
Verification under causally consistent shared memory

Ori Lahav, Tel Aviv University

We consider concurrent programs interacting with causally consistent shared memory. After describing the
semantics of such programs, we outline several verification problems and survey some existing solutions.

1. INTRODUCTION
The canonical, often implicit, model of shared-memory concurrency is sequential con-
sistency (SC) [Lamport 1979]: the behaviors of a concurrent program are assumed to
be the result of some interleaving of the operations of the different threads. While this
model is intuitive and well-known, no mainstream multiprocessor actually provides
sequential consistency. Instead, to have better performance, modern chips (e.g., Intel
x86, IBM POWER, and ARM) employ different optimizations such as local write buffers,
hierarchies of caches, and speculative execution. Consequently, without explicit costly
synchronization, they exhibit “weak” (non-SC) behaviors, which are not a result of any
interleaving of the operations of the different processors. Accordingly, the specifications
of programming languages, like C and C++, formulate weak memory models that should
be assumed by their clients, allowing them to demand SC when they need it, but also
support a range of cheaper memory operations.

This raises interesting challenges and opportunities for formal verification: How
should one verify the correctness of a program running under a weak memory model?
How does one adapt the reasoning principles and verification methods that were
developed for SC?

In this paper, we focus on shared memory programs running under causal consistency.
Most of the paper is devoted to the introduction of this weak memory model. In the
second part, we describe several verification problems and survey some results and
open problems in this field.

Causal consistency constitutes a natural weakening of SC. Roughly speaking, while
SC requires one global order of all operations, causal consistency only requires causally
dependent operations to appear in one global order, thus, allowing threads to disagree
on the order of causally independent operations. Causal consistency originally arose in
distributed systems [Ahamad et al. 1995], where the nodes communicate by message
passing and avoid costly global synchronization. Nevertheless, nowadays, causal consis-
tency plays a prominent role in shared memory systems. For example, certain forms of
causal consistency are provided by the release/acquire fragment of the C/C++11 memory
model [ISO/IEC 9899:2011 2011; ISO/IEC 14882:2011 2011; Batty et al. 2011] (when all
accesses to shared variables are annotated with release and acquire access modes) and
by the POWER multi-processor [Alglave et al. 2014] (when its so-called “lightweight”
and “instruction” fences are placed before every shared store and after every shared
load, respectively). The x86-TSO model [Owens et al. 2009] provides causal consis-
tency “for free”. That is, even without additional barriers, x86-TSO provides stronger
guarantees than causal consistency.

It should be also noted that while causal consistency allows higher performance
implementations, its guarantees are often sufficiently strong for the correctness of
concurrent algorithms. In particular, it supports the common “message passing” idiom,
which appears in various synchronization mechanisms (see MP below).

2. WHAT IS A CAUSALLY CONSISTENT SHARED MEMORY?
In this section, we define causally consistent shared memory. In fact, several natural
variants have been studied. While traditional models are given by an operational se-

ACM SIGLOG News 1 0000, Vol. 0, No. 0



mantics with constructs like buffers, messages and timestamps, it is easier to define the
different causal consistency models declaratively, abstracting away the implementation
details. In this approach, the program is first associated with a set of execution graphs,
each of which summarizes a particular program run and describes all accesses to shared
variables and the relations between them in that run. Then, formal constraints are
used to filter out inconsistent execution graphs, and the remaining consistent graphs
are defining all possible program behaviors. Different variants of causal consistency
are obtained by imposing different consistency constraints.

As a first example, consider the following program:
x := 1
y := 1

a := y
b := x

(MP)

Here and henceforth we assume that all variables are initialized to 0, and use x, y, ...
for shared variables (also called locations), and a, b, ... for local variables. The following
are four possible execution graphs of this program:

W(x, 0) W(y, 0)

W(x, 1)

W(y, 1)

R(y, 0)

R(x, 0)

(i)

rf

rf

mo

mo

W(x, 0) W(y, 0)

W(x, 1)

W(y, 1)

R(y, 0)

R(x, 1)

(ii)

rf

rf

mo

mo

W(x, 0) W(y, 0)

W(x, 1)

W(y, 1)

R(y, 1)

R(x, 0)

(iii)

rf

mo

mo

W(x, 0) W(y, 0)

W(x, 1)

W(y, 1)

R(y, 1)

R(x, 1)

(iv)

rf

rf

mo

mo

The nodes of the execution graphs, called events, represent accesses to the shared
memory (including the implicit initialization writes). In our formalism, which closely
follows the C/C++11 model, three binary relations relate the events of the graph: (a)
the program order relation (po), depicted by solid edges, tracks the order in each thread
(with initialization events preceding all other events); (b) the reads-from relation (rf),
depicted by dashed edges, associates every read event with the write event it reads from;
and (c) the modification order relation (mo), depicted by dotted edges, totally orders
the writes to each location. The modification order mo is used to globally decide on the
order of concurrent writes to the same location (in this simple example, there are no
concurrent writes). We do not include here the formal definition of the set of graphs
associated with a given program, but the intention should be clear.

Before turning to the consistency constraints of causal consistency, it is instructive to
see a simple definition of SC in this declarative framework. SC can be straightforwardly
defined by requiring the existence of a total order T such that (i) T extends po∪ rf∪ mo;
and (ii) every read r reads from the T -last write to the same location that is T -before
r (that is, if 〈w, r〉 ∈ rf then there does not exist w′ writing to the same location as w
such that 〈w,w′〉 ∈ T ∧ 〈w′, r〉 ∈ T ). It is easy to check that execution graphs (i), (ii) and
(iv) of the MP program above are SC-consistent, while execution graph (iii) (yielding
a = 1 and b = 0) is not SC-consistent (as the total order forces W(x, 1) to be the the last
write to x before R(x, 0)).

