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Abstract

In recent years we have seen a vast increase in the amount of protein-protein interaction

data. Study of the resulting biological networks can provide us a better understanding of

the processes taking place within a cell.

In this work we consider a graph orientation problem arising in the study of biological

networks. Given an undirected graph and a list of ordered source-target pairs, the goal is

to orient the graph so that a maximum number of pairs will admit a directed path from

the source to the target. We show that the problem is NP-hard and hard to approximate

to within a constant ratio. We then study restrictions of the problem to various graph

classes, and provide an O(log n) approximation algorithm for the general case. We show

that this algorithm achieves very tight approximation ratios in practice and is able to infer

edge directions with high accuracy on both simulated and real network data.

This work was presented at the 8th Workshop on Algorithms in Bioinformatics

(WABI) [19].
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Chapter 1

Introduction

Recent technological advances allow generation of large-scale protein-protein interaction

(PPI) networks. Some of the techniques used for generations of the networks are yeast two-

hybrid screening [7, 13, 6] and protein co-immunoprecipitation (Co-IP) paired with mass

spectrometry [1, 18]. The analysis of the resulting networks can allow us to better understand

the nature of the inner-cellular processes, reflected in protein-protein interactions.

One of the major roles of protein-protein interaction (PPI) networks is to transmit signals

within the cell in response to genetic and environmental cues. Technologies for measuring

PPIs do not provide information on the direction in which the signal flows. Our goal is to

infer the directions of the interactions in a given network by combining causal information

on cellular events. One such source of information is perturbation experiments, in which a

gene is perturbed and as a result other genes change their expression levels.

In graph theoretic terms, one is given an undirected graph and a list of cause-effect pairs.

The goal is to direct the edges of the graph, assigning a single direction to each edge, so

that a maximum number of pairs admit a directed path from the cause to the effect. In fact,

by contracting cycles in the graph one can easily reduce the problem to that of orienting a

tree. Hakimi et al. [9] studied a restricted version of the problem where the list of vertex

pairs includes all possible pairs, giving a quadratic time algorithm for it. Another variant

of the problem was studied in [3] and [10], where rather than maximizing the total number

of pairs, an algorithm was given to decide if one can satisfy all given pairs. Other similar

graph theoretic problems include Maximum Integral K-Multicommodity Flow On

1



CHAPTER 1. INTRODUCTION 2

Trees [8], and Maximum Disjoint Connecting Paths [23, 17].

In this thesis we study the resulting tree orientation problem. We prove that it is NP-hard

and hard to approximate to within a constant ratio. We study restrictions of the problem

to various graph classes, and show that the problem can be solved in polynomial time on a

path, but is still NP-hard for some other simple graph classes. We then provide an O(log n)

approximation algorithm for a general tree, where n is the size of the tree. We show that this

algorithm achieves tight approximation ratios in practice and is able to infer edge directions

with high accuracy on both simulated and real network data.

The thesis is organized as follows: Chapter 2 gives some biological and computational

background. In Chapter 3 the graph orientation problem is presented and its complexity for

different graph classes is analyzed, and some related problems are described. Chapter 4

provides exact and approximate algorithms for restrictions of the problem, and an

approximation algorithm for the general case. Experimental results of the latter algorithm

on simulated and biological data are described in Chapter 5. Finally, a brief summary and

possible future research directions appear in Chapter 6.



Chapter 2

Computational and Biological

Background

This chapter provides computational and biological background necessary for the presented

work. The computational background covers some algorithmic techniques used in this thesis.

The biological background provides an introduction to protein-protein interaction networks.

2.1 Computational Background

2.1.1 Linear Programming and Integer Programming

Linear Programming is a technique used for representation and solution of a wide range of

optimization problems. A linear program consists of a set of variables x̄ = (x1, ..., xn), an

optimization function f(x1, ..., xn) = c1x1 + ...+ cnxn, and a set of linear constraints Ax̄ ≤ b̄.

The goal is to assign values to xi so that the optimization function is maximized, while

maintaining the constraints.

Integer Programming is a type of linear programming, in which all (or part of, in case

of Mixed Integer Programming) variables are required to be integers. It is usually more

useful for solving discreet optimization problems. Unlike classic linear programming, integer

programming cannot be solved efficiently in general case, since it is NP-hard. However, there

3



CHAPTER 2. COMPUTATIONAL AND BIOLOGICAL BACKGROUND 4

exist many commercial solvers, which can solve integer programs in practical times in many

cases.

A version of Integer Programming, in which all variables are required to be 0 or 1, is

sometimes called Binary Integer Programming. It is one of Richard Karp’s famous 21 NP-

complete problems [15].

2.1.2 Dynamic Programming

Dynamic Programming is a method of solving computational problems, which have the

properties of overlapping subproblems and optimal substructure.

