Compositional Semantics for Shared-Variable Concurrency

Mikhail Svyatlovskiy, Shai Mermelstein, Ori Lahav

Denotational semantics for shared-memory concurrency

- Motivation
 - Understand a *piece of code*: [C]
 - Justify local compiler transformations:

Csrc → Ctgt: \forall P, s0, s . <P[Ctgt], s0> \downarrow s \Rightarrow <P[Csrc], s0> \downarrow s

• Desired properties

- Compositionality: e.g., [C1 || C2] is determined from [C1] and [C2]
- Adequacy: [Csrc] \supseteq [Ctgt] implies Csrc \rightarrow Ctgt
- Full abstraction: Csrc → Ctgt implies [Csrc] ⊇ [Ctgt]
- Scope: shared-memory concurrency
 - much more challenging than sequential programs
 - x:=1 ; x:=x+1 ↔ x:=2 in sequential programs
 - but only x:=1 ; x:=x+1 \rightarrow x:=2 in concurrent programs

Trace-Based Approach [Brookes '96]

• The semantics of a command C is the set of possible sequences of memory-to-memory transitions, interrupted by environment transformations

e.g., $[x:=4;y:=5] \Rightarrow <[x,y,z\mapsto 0,0,0], [x,y,z\mapsto 4,0,0]>; <[x,y,z\mapsto 1,2,3], [x,y,z\mapsto 1,5,3]>$

• Compositional, adequate, fully abstract

- Observation: Full abstraction assumes an **AWAIT** command that checks the values and changes the state atomically.
- **AWAIT** is impractical since it updates multiple variables, e.g.,

AWAIT(x= $2 \land y=2$) then (x:=4; y:=5)

Observation: no full-abstraction without AWAIT

C = x:=1; y:=1; assume [(x=2 & y!=2) or (x!=2 & y=2)]; assume (x=y=2) D = x:=1; y:=1; assume (x=y=2)

- C \rightarrow D does not hold (context P = **AWAIT** (x=y=1) then (x:=2; y:=2) || --)
- Indeed, in Brookes model, [C] ⊇[D] does not hold (trace <[x,y→0,0],[x,y→1,1]>; <[x,y→2,2],[x,y→2,2]>)
- C -> D is valid without AWAIT

• Our goal: compositional, adequate, fully abstract semantics for a language without AWAIT

Our main contribution: a novel denotational semantics

• Compositional & adequate

- Full abstraction (limited):
 - Fully abstract assuming atomic **SNAPSHOT**

e.g., SNAPSHOT(x= $2 \land y=2$) atomically reads x=2 & y=2

• Without **SNAPSHOT**, fully abstract for *loop-free* commands

• Fully mechanized in Coq

Our traces: an example

Initial store: partial map from local variables to values

\theta,
$$\overline{W}(y,1)$$
; $W(x,1)$; $\overline{W}(x,2)$ >

Initial state: map from shared variables to values

Chronicle: sequence of actions

- \circ W(x, v): a component write
- \circ $\overline{W}(x,v)$: an environment write

Denotations

- Denotations are sets of traces.
- Defined in two levels:

	Concrete semantics [C]	Abstract semantics [[C]]
Definition	inductive definition	closure of [C] by rewrite rules
Compositionality	\checkmark	\checkmark
Adequacy	\checkmark	\checkmark
Full abstraction	X	(limited)

Concrete Denotations

• [C] is a set of traces

○
$$[x:=1] = \{ |$$

s ∈ State, $\theta \in$ Store, e1, e2 ∈ EnvChro $\}$

STORE $e_1, e_2 \in EnvChro$ $\alpha = W(x, \theta(E))$ $\overline{\langle s, \theta, e_1 \cdot \alpha \cdot e_2 \rangle} \in \lfloor x := E \rfloor$

○
$$[x:=x+1] = \{ |$$

s ∈ State, θ ∈ Store, e1, e2, e3 ∈ EnvChro }

Sequential Composition

[C1 ; C2]: concatenate the traces of C1 with traces of C2

- Same initial stores
- Final state of C1 equals the initial state of C2
- Example:

<[x,y \mapsto 0,0], θ , W(x, 1)> ; <[x,y \mapsto 1,0], θ , W(y, 2)> = <[x,y \mapsto 0,0], θ , W(x, 1) ; W(y, 2)> SEQ $t_{1} \in \lfloor C_{1} \rfloor$ $t_{2} \in \lfloor C_{2} \rfloor$ $\overline{t_{1} ; t_{2} \in |C_{1} ; C_{2}|}$

Parallel Composition

[C1 || C2]: synchronize the traces of C1 with traces of C2 PAR

- same initial states and stores
- action matching:

 $\begin{array}{c}
 t_1 \in \lfloor C_1 \rfloor \\
 t_2 \in \lfloor C_2 \rfloor \\
 \overline{t_1 \parallel t_2 \in \lfloor C_1 \parallel C_2 \rfloor}
\end{array}$

- $W(x, v) || \overline{W}(x, v) = W(x, v)$
- $\overline{W}(x, v) \mid\mid \overline{W}(x, v) = \overline{W}(x, v)$
- other cases are undefined
- Example: <[x,y→0,0], θ , W(x, 1) ; $\overline{W}(y, 2)$; $\overline{W}(x,3)$ > || <[x,y→0,0], θ , $\overline{W}(x, 1)$; W(y, 2) ; $\overline{W}(x,3)$ > = <[x,y→0,0], θ , W(x, 1) ; W(y, 2) ; $\overline{W}(x,3)$ >

Concrete semantics

- We inductively define [C] as a set of traces
- This semantics is compositional
- This semantics is adequate
 - Key lemma: $\langle C, s0 \rangle \downarrow s$ iff $\langle s, \theta, c \rangle \in [C] s.t. c(s0)=s$ and $c \in CmpChro$
- It supports a wide variety of contextual refinements:
 - Structural transformations (e.g., C1 || C2 → C1; C2)
 - Reordering/introduction/elimination of local operations
 - Introduction/elimination of redundant reads
- Full abstraction is still a challenge: this semantics does not support transformations that modify the sequence of writes
 - o e.g., x:=1; x:=x+1 → x:=2
 - o but <[x,y→0,0], θ ,Wx2> ∈ [x:=2] \ [x:=1; x:=x+1]

Abstract semantics: rewrite rules

• To make the semantics fully abstract we close the concrete sets of traces under *rewrite rules*.

[[C]] = closure([C])

$$closure([C]) = \{ c' \mid c \implies * c' \}$$

- For example,
 - o x:=1; x:=x+1 → x:=2

 - but we will have: $\langle [x,y \rightarrow 0,0], \theta, W(x,2) \rangle \in closure([x:=1; x:=x+1])$

Coalesce rule

• compress a block of component writes into one write that has the same effect:

 $\langle s, \theta, c1; m1; W(x,v); m2; c2 \rangle \Leftrightarrow \langle s, \theta, c1; W(x,v); c2 \rangle$ provided that: 1) m1,m2 are component chronicles 2) (c1; m1; W(x,v); m2)(s) = (c1; W(x,v))(s)

- Example: x:=1; x:=x+1 → x:=2
- Another example: let a:=y in (y:=1; x:=1; y:=a) → x:=1

Environment-coalesce rule

• Similar compress, when we have one environment write in the middle

 $\langle s, \theta, c1; m1; \overline{W}(x,v); m2; c2 \rangle \Leftrightarrow \langle s, \theta, c1; \overline{W}(x,v); c2 \rangle$ provided that: 1) m1,m2 are component chronicles 2) (c1; m1; W(x,v); m2)(s) =(c1; W(x,v))(s) 3) (c1; m1)(s)(x) = c1(s)(x)

- Example: C= let a = y in (y := 3; if x ≠ 2 then (if x = 2 then y := a)) → if x ≠ 2 then (if x ≠ 2 then y := 3) else y := 3 = D
 - Operational reasoning: if a concurrent thread writes x := 2 between the IFs, then the overall effect of both C and D is skip.
 Otherwise, the overall effect is y := 3.
 - Denotational reasoning: in [C] we have either ⟨s, θ, W(y,3)⟩ or ⟨s, θ, W(y,3); W(x,2); W(y, s(y))⟩ ↔ ⟨s, θ, W(x,2)⟩ (accompanied with some environment actions)