REMARK 1. Such a total order T exists iff po∪rf∪mo∪ (rf−1 ;mo) is acyclic (where ‘;’
denotes relation composition and rf−1 denotes the inverse of rf). This provides a more
“efficient” declarative formulation of SC that refrains from existentially quantifying over
a total order T , and uses instead the already existing order on writes mo.

Casual consistency has much weaker requirements. First, in all causal consistency
models, one requires that

po ∪ rf is acyclic,

ACM SIGLOG News 2 Vol. 0, No. 0, 0000



and therefore, (po ∪ rf)+ (that is, the transitive closure of po ∪ rf) is a (strict) partial
order. In causal consistency models, this order is often called happens-before and denoted
by hb. The acyclicity condition forbids so-called “load-buffering” behaviors, which are
allowed in weaker models:

a := y //1
x := 1

b := x //1
y := 1

W(x, 0) W(y, 0)

W(x, 1) W(y, 1)

R(y, 1) R(x, 1)

rf

mo mo

(LB)

The outcome annotated in the program comments (a = b = 1) can be only explained by
a po ∪ rf-cycle (shown in the depicted execution graph), and is disallowed by causal
consistency.

The other consistency constraints in causal consistency are needed to ensure that
threads never read from a certain write event when they are aware of a later write event
to the same location. There is more than one way to precisely interpret this requirement,
and thus there are several variants of causal consistent memory. We present three
natural models (in increasing “strength”) and relate them to different models previously
introduced in the literature. We note that the difference between these models only
appears in execution graphs with write-write races, namely executions containing two
write events w1, w2 that write to the same location and are hb-incomparable (〈w1, w2〉 6∈
hb and 〈w2, w1〉 6∈ hb). If no execution graph of a given program has such race (as in MP
above), then the three models presented next coincide.

2.1. The three models
2.1.1. Weak release acquire (WRA). The weakest model we consider, denoted WRA (for

weak release acquire), can be shown to be equivalent to the basic causal consistency
model (called CC) in [Bouajjani et al. 2017]. It requires that read events never read from
a write event when they are aware of a later write event to the same location, where
“aware” and “later” are interpreted using hb. Formally, for every read r from location x
and two writes w,w′ to x, we should never have 〈w, r〉 ∈ rf ∧ 〈w,w′〉 ∈ hb ∧ 〈w′, r〉 ∈ hb.
This condition excludes execution graph (iii) of the MP program above: the read from x
is aware (in hb) of a write to x that is (hb-) later than the one it reads from.

A convenient and concise way to express this condition is to require that

[W] ; hb|loc ; [W] ; hb ; rf−1 is irreflexive.

In this expression, in addition to the notations from Remark 1, hb|loc denotes the
restriction of hb to accesses of the same location, and [W] denotes the identity relation
on all write events.

Roughly speaking, the transitivity of hb ensures that when thread τ reads from some
write event w of thread π, thread τ becomes “aware” of whatever thread π was aware of
at the time of writing w. In particular, in the following example, the annotated outcome
is disallowed under WRA (the depicted execution graph is WRA-inconsistent):

x := 1
y := 1

a := y //1
z := 1

b := z //1
c := x //0

W(x, 0) W(y, 0) W(z, 0)

W(x, 1)

W(y, 1)

R(y, 1)

W(z, 1)

R(z, 1)

R(x, 0)

rf

mo

momo

(MP-trans)

ACM SIGLOG News 3 Vol. 0, No. 0, 0000



WRA allows every outcome allowed by SC. Indeed, the total order T required by SC
has to satisfy both that hb ⊆ T and that [W] ; T |loc ; [W] ; T ; rf−1 is irreflexive. The
existence of such a relation T clearly implies the consistency condition of WRA. (Similar
arguments show that the other models below allow every outcome allowed by SC.) The
following standard litmus tests demonstrate that WRA is strictly weaker than SC:

x := 1
a := y //0

y := 1
b := x //0

W(x, 0) W(y, 0)

W(x, 1)

R(y, 0)

W(y, 1)

R(x, 0)

mo

rf

mo

rf

(SB)

x := 1
a := x //1
b := y //0

c := y //1
d := x //0 y := 1

W(x, 0) W(y, 0)

W(x, 1) R(x, 1)

R(y, 0)

R(y, 1)

R(x, 0)

W(y, 1)

mo mo

rf rfrf
(IRIW)

Both execution graphs are WRA-consistent, and thus the annotated outcomes are
allowed under WRA. On the other hand, they are clearly disallowed by SC. While they
may seem counterintuitive when thinking in terms of SC, these outcomes are actually
quite natural when thinking about a (truly) concurrent system. For example, in SB,
the outcome a = b = 0 is unavoidable if we allow the threads to run without enforcing
any communication between them. In addition, the IRIW example shows that WRA
is non-multi-copy-atomic: different threads may observe different writes in different
orders. (This is a crucial difference between causal consistency models and the x86-TSO
model [Owens et al. 2009], which is multi-copy-atomic and forbids IRIW’s outcome.) In
these two examples, as in MP and MP-trans above, there are no write-write races, and,
thus, the stronger models defined below allow these outcomes as well.

Note that the mo relation does not play any role in WRA. In fact, for WRA, we can
simply exclude mo from execution graphs. Below, we refer to execution graphs with only
po and rf as reduced.

