, G) * deqPerm(size(G.s0)) * size(G.so) < 2 * ...

T {SeenQueue(q, 0,0) = IV, } T2 {SeenQueue(q, 0,0) * {SeenQueue(g, 0,0) * deqPerm(1) = JV3} T3
(Queue(q, ) =...) enq(q, 41); (Queue(q, ) *...) degPerm(1) = 2V, } while ("3“9flag == 0){};
(Queue(q,_) *...) enq(q, 42); (Queue(q, _) *...) (Queue(q,_) *...) deq(q) {SeenQueue(q, Gy, {e;, e2}) * deqPerm(1) = JV3}
{SeenQueue(q, G, {e1, e2}) = ...} (Queue(q, ) *...) (Queue(q, _) *...) deq(q) (Queue(g,_) *...)
flag :=pe1 1 {SeenQueue(qg, Gg, {d2}) ...} || {v.SeenQueue(q, G3,{ej, ez, d3}) * v € {41,42}}

Vafeiadis, Narayan: Relaxed separation logic: a program logic for C11 concurrency. OOPSLA 2013. https://doi.org/10.1145/2509136.2509532

Dang, Jourdan, Kaiser, Dreyer: RustBelt meets relaxed memory. POPL 2020. https://doi.org/10.1145/3371102

Dang, Jung, Choi, Nguyen, Mansky, Kang, Dreyer: Compass: strong and compositional library specifications in relaxed memory separation
logic. PLDI 2022. https://doi.org/10.1145/3519939.3523451
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Robustness

- Many (useful) programs are robust:

all program behaviors allowed by RC11 are in fact also allowed by SC
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Robustness

- Many (useful) programs are robust:

all program behaviors allowed by RC11 are in fact also allowed by SC

verification verification under
weak me SC

4+ robustness
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Theorem

Fxecution-graph robustness against RC11 is PSPACE-complete

dea: run an instrumented program under SC that monitors whether some step is allowed
under RC11 but not under SC
L SPIN
| | verification not robust
input program in RC11 —| Rocker |— . — model
oroblem in Promela
checker J
robust

L, Margalit: Robustness against release/acquire semantics. PLDI 2019. https://doi.org/10.1145/3314221.3314604

Margalit, L: Verifying observational robustness against a cl1-style memory model. POPL 2021. https://doi.org/10.1145/3434285
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Conclusion

We talked about:

1. The C/C++11 memory model

2. The out-of-thin-air problem & RC11

3. Implementability of (R)C11: compiler optimizations and mapping to hardware
4. Programmability guarantees: DRF theorems, library abstraction

5. Verification

Weak memory models are not only a threat, but also an opportunity to better understand concurrency!
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