
Compositional Semantics for 
Shared-Variable Concurrency

Mikhail Svyatlovskiy, Shai Mermelstein, Ori Lahav



Denotational semantics for shared-memory concurrency
● Motivation 

○ Understand a piece of code: [C]
○ Justify local compiler transformations: 

Csrc ⇝ Ctgt: ∀ P, s0, s . <P[Ctgt], s0> ↓ s  ⇒ <P[Csrc], s0> ↓ s

● Desired properties
○ Compositionality: e.g., [C1 || C2] is determined from [C1] and [C2]
○ Adequacy: [Csrc] ⊇ [Ctgt] implies Csrc ⇝ Ctgt
○ Full abstraction: Csrc ⇝ Ctgt implies [Csrc] ⊇ [Ctgt]

● Scope: shared-memory concurrency
○ much more challenging than sequential programs

■ x:=1 ; x:=x+1 ⇜⇝ x:=2 in sequential programs 
■ but only x:=1 ; x:=x+1 ⇝ x:=2 in concurrent programs

2



Trace-Based Approach [Brookes '96]

● The semantics of a command C is the set of possible sequences of 
memory-to-memory transitions, interrupted by environment transformations

e.g., [x:=4;y:=5] ∋ <[x,y,z↦0,0,0],[x,y,z↦4,0,0]>; <[x,y,z↦1,2,3],[x,y,z↦1,5,3]>

● Compositional, adequate, fully abstract

● Observation: Full abstraction assumes an AWAIT command that checks the 
values and changes the state atomically.

● AWAIT is impractical since it updates multiple variables, e.g.,

AWAIT(x=2 /\ y=2) then (x:=4; y:=5)
3



Observation: no full-abstraction without AWAIT 

C = x:=1; y:=1; assume [(x=2 & y!=2) or (x!=2 & y=2)]; assume (x=y=2) 
D = x:=1; y:=1; assume (x=y=2)

● C⇝D does not hold (context P = AWAIT (x=y=1) then (x:=2; y:=2) || —)
● Indeed, in Brookes model, [C] ⊇[D] does not hold 

(trace <[x,y↦0,0],[x,y↦1,1]>; <[x,y↦2,2],[x,y↦2,2]>)
● C⇝D is valid without AWAIT

● Our goal: compositional, adequate, fully abstract semantics for a language 
without AWAIT

4



Our main contribution: a novel denotational semantics
 
● Compositional & adequate

● Full abstraction (limited):
○ Fully abstract assuming atomic SNAPSHOT

e.g., SNAPSHOT(x=2 /\ y=2) atomically reads x=2 & y=2 

○ Without SNAPSHOT, fully abstract for loop-free commands

● Fully mechanized in Coq

5



Our traces: an example

<s, 𝜃, W̅(y,1) ; W(x,1) ; W̅(x,2)>

Initial state: map from 
shared variables to values

Initial store: partial map from local 
variables to values

Chronicle: sequence of actions

○ W(x, v): a component write
○ W̅(x,v): an environment write

6



Denotations

● Denotations are sets of traces.
● Defined in two levels:

Concrete semantics 
[C]

Abstract semantics 
[[C]]

Definition inductive definition closure of [C] by rewrite 
rules

Compositionality

Adequacy

Full abstraction                        (limited)

7



Concrete Denotations

● [C] is a set of traces

○ [x:=1] = { <s, 𝜃, e1 ; W(x,1) ; e2> | 
s ∈ State ,  𝜃 ∈ Store,  e1, e2 ∈ EnvChro }

○ [x:=x+1] = { <s, 𝜃, e1 ; e2 ; W(x, e1(s)(x)+1) ; e3> | 
s ∈ State ,  𝜃 ∈ Store,  e1, e2, e3 ∈ EnvChro }

8



Sequential Composition

[C1 ; C2]: concatenate the traces of C1 with traces of C2

○ Same initial stores
○ Final state of C1 equals the initial state of C2
○ Example: 