2.1.2. Release acquire (RA). When there are write-write races, WRA places almost no
guarantees. For example, in the following programs, WRA allows the annotated out-
comes:

x := 1 x := 2
a := x //1
b := x //2
c := x //1

x := 1
a := x //2

x := 2
a := x //1 (WWrace)

These outcomes are not observable on hardware such as POWER and ARM, and the
C/C++11 release/acquire fragment, denoted here by RA, forbids this outcome as well.
The RA model utilizes the mo relation in execution graphs to (globally) decide on which
write is later. By definition, mo is required to be a union of total orders, each of which
orders all writes to a given location. Using mo, RA is formulated by two consistency
constraints:

mo ; hb is irreflexive and mo ; hb ; rf−1 is irreflexive.

The first condition requires that whenever hb orders two writes to the same location,
then mo has to agree with hb on the order of these writes. The second condition is similar

ACM SIGLOG News 4 Vol. 0, No. 0, 0000



to the condition of WRA, replacing [W] ;hb|loc ; [W] with mo, thus requiring that read events
never read from a write when they are aware (in hb) of an mo-later write.

Note that the first condition implies that [W] ; hb|loc ; [W] ⊆ mo, and so RA is at least
as strong as WRA. It is strictly stronger, as, for instance, the outcomes annotated in
the WWrace programs above are disallowed by RA. To see this, observe that for both
options for mo (either from W(x, 1) to W(x, 2) or vice-versa), we have 〈w,w〉 ∈ mo ; hb ; rf−1

where w is the mo-earlier write.

REMARK 2. As shown in [Lahav and Vafeiadis 2015, Appendix B], it is possible
to define RA using reduced execution graphs (that do not include the mo relation).
That is, one can identify conditions on po and rf that are necessary and sufficient for
the existence of an mo relation that meets the requirements of RA. Concretely, let wb
(standing for writes before) be the relation defined by

wb , [W] ; hb|loc ; (rf−1)? ; [W] \ [W],

where (rf−1)? denotes the reflexive closure of rf−1. It is not hard to show that wb is
acyclic in every RA-consistent execution (by showing that wb ⊆ mo), and that any total
order extending wb may serve as the mo relation in an RA-consistent execution. Thus,
we could equivalently define the RA-allowed outcomes of a program based on the set of
reduced execution graphs of the program in which wb is acyclic.

2.1.3. Strong release acquire (SRA). The following annotated outcome is allowed by RA
(for brevity, the initialization writes are omitted from the execution graph):

x := 1
y := 2
a := y //1

y := 1
x := 2
b := x //1

W(x, 1)

W(y, 2)

R(y, 1)

W(y, 1)

W(x, 2)

R(x, 1)

mo

rf
(2+2W)

Observing that hardware does not exhibit this outcome, Lahav et al. [2016] proposed
to strengthen C/C++11’s RA model with the following condition:

hb ∪ mo is acyclic.

To obtain the annotated outcome of the 2+2W example (a = b = 1), the mo edges are
forced to create a po∪mo ⊆ hb∪mo cycle (or else we will invalidate RA’s constraints above).
Thus, the additional condition forbids the annotated outcome. Clearly, it is stronger
than RA’s condition that only requires that mo ;hb is irreflexive. The strengthened model,
referred to as SRA (for strong release acquire), can be shown to be equivalent to the
causal convergence (CCv) model in [Bouajjani et al. 2017] and to the causal consistency
models presented in [Burckhardt 2014; Cerone et al. 2015]. (These models also handle
general transactions including more than one instruction, which are not considered in
this paper.)

Lahav et al. [2016] proved that, for the declarative POWER model presented in
[Alglave et al. 2014], and the existing compilation scheme of C/C++11 to POWER [Map-
ping 2016], SRA is the “best one can have”. That is, not only that every outcome of the
compiled program that is allowed by POWER model is allowed for the source program
by SRA, but we also have the converse: every outcome allowed for the source program
by SRA is allowed by POWER for the compiled program. Hence, it is not possible to
further strengthen the semantics of release/acquire in C/C++11 without modifying the
compilation scheme to POWER and paying the induced performance cost.

ACM SIGLOG News 5 Vol. 0, No. 0, 0000



2.2. Operational semantics
We presented the different causal consistency models using a declarative (also called
axiomatic) semantics. Nevertheless, for the models defined above, the declarative pre-
sentation can be easily “operationalized”, leading to an equivalent interleaving-based
operational semantics. A simple way to do so is to take the states of the operational
semantics to consist of a program, local stores for each thread (assigning values to local
variables), and a consistent execution graph. The initial state consists of the input pro-
gram, the initial store for each thread, and the initial execution graph (which includes
only the initialization writes). Transitions reduce one thread at a time, appropriately
updating the state. In particular, steps that involve accesses to the global memory
extend the current execution graph with one event that is placed po-after all other
events of the thread taking the step. A transition is only possible if the current rf and
mo relations can be also extended in a way that maintains consistency.

For example, for any of the models above, the a = b = 1 outcome of the MP program
can be obtained by the following run (we only depict the execution-graph component of
the state):

W(x, 0) W(y, 0)

→

W(x, 0) W(y, 0)

W(x, 1)

mo

→

W(x, 0) W(y, 0)

W(x, 1)

W(y, 1)

mo

mo

→

W(x, 0) W(y, 0)

W(x, 1)

W(y, 1)

R(y, 1)
rf

mo

mo

→

W(x, 0) W(y, 0)

W(x, 1)

W(y, 1)

R(y, 1)

R(x, 1)

rf

rf

mo

mo

It is easy to see that such operational semantics is equivalent to the declarative
semantics it is derived from. First, every execution graph that is reachable by the
operational semantics is consistent, and so the outcomes according to the operational
semantics are all allowed by the declarative one. Second, the different causal consistency
models are closed under po∪rf-prefixes, that is: the restriction of a consistent execution
graph to a set of events that is downwards-closed with respect to po ∪ rf is always
consistent. Thus, every outcome that is allowed by the declarative semantics can be
obtained (typically in more than one way) by its operationalized counterpart.