Remaining rewrite rules

• Delete-redundant: remove an action with no effect

 $\langle s, \theta, c1; W(x,v); c2 \rangle \Rightarrow \langle s, \theta, c1; c2 \rangle$ provided that c1(s)(x) = v

• Example: let a:=x in (x:=a; C) → let a:=x in C

• Add-redundant: add an action with no effect

 $\langle s, \theta, c1; c2 \rangle \Rightarrow \langle s, \theta, c1; W(x,v); c2 \rangle$ provided that c1(s)(x) = v

• Example: skip \rightarrow FAA(x,0)

Compositionality argument

- We want to show: $[C1] \subseteq [[C1']] \Rightarrow [C1 \parallel C2] \subseteq [[C1' \parallel C2]]$
- Given $t \in [C1 \parallel C2]$, we need to show $t \in [[C1' \parallel C2]]$
- We have: t = t1 || t2, t1 ∈ [C1], t2 ∈ [C2]
- We also obtain: t1 ∈ [[C1']], t1' ∈ [C1'], t1' ↔ * t1
- We need to find some $t' \in [C1' \parallel C2]$ such that $t' \Rightarrow t$
- This is equivalent to find some $t1" \in [C1']$ and $t2' \in [C2]$ such that t' = t1" || t2'

Solution: find some invariants of []-semantics to obtain t2', and possible rewrite rules should be dual to these invariants

Example of a dual rule

- Invariant: $t \in [C], t \Rightarrow t' \Rightarrow t' \in [C]$
- Duality: t1 \Rightarrow t2 if and only if dual(t2) \Rightarrow dual(t1)
- Dual trace: dual($\langle s, \theta, a1; a2; ...; an \rangle$) = $\langle s, \theta, d(a1); d(a2); ...; d(an) \rangle$
 - $d(W(x, v)) = \overline{W}(x, v) \qquad d(\overline{W}(x, v)) = W(x, v)$
- Coalesce rule: ⟨s, θ, c1; m1; W(x,v); m2; c2⟩ ↔ ⟨s, θ, c1; W(x,v); c2⟩ provided that:

1) m1,m2 are component chronicles

- 2) (c1; m1; W(x,v); m2)(s) = (c1; W(x,v))(s)
- Disperse rule: $\langle s, \theta, c1; \overline{W}(x,v); c2 \rangle \Rightarrow \langle s, \theta, c1; e1; \overline{W}(x,v); e2; c2 \rangle$ provided that:

1) e1,e2 are environment chronicles

2) (c1; e1; $\overline{W}(x,v)$; e2)(s) = (c1; $\overline{W}(x,v)$)(s)

Full abstraction argument - example

Csrc = x:=1; y:=1; x:=1 →? x:=1; y:=1 = Ctgt

 $\langle [x,y \mapsto 0,0], \theta, W(x, 1); \overline{W}(x, 2); W(y, 1) \rangle = t \in [Ctgt] \setminus [[Csrc]]$

 $P[-] = snapshot([x,y \mapsto 0,0]); snapshot([x,y \mapsto 1,0]); let a = XCHG(x, 2) in (assume (a=1)); snapshot([x,y \mapsto 2,0]); snapshot([x,y \mapsto 2,1]) || --$

We have $\langle P[Ctgt], s0 \rangle \rightarrow^* \langle skip, [x,y \rightarrow 2,1] \rangle$

But if <P[Csrc], s0> \rightarrow * <skip, [x,y \rightarrow 2,1]>, then t \in [[Csrc]], a contradiction.

• For loop-free commands, we use (sufficiently many) repeated reads instead of snapshot.

Conclusion

- New denotational semantics
- Compositional, adequate, (limited) fully abstract
- More in the paper:
 - Support Read-Modify-Writes
 - Non-deterministic assignments/cycles
 - Example showing that we don't have full abstraction without snapshots but with loops
 - Local rewrites

• Future work:

- A fully abstract semantics without snapshot command
- Semantics for termination-sensitive refinement (with infinite fair executions)
- Weak memory models
- Higher-order languages