<[x,y↦0,0], 𝜃, W(x, 1)> ;  <[x,y↦1,0], 𝜃, W(y, 2)> = 
<[x,y↦0,0], 𝜃, W(x, 1) ; W(y, 2)>

9



Parallel Composition
[C1 || C2]: synchronize the traces of C1 with traces of C2

○ same initial states and stores
○ action matching:

■ W(x, v) || W̅(x, v) = W(x, v)
■ W̅(x, v) || W̅(x, v) = W̅(x, v) 
■ other cases are undefined

○ Example: <[x,y↦0,0], 𝜃, W(x, 1) ; W̅(y, 2) ; W̅(x,3)> || 
    <[x,y↦0,0], 𝜃, W̅(x, 1) ; W(y, 2) ; W̅(x,3)> =
    <[x,y↦0,0], 𝜃, W(x, 1) ; W(y, 2) ; W̅(x,3)> 

10



Concrete semantics
● We inductively define [C] as a set of traces

● This semantics is compositional

● This semantics is adequate
○ Key lemma: <C,s0> ↓ s iff ⟨s, 𝜃, c⟩ ∈ [C] s.t. c(s0)=s and c ∈ CmpChro

● It supports a wide variety of contextual refinements:
○ Structural transformations (e.g., C1 || C2 ⇝ C1; C2)
○ Reordering/introduction/elimination of local operations 
○ Introduction/elimination of redundant reads

● Full abstraction is still a challenge: 
this semantics does not support transformations that modify the sequence of 
writes

○ e.g., x:=1; x:=x+1 ⇝ x:=2
○ but <[x,y↦0,0],𝜃,Wx2> ∈ [x:=2] \ [x:=1; x:=x+1] 11



Abstract semantics: rewrite rules

● To make the semantics fully abstract we close the concrete sets of traces 
under  rewrite rules.

[[C]] = closure([C])

closure([C]) = { c' | c ⇴* c' }

● For example,
○ x:=1; x:=x+1 ⇝ x:=2
○ <[x,y↦0,0],𝜃,W(x,2)> ∈ [x:=2] \  [x:=1; x:=x+1]
○ but we will have: <[x,y↦0,0],𝜃,W(x,2)> ∈ closure([x:=1; x:=x+1])

12



Coalesce rule

● compress a block of component writes into one write that has the same effect:

⟨s, 𝜃, c1 ; m1 ; W(x,v) ; m2 ; c2⟩ ⇴ ⟨s, 𝜃, c1 ; W(x,v) ; c2⟩ 
provided that:
1) m1,m2 are component chronicles 
2) (c1 ; m1 ; W(x,v) ; m2)(s) = (c1 ; W(x,v))(s)

● Example: x:=1; x:=x+1 ⇝ x:=2
● Another example: let a:=y in (y:=1; x:=1; y:=a) ⇝ x:=1

13



Environment-coalesce rule

● Similar compress, when we have one environment write in the middle

⟨s, 𝜃, c1 ; m1 ; W̅(x,v) ; m2 ; c2⟩ ⇴ ⟨s, 𝜃, c1 ; W̅(x,v) ; c2⟩ provided that:
1) m1,m2 are component chronicles
2) (c1 ; m1 ; W(x,v) ; m2)(s) =(c1 ; W(x,v))(s)
3) (c1 ; m1)(s)(x) = c1(s)(x)

● Example: C= let a = y in (y := 3 ; if x ≠ 2 then (if x = 2 then y := a)) ⇝ 
if x ≠ 2 then (if x ≠ 2 then y := 3) else y := 3 = D
● Operational reasoning: if a concurrent thread writes x := 2 between the IFs, 

then the overall effect of both C and D is skip.
Otherwise, the overall effect is y := 3.