Two possible simplifications of the operationalized declarative semantics are possible.
First, one can identify the exact local conditions on execution graphs that preserve
consistency of each step instead of directly referring to the consistency condition. For
example, under RA, a step of thread τ reading v from x should add a read event r
po-after all events of thread τ and extend rf with one pair 〈w, r〉, where w is some write
event in the current graph writing v to x and satisfying 〈w, e〉 6∈ mo ; hb? for every event
e of thread τ (hb? denotes the reflexive closure of hb). Second, it is possible to extract
from the execution graph the information that is actually required to decide whether
the possible steps are allowed or not, thus using (and maintaining) a more concise
representation of the state. For example, in RA, instead of keeping the whole execution
graph, it suffices to maintain the set of all write events in the execution graph, together
with the mo relation between them, as well as the last write to every location that
was observed by each thread. Following this approach, Kang et al. [2017] and Kaiser
et al. [2017] describe a semantics for RA where write events correspond to timestamped
messages, and the order between the timestamps represents the mo relation. In turn,
instead of execution graphs, states include a message pool, containing one message for
every write that was performed, as well as mappings (called thread views) that assign
to each thread τ and location x, the last timestamp that τ observed for x.

ACM SIGLOG News 6 Vol. 0, No. 0, 0000



2.3. Read-modify-write instructions
The models presented above include reads and writes, leaving out read-modify-write
(RMW) instructions. These instructions “atomically” perform a read possibly followed,
depending on the value that was read, by a write. The value written (if any) may also
depend on the value that was read. RMWs are indispensable in shared memory concur-
rent programming. In fact, for the models above, they are necessary for implementing
a critical section (observing that write-read reordering is sound in these models, this
follows from the results in [Attiya et al. 2011]).

To give (declarative) semantics to RMWs, one first introduces corresponding events
in execution graphs, with labels of the form RMW(x, vR, vW) where x is the location being
accessed, and vR, vW are (respectively) the read and written values. (Equivalently, it
is possible to treat RMWs as a pair of a read and write events and include a special
relation marking pairs that belong to the same RMW instruction.) As read events, RMW
events require an incoming rf edge, while as write events, RMW events participate
in the mo order. For example, we have the following execution graphs for the following
program (CAS denotes an atomic compare-and-swap instruction, returning the value of
the variable that was read):

a := CAS(x, 0, 1) b := CAS(x, 0, 1) (2RMW)

W(x, 0)

RMW(x, 0, 1) R(x, 1)

morf

rf

W(x, 0)

RMW(x, 0, 1)R(x, 1)

mo rf

rf

W(x, 0)

RMW(x, 0, 1) RMW(x, 0, 1)

mo

mo

rf rf

W(x, 0)

RMW(x, 0, 1) RMW(x, 0, 1)

mo

mo

rf rf

As before, there is more than one option for interpreting the atomicity condition that,
in particular, should rule out the a = b = 0 outcome in the 2RMW example, where both
CAS instructions succeed in swapping the value (as happens in the two right execution
graphs). A weak condition may only require that different RMW events never read from
the same event. This condition can be naturally added to WRA, as it does not refer to
the mo relation. A stronger condition (employed in the RA and SRA models) requires
that RMW events read from their immediate mo-predecessor.

Both conditions suffice for implementing a spinlock using CAS instructions. Fur-
thermore, they allow RMWs to serve as fences that can be used to forbid some weak
behaviors. For example, to forbid the a = b = 0 of the SB program above, one may place
an RMW of an otherwise unused location (e.g., CAS(z, 0, 0) or FetchAndIncrement(z))
between the two instructions in each thread:

x := 1
c := CAS(z, 0, 0)
a := y //0

y := 1
d := CAS(z, 0, 0)
b := x //0

W(x, 0) W(y, 0)W(z, 0)

W(x, 1)

RMW(z, 0, 0)

R(y, 0)

W(y, 1)

RMW(z, 0, 0)

R(x, 0)

rf

mo

mo
rf

mo

rf

mo

rf

(SB+fences)

In consistent executions, one of the two RMW events will have to read from the other
(as they may not read from the same event), making one of the reads hb-after the write
of the other thread, so, under any of the casual consistency models, it may not read
the initial value. For example, in the depicted execution, we have hb from W(x, 1) to
R(x, 0), while R(x, 0) reads from an hb-earlier (as well as mo-earlier) write event. Thus,
this execution graph is inconsistent (under any of the casual consistency models). As

ACM SIGLOG News 7 Vol. 0, No. 0, 0000



shown by Lahav et al. [2016], for any program, placing such fences between every pair
of instructions suffices to restore SC. Lahav et al. [2016] further identified a certain
class of programs, which they call “server-client programs”, in which SC can be restored
with fewer fences.

3. VERIFICATION PROBLEMS AND EXISTING SOLUTIONS
Having defined different causal consistency semantics, we now describe several natural
verification problems and briefly survey some of the existing solutions and open prob-
lems. We keep the presentation on the intuitive level and refer the reader to relevant
papers for the formal definitions and theorems. While we focus on causal consistency,
the same verification problems arise for any weak memory model. Most of the works
mentioned below target more general models that allow several access modes and
include causal consistency as a principal fragment.

3.1. Unbounded verification
When every thread is a finite-state program (i.e., it has a finite data domain but may
include loops), then verification of a concurrent program under SC is clearly decidable.
Here, we refer to traditional verification of safety properties, formulated by local asser-
tions on the values of the local variables at different program points. This verification
problem amounts to state reachability problem in a labeled transition system capturing
all interleaved runs of the concurrent program. Assuming SC semantics, this problem
is PSPACE-complete [Kozen 1977].

Now, if instead of SC we take any of the causal memory models described above, the
decidability of this problem is not at all clear. Indeed, even when the data domain is
bounded, the states of the system (see §2.2 above) record the whole execution history,
and, for programs with loops, their number is unbounded. Very recently, Abdulla et al.
[2019] showed that this reachability problem is undecidable for RA (including RMWs)
by reduction from Post’s correspondence problem. The same reachability problem was
shown to be decidable (with non-primitive recursive complexity) for the x86-TSO mem-
ory model, and undecidable for certain models based on instruction reorderings [Atig
et al. 2012, 2010; Abdulla et al. 2018a]. It is unclear whether the techniques of these
papers can be used for the other causal models as well, and, to the best of our knowledge,
the decidability of reachability under WRA and SRA is still open.

3.2. Bounded model checking
A common approach to avoiding the complexity of unbounded verification is to restrict
ourselves to bounded runs, by first unfolding the loops up to a certain bound. Now, given
a loop-free program, verifying assertion violations is clearly decidable, as the number
of possible execution graphs is bounded. Naively generating all possible consistent
execution graphs is however inefficient, in terms of time and memory.

Recently, several works developed more efficient techniques for this problem under
weak memory semantics. In particular, Kokologiannakis et al. [2017]; Abdulla et al.
[2018b] developed algorithms and tools for (bounded) model checking under RA. (Kokolo-
giannakis et al. [2017] also addressed the WRA model, as well as the full RC11 model—a
repaired and strengthened version of the C/C++11 model [Lahav et al. 2017].) Inspired
by stateless partial order reduction techniques (for SC), these algorithms efficiently
generate all consistent execution graphs of a given program without storing all of them
in memory. Loosely speaking, based on the operationalized RA semantics, one begins by
generating some RA-consistent execution graph, while tracking the arbitrary choices
that were made, and later backtracks and reverts these choices.

ACM SIGLOG News 8 Vol. 0, No. 0, 0000



Notably, these methods perform better for RA than similar methods for SC. To obtain
the better performance, two main properties that distinguish RA from SC were identified
and utilized:

— The first property, defined and used in [Kokologiannakis et al. 2017], is that RA-
consistency is prefix-determined. That is, if r is a po-maximal read event in an
execution graph G, then the RA-consistency of G follows from the consistency of G
without r and the consistency of the execution graph obtained by restricting G to the
hb-prefix of r. This property does not hold for SC. To see this, consider the execution
graph depicted in the SB example above, and let r denote R(x, 0) event. Without r, it
is SC-consistent. In addition, the hb-prefix of r (including r itself) is SC-consistent.
Nevertheless, the whole execution graph is not SC-consistent. In [Kokologiannakis
et al. 2017], prefix-determinedness turns out to be useful for the efficient exploration
of consistent executions. Roughly speaking, it allows one to safely revert an earlier
rf-choice without revisiting the decisions made for concurrent events.

— The second property, utilized in [Abdulla et al. 2018b], concerns the complexity
of deciding whether a reduced execution graph (including only po and rf, but not
mo) is consistent (that is, whether there exists an mo relation that will make the
reduced graph consistent). While deciding whether a given reduced execution graph
is SC-consistent is NP-complete [Gibbons and Korach 1997], following Remark 2,
RA-consistency can be easily decided in polynomial time. In [Abdulla et al. 2018b],
this fact allows efficient exploration of RA-consistent reduced execution graphs. Since
program assertions cannot directly observe mo, exploring reduced execution graphs
suffices for verification. For programs with write-write races, their number may be
significantly smaller than the number of execution graphs.

3.3. Program logics
Weak memory models pose interesting challenges to Hoare-style verification as well
(see also [Vafeiadis 2017]). First, the following example from [Lahav and Vafeiadis 2015]
demonstrates that, even without ghost variables, the basic Owicki-Gries logic (OG, for
short) [Owicki and Gries 1976] is unsound for causal consistency models:1

{x = 0 ∧ y = 0 ∧ a 6= 0}
{a 6= 0}
x := 1
{x 6= 0}
a := y
{x 6= 0}

{>}
y := 1
{y 6= 0}
b := x
{y 6= 0 ∧ (a 6= 0 ∨ x = b)}

{a 6= 0 ∨ b 6= 0}

Indeed, this proof outline is valid in OG, and yet, the outcome a = b = 0 is allowed by
causal consistency (see the SB example above). In particular, note that the assertion
y 6= 0 ∧ (a 6= 0 ∨ x = b) is stable under the preconditioned assignment {x 6= 0}a := y
since we have y 6= 0 ∧ (a 6= 0 ∨ x = b) ∧ x 6= 0 ` y 6= 0 ∧ (y 6= 0 ∨ x = b).

Intuitively speaking, under a weak memory model different threads may have dif-
ferent views of the memory, and it is generally unsound to conjoin their assertions.
Furthermore, without a global state in the form of a mapping from locations to values,
even the meaning of an assertion like y 6= 0 (where y is a shared variable) is a priori un-
clear. Lahav and Vafeiadis [2015] interpret such assertion placed at a specific program
point in thread τ by requiring that if thread τ were to read y at this program point

1With ghost variables, OG is a complete proof system for SC, and, thus, it is clearly unsound for weaker
models.