● Denotational reasoning: in [C] we have either ⟨s, 𝜃, W(y,3)⟩ or
⟨s, 𝜃, W(y,3) ; W̅(x,2) ; W(y, s(y))⟩ ⇴ ⟨s, 𝜃, W̅(x,2)⟩ (accompanied with some 
environment actions)

14



Remaining rewrite rules

● Delete-redundant: remove an action with no effect

⟨s, 𝜃, c1 ; W(x,v) ; c2⟩ ⇴ ⟨s, 𝜃, c1 ; c2⟩ provided that c1(s)(x) = v

● Example: let a:=x in (x:=a; C) ⇝ let a:=x in C

● Add-redundant:  add an action with no effect

⟨s, 𝜃, c1 ; c2⟩ ⇴ ⟨s, 𝜃, c1 ; W(x,v) ; c2⟩ provided that c1(s)(x) = v

● Example: skip ⇝ FAA(x,0)

15



Compositionality argument
● We want to show: [C1] ⊆ [[C1’]]  ⇒ [C1 || C2] ⊆ [[C1’ || C2]]
● Given t ∈ [C1 || C2], we need to show t ∈ [[C1’ || C2]]
● We have: t = t1 || t2, t1 ∈ [C1], t2 ∈ [C2] 
● We also obtain: t1 ∈ [[C1’]], t1’ ∈ [C1’] , t1’ ⇴* t1
● We need to find some t’ ∈ [C1’ || C2] such that t’ ⇴* t
● This is equivalent to find some t1’’ ∈ [C1’] and t2’ ∈ [C2] such that t’ = t1’’ || t2’

Solution: find some invariants of []-semantics to obtain t2’, and possible rewrite rules 
should be dual to these invariants

16



Example of a dual rule
● Invariant: t ∈ [C], t ⥲ t’ ⇒ t’ ∈ [C]
● Duality: t1 ⇴ t2 if and only if dual(t2) ⥲ dual(t1)
● Dual trace: dual(⟨s, 𝜃, a1 ; a2 ; … ; an ⟩) = ⟨s, 𝜃, d(a1) ; d(a2) ; … ; d(an) ⟩

■ d(W(x, v)) = W̅(x, v) d(W̅(x, v)) = W(x, v)

● Coalesce rule: ⟨s, 𝜃, c1 ; m1 ; W(x,v) ; m2 ; c2⟩ ⇴ ⟨s, 𝜃, c1 ; W(x,v) ; c2⟩ 
provided that:
1) m1,m2 are component chronicles 
2) (c1 ; m1 ; W(x,v) ; m2)(s) = (c1 ; W(x,v))(s)

● Disperse rule: ⟨s, 𝜃, c1 ; W̅(x,v) ; c2⟩ ⥲ ⟨s, 𝜃, c1 ; e1 ; W̅(x,v) ; e2 ; c2⟩ 
provided that:
1) e1,e2 are environment chronicles 
2) (c1 ; e1 ; W̅(x,v) ; e2)(s) = (c1 ; W̅(x,v))(s)

17



Full abstraction argument - example
Csrc = x:=1; y:=1; x:=1   ⇝?   x:=1; y:=1 = Ctgt

⟨[x,y↦0,0], 𝜃, W(x, 1) ; W̅(x, 2) ; W(y, 1)⟩ = t ∈ [Ctgt] \ [[Csrc]]

P[—] = snapshot([x,y↦0,0]); snapshot([x,y↦1,0]); let a = XCHG(x, 2) in (assume 
(a=1)); snapshot([x,y↦2,0]); snapshot([x,y↦2,1]) || —

We have <P[Ctgt], s0> →* <skip, [x,y↦2,1]>

But if <P[Csrc], s0> →* <skip, [x,y↦2,1]>, then t ∈ [[Csrc]], a contradiction.

● For loop-free commands, we use (sufficiently many) repeated reads instead 
of snapshot.

18



Conclusion

● New denotational semantics
● Compositional, adequate, (limited) fully abstract

● More in the paper:
○ Support Read-Modify-Writes
○ Non-deterministic assignments/cycles
○ Example showing that we don’t have full abstraction without snapshots but with loops 
○ Local rewrites

● Future work:
○ A fully abstract semantics without snapshot command
○ Semantics for termination-sensitive refinement (with infinite fair executions)
○ Weak memory models
○ Higher-order languages

Thank you!
19