ACM SIGLOG News 9 Vol. 0, No. 0, 0000



it would not be able to get 0. Using this interpretation, Lahav and Vafeiadis [2015]
developed OGRA, a certain weakening of OG, and proved it to be sound under the RA
model. Interestingly, OGRA, which requires a stronger non-interference condition than
OG and restricts the use of ghost variables, still allows all OG proofs in which threads
“mind their own business”, that is, the proof of each thread does not mention local (or
ghost) variables of other threads.

An alternative deductive approach for verification under RA (although not formulated
as a Hoare logic) was developed in [Doherty et al. 2019]. The idea there is to extend
the assertion language with more predicates carrying information about the execution-
graph component of the state (see §2.2). In particular, Doherty et al. [2019] add “variable-
ordering predicates”, which have no direct analogue in deductive verification under SC,
and show how these can be used to reason about programs under RA.

The method of [Alglave and Cousot 2017], which is parametric in the declarative
consistency constraints, goes further in encoding the execution-graph structure in
logical invariants. Using so-called “pythia variables” to give unique names to the values
of read events, its invariants can precisely express the reads-from relation. This allows
the proof method to be (relatively) complete.

Concurrent separation logic (CSL) [O’Hearn 2007] was also extended and adapted for
weak memory models, again focusing on the RA model in particular. Compared to OG,
CSL-style reasoning is closer in spirit to the causal consistency guarantees. First, CSL
generally targets data-race-free programs, where SC and the causal models coincide
(see also [Ferreira et al. 2010]). Second, in the presence of data races, CSL reasoning
is based on “ownership transfer”—transferring from one thread to another the right
to access certain locations or invariants on the state. Roughly speaking, since the
causal consistency models guarantee the correctness of the message passing idioms (see
examples MP and MP-trans above), ownership transfer constitutes a sound reasoning
principle for causal consistency.

Vafeiadis and Narayan [2013] introduced the first specialization of CSL for a weak
memory model. Their program logic, called RSL (relaxed separation logic), targets a
fragment of the C/C++11 model that contains RA. Its soundness proof provides a novel
semantics for assertions and Hoare-triples that refers to a non-standard notion of a
state in the form of an execution graph. Following similar ideas in its soundness proof,
a more expressive logic, called GPS (standing for ghost state, protocols, and separation)
was developed and used to verify several challenging algorithms [Turon et al. 2014;
Tassarotti et al. 2015]. In addition, a similar logic, called iGPS, was developed in the
Iris framework [Kaiser et al. 2017]. In the soundness proof of this logic, the authors
introduced a timestamp-based operational semantics of the memory model, which
follows the ideas outlined in §2.2.

Crucially, besides release/acquire accesses, these CSL-style logics also handle
C/C++11’s non-atomic accesses, typically used for “data variables” (unlike “synchro-
nization variables”). A data race involving a non-atomic access implies an undefined
behavior in C/C++11, and thus non-atomic accesses allow very efficient implementation.
In RSL, GPS and iGPS, a complete proof of a program (even with a trivial specification)
implies its safety, which in particular means that there are no data races on non-atomic
accesses.

For the synchronization variables (on which races are unavoidable), these program
logics target RA, and it is interesting to see how they can be weakened for WRA, or,
perhaps, strengthened for SRA. In the case of RSL, following its (mechanized) soundness
proof, it is easy to see that without any weakening RSL is actually sound for the WRA
model. In [Kokologiannakis et al. 2017], it was conjectured that GPS and its iGPS
variant are also sound for WRA. OGRA, however, is able to reason about concurrent
writes and will have to be weakened to obtain soundness for WRA.

ACM SIGLOG News 10 Vol. 0, No. 0, 0000



3.4. Robustness verification
Another natural way to verify the correctness of a given program under weak memory
semantics is to use existing techniques to verify the program assuming SC semantics and
prove that the program does not have weak behaviors (behaviors that are not allowed
by SC). The latter property is often called robustness against a certain model [Bouajjani
et al. 2011]. While this approach is necessarily partial (not all weak behaviors are bugs),
robustness against the causal consistency models can be often established for existing
algorithms, which allows one to port algorithms that were designed for SC to a causally
consistent memory. In addition, non-robust programs can be made robust by placing
fences or by strengthening certain reads and writes to be RMW operations (see §2.3).

A natural problem is thus the verification of robustness against the causal consistency
models. To precisely state this problem, one first has to define what constitutes a
behavior of a concurrent program. If we identify the possible behaviors with the set
of reachable program states (where states ascribe values to all local variables and the
program counter of each thread), then, following [Derevenetc 2015, Thm. 2.12], it is
easy to show that verifying robustness is as hard as the general state reachability
problem (described in §3.1). We refer to this robustness definition as state robustness.
More precise notions of a behavior induce stronger notions of robustness, which imply
state robustness. In particular, one may identify program behaviors with consistent
execution graphs. The induced robustness notion against a declarative model X, called
execution-graph robustness against X, means that all X-consistnet execution graphs of
the program are also SC-consistent.

Recently, Lahav and Margalit [2019] established the decidability of execution-graph
robustness against the RA model (for programs with bounded data domain) and further
showed that this problem is PSPACE-complete. (Execution-graph robustness against
x86-TSO is of the same complexity [Bouajjani et al. 2013]). The main idea there (as well
as in initial works on robustness against x86-TSO [Burckhardt and Musuvathi 2008])
is to reduce robustness verification to a state reachability problem under a (finite state)
instrumented SC memory. The instrumented memory keeps track of certain properties
of the generated execution graph that are used for monitoring that all steps preserving
RA-consistency are also allowed by SC. It is interesting to see whether such approach
can handle other models (in particular, WRA and SRA), and how can execution-graph
robustness be weakened to become closer to state robustness while still maintaining a
PSPACE solution.

Finally, robustness against causal consistency was also studied in the context of
distributed systems, where programs typically include transactions containing more
than one memory instruction (see, e.g., [Bernardi and Gotsman 2016; Nagar and Jagan-
nathan 2018; Brutschy et al. 2018]). In this context, SC is replaced by serializability,
which requires the atomicity of each transaction. These works provide practical over-
approximations of robustness, rather than precise verification methods.

ACKNOWLEDGMENTS

I would like to thank Udi Boker, Nachum Dershowitz, and Viktor Vafeiadis for useful comments on an earlier
version of this paper. The author is supported by the Israel Science Foundation (grant number 5166651), by
the Alon Young Faculty Fellowship and by Len Blavatnik and the Blavatnik Family foundation.

REFERENCES

Parosh Aziz Abdulla, Jatin Arora, Mohamed Faouzi Atig, and Shankaranarayanan
Krishna. 2019. Verification of programs under the release-acquire semantics. In PLDI
(accepted for publication).

ACM SIGLOG News 11 Vol. 0, No. 0, 0000



Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, and Tuan Phong
Ngo. 2018a. A load-buffer semantics for total store ordering. Log-
ical Methods in Computer Science Volume 14, Issue 1 (Jan. 2018).
DOI:http://dx.doi.org/10.23638/LMCS-14(1:9)2018

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Tuan Phong
Ngo. 2018b. Optimal stateless model checking under the release-acquire seman-
tics. Proc. ACM Program. Lang. 2, OOPSLA, Article 135 (Oct. 2018), 29 pages.
DOI:http://dx.doi.org/10.1145/3276505

Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W. Hutto.
1995. Causal memory: definitions, implementation, and programming. Distributed
Computing 9, 1 (1995), 37–49.

Jade Alglave and Patrick Cousot. 2017. Ogre and Pythia: an invariance
proof method for weak consistency models. In POPL. ACM, New York, 3–18.
DOI:http://dx.doi.org/10.1145/3009837.3009883

Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding cats: modelling,
simulation, testing, and data mining for weak memory. ACM Trans. Program. Lang.
Syst. 36, 2, Article 7 (July 2014), 74 pages. DOI:http://dx.doi.org/10.1145/2627752

Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and Madanlal Musu-
vathi. 2010. On the verification problem for weak memory models. In POPL. ACM,
New York, 7–18. DOI:http://dx.doi.org/10.1145/1706299.1706303

Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and Madanlal Musu-
vathi. 2012. What’s decidable about weak memory models?. In ESOP. Springer-Verlag,
Berlin, Heidelberg, 26–46. DOI:http://dx.doi.org/10.1007/978-3-642-28869-2 2

Hagit Attiya, Rachid Guerraoui, Danny Hendler, Petr Kuznetsov, Maged M. Michael,
and Martin Vechev. 2011. Laws of order: Expensive synchronization in con-
current algorithms cannot be eliminated. In POPL. ACM, New York, 487–498.
DOI:http://dx.doi.org/10.1145/1926385.1926442

Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber.
2011. Mathematizing C++ concurrency. In POPL. ACM, New York, 55–66.
DOI:http://dx.doi.org/10.1145/1925844.1926394

Giovanni Bernardi and Alexey Gotsman. 2016. Robustness against
consistency models with atomic visibility. In CONCUR. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 7:1–7:15.
DOI:http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.7

Ahmed Bouajjani, Egor Derevenetc, and Roland Meyer. 2013. Checking and enforcing
robustness against TSO. In ESOP. Springer-Verlag, Berlin, Heidelberg, 533–553.
DOI:http://dx.doi.org/10.1007/978-3-642-37036-6 29

Ahmed Bouajjani, Constantin Enea, Rachid Guerraoui, and Jad Hamza. 2017.
On verifying causal consistency. In POPL. ACM, New York, 626–638.
DOI:http://dx.doi.org/10.1145/3009837.3009888

Ahmed Bouajjani, Roland Meyer, and Eike Möhlmann. 2011. Deciding robustness
against total store ordering. In ICALP. Springer, Berlin, Heidelberg, 428–440.

Lucas Brutschy, Dimitar Dimitrov, Peter Müller, and Martin Vechev. 2018. Static
serializability analysis for causal consistency. In PLDI. ACM, New York, 90–104.
DOI:http://dx.doi.org/10.1145/3192366.3192415

Sebastian Burckhardt. 2014. Principles of eventual consistency. Found. Trends Program.
Lang. 1, 1-2 (Oct. 2014), 1–150. DOI:http://dx.doi.org/10.1561/2500000011

Sebastian Burckhardt and Madanlal Musuvathi. 2008. Effective program verification
for relaxed memory models. In CAV. Springer-Verlag, Berlin, Heidelberg, 107–120.
DOI:http://dx.doi.org/10.1007/978-3-540-70545-1 12

Andrea Cerone, Giovanni Bernardi, and Alexey Gotsman. 2015. A framework for trans-
actional consistency models with atomic visibility. In 26th International Conference

ACM SIGLOG News 12 Vol. 0, No. 0, 0000

http://dx.doi.org/10.23638/LMCS-14(1:9)2018
http://dx.doi.org/10.1145/3276505
http://dx.doi.org/10.1145/3009837.3009883
http://dx.doi.org/10.1145/2627752
http://dx.doi.org/10.1145/1706299.1706303
http://dx.doi.org/10.1007/978-3-642-28869-2_2
http://dx.doi.org/10.1145/1926385.1926442
http://dx.doi.org/10.1145/1925844.1926394
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.7
http://dx.doi.org/10.1007/978-3-642-37036-6_29
http://dx.doi.org/10.1145/3009837.3009888
http://dx.doi.org/10.1145/3192366.3192415
http://dx.doi.org/10.1561/2500000011
http://dx.doi.org/10.1007/978-3-540-70545-1_12


on Concurrency Theory (CONCUR 2015) (LIPIcs), Vol. 42. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 58–71.

Egor Derevenetc. 2015. Robustness against relaxed memory models. Ph.D. Dissertation.
University of Kaiserslautern. http://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/
4074

Simon Doherty, Brijesh Dongol, Heike Wehrheim, and John Derrick. 2019. Ver-
ifying C11 programs operationally. In PPoPP. ACM, New York, 355–365.
DOI:http://dx.doi.org/10.1145/3293883.3295702

Rodrigo Ferreira, Xinyu Feng, and Zhong Shao. 2010. Parameterized memory models
and concurrent separation logic. In ESOP (LNCS), Vol. 6012. Springer, 267–286.

Phillip B. Gibbons and Ephraim Korach. 1997. Testing shared
memories. SIAM J. Comput. 26, 4 (Aug. 1997), 1208–1244.
DOI:http://dx.doi.org/10.1137/S0097539794279614

ISO/IEC 14882:2011. 2011. Programming Language C++. (2011).
ISO/IEC 9899:2011. 2011. Programming Language C. (2011).
Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor Vafeiadis.

2017. Strong logic for weak memory: Reasoning about release-acquire consistency
in Iris. In ECOOP. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 17:1–17:29. DOI:http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.17

Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. 2017. A
promising semantics for relaxed-memory concurrency. In POPL 2017. ACM, 175–189.

Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor Vafeiadis. 2017.
Effective stateless model checking for C/C++ concurrency. Proc. ACM Program. Lang.
2, POPL, Article 17 (Dec. 2017), 32 pages. DOI:http://dx.doi.org/10.1145/3158105

Dexter Kozen. 1977. Lower bounds for natural proof systems. In SFCS. IEEE Computer
Society, Washington, 254–266. DOI:http://dx.doi.org/10.1109/SFCS.1977.16

Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. 2016. Taming
release-acquire consistency. In POPL. ACM, New York, 649–662.
DOI:http://dx.doi.org/10.1145/2837614.2837643

Ori Lahav and Roy Margalit. 2019. Robustness against release/acquire semantics. In
PLDI (accepted for publication).

Ori Lahav and Viktor Vafeiadis. 2015. Owicki-Gries reasoning for weak
memory models. In ICALP. Springer-Verlag, Berlin, Heidelberg, 311–323.
DOI:http://dx.doi.org/10.1007/978-3-662-47666-6 25

Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017.
Repairing sequential consistency in C/C++11. In PLDI. ACM, New York, 618–632.
DOI:http://dx.doi.org/10.1145/3062341.3062352

Leslie Lamport. 1979. How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. Computers 28, 9 (1979), 690–691.

Mapping 2016. C/C++11 mappings to processors. (2016). Retrieved June 27, 2018 from
http://www.cl.cam.ac.uk/∼pes20/cpp/cpp0xmappings.html

Kartik Nagar and Suresh Jagannathan. 2018. Automated detection of seri-
alizability violations under weak consistency. In CONCUR 2018, Vol. 118.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 41:1–41:18.
DOI:http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.41

Peter W. O’Hearn. 2007. Resources, concurrency, and local reasoning. Theor. Comput.
Sci. 375, 1-3 (2007), 271–307.

Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A better x86
memory model: x86-TSO. In TPHOLs. Springer, Heidelberg, 391–407.
DOI:http://dx.doi.org/10.1007/978-3-642-03359-9 27

Susan Owicki and David Gries. 1976. An axiomatic proof technique for parallel pro-
grams I. Acta Informatica 6, 4 (1976), 319–340.

ACM SIGLOG News 13 Vol. 0, No. 0, 0000

http://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4074
http://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4074
http://dx.doi.org/10.1145/3293883.3295702
http://dx.doi.org/10.1137/S0097539794279614
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.17
http://dx.doi.org/10.1145/3158105
http://dx.doi.org/10.1109/SFCS.1977.16
http://dx.doi.org/10.1145/2837614.2837643
http://dx.doi.org/10.1007/978-3-662-47666-6_25
http://dx.doi.org/10.1145/3062341.3062352
http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.41
http://dx.doi.org/10.1007/978-3-642-03359-9_27


Joseph Tassarotti, Derek Dreyer, and Viktor Vafeiadis. 2015. Verifying read-copy-update
in a logic for weak memory. In 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). ACM, 110–120.

Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. 2014. GPS: Navigating weak mem-
ory with ghosts, protocols, and separation. In OOPSLA. ACM, New York, 691–707.
DOI:http://dx.doi.org/10.1145/2660193.2660243

Viktor Vafeiadis. 2017. Program verification under weak memory consistency using
separation logic. In CAV. Springer International Publishing, Cham, 30–46.

Viktor Vafeiadis and Chinmay Narayan. 2013. Relaxed separation logic: A
program logic for C11 concurrency. In OOPSLA. ACM, New York, 867–884.
DOI:http://dx.doi.org/10.1145/2509136.2509532

ACM SIGLOG News 14 Vol. 0, No. 0, 0000

http://dx.doi.org/10.1145/2660193.2660243
http://dx.doi.org/10.1145/2509136.2509532

	1 Introduction
	2 What is a causally consistent shared memory?
	2.1 The three models
	2.1.1 Weak release acquire (WRA)
	2.1.2 Release acquire (RA)
	2.1.3 Strong release acquire (SRA)

	2.2 Operational semantics
	2.3 Read-modify-write instructions

	3 Verification problems and existing solutions
	3.1 Unbounded verification
	3.2 Bounded model checking
	3.3 Program logics
	3.4 Robustness verification