A problem is said to have overlapping subproblems if it can be broken into subproblems,

which can be reused several times in the problem’s solution. A common example for such

problem is the problem of calculating the nth Fibonacci number. Calculating F (n) is

performed by summing F (n− 1) and F (n− 2). Calculating F (n− 1) also involves F (n− 2);

therefore we can say that the problem has overlapping subproblems structure. A problem

has optimal substructure, if an optimal solution can be calculated by dividing the problem

into subproblems, and calculating optimal solutions for the subproblems.

The idea behind dynamic programming is to solve the problem by recursively breaking

it into subproblems, until a trivial case is reached. Each time a subproblem is solved, the

result of the computation is stored, so that when the solution of the subproblem is needed

again (because of the overlapping subproblems property), the stored result is used, instead

of recalculating the subproblem.

2.1.3 Some Graph Types

We mention several special types of graphs throughout this work. These types of graphs are

defined here:

Star Graph A star graph is a tree with depth 1. I.e., all leaves of the graph are connected

to the root. See Figure 2.1(a).

Binary Tree A binary tree is a rooted tree, in which each node has at most 2 children.

See Figure 2.1(b).
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Caterpillar Graph A caterpillar is a tree, in which all leaves are within distance of 1

from a central path. See Figure 2.1(c).

(a) A star graph (b) A binary tree

(c) A caterpillar graph

Figure 2.1: Examples of some graph types.

2.2 Biological Background

2.2.1 Protein-Protein Interactions

Protein-protein interactions (PPI) are physical interactions between proteins within a cell.

These interactions are essential in many biological processes. There are different types of

interactions. Proteins may bind together and react in biological processes as a complex;

or they may interact briefly to transmit a signal within a cell. For example, in the

phosphorylation process, a protein (called kinase in this context) attaches a phosphate to

another protein (called substrate). This results in a structural change of the substrate protein,

causing it to perform a biological function, which may be in turn a phosphorylation of another
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protein, or promotion/inhibition of another protein’s expression. In this way protein-protein

interactions form signaling pathways within cells.

2.2.2 Protein-Protein Interaction Networks

Protein-protein interaction networks are used to analyze data containing multiple proteins

and interactions between them. A PPI network is a graph, in which each node represents

a protein and each edge represents an interaction between two proteins (see Figure 2.2).

These networks are used to study biological processes involving numerous protein-protein

interactions, most notably signaling pathways within cells. In recent years new technologies

were developed, which allow generation of large scale PPI networks. These technologies have

improved our ability to study cellular signaling pathways. However, the techniques used to

create large scale PPI networks do not provide information about the directions, in which

signals propagate in the network.

Figure 2.2: A sample protein-protein interaction network. (Source: proteinfunction.net.)
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2.2.3 Protein-Protein Interactions Discovery Methods

Currently the main methods for large-scale discovery of protein-protein interactions are Yeast

Two-Hybrid screening (Y2H) [7, 13, 6] and Protein Complex Immunoprecipitation (Co-

IP) [1, 18]. We will briefly describe these methods here.

Yeast Two Hybrid Screening

The Yeast Two Hybrid technique exploits the gene transcription mechanism of the cell. In the

regular transcription process a transcription factor binds to the promoter of a target gene via

its DNA-binding domain. It then allows binding of RNA polymerase via its transactivation

domain, which initiates the transcription.

In the Yeast Two Hybrid technique the transcription factor is divided into two parts.

In order to examine whether proteins A and B interact, protein A is attached to the DNA-

binding domain of the transcription factor (this hybrid protein is called the bait), and protein

B is attached to the transactivation domain (forming the pray). If A and B interact, the

activating domain of the transcription factor is brought near the promoter sequence of the

reporting gene, and a transcription occurs. If A and B do not interact, the transcription

usually is not initiated. See Figure 2.3.

The Yeast Two Hybrid techniques can be scaled to screen for interactions of a given

protein with many other proteins simultaneously. However, an important drawback of the

technique is a very high false-positive ratio. For example, in [24] and[4] the authors estimate

a false-positive rate of around 50%. Therefore interactions found using Y2H usually need to

be verified by other techniques, such as Co-Immunoprecipitation.

Protein Complex Immunoprecipitation

The Complex Immunoprecipitation (Co-IP) process is used to identify protein complexes. In

this process a cell extract is prepared, in which proteins occur in their native conformation,

and an antibody targeting the protein of interest (the bait) is added to the extract. The

antibody is then precipitated, together with the bait protein and other proteins that are

attached to it. The extracted proteins are then recognized using mass-spectrometry. See

Figure 2.4.
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The Co-IP technique is considered very reliable in detecting protein complexes. However,

it has some drawbacks: it is hard to determine whether a protein interacts directly with the

bait protein or whether it interacts via another protein of the complex. Another issue is that

the interactions are captured outside the cell (not in-vivo); additional tests are required to

verify that the interaction also occurs within a cell.

2.2.4 Gene Knockout

In gene knockout experiments a gene or a number of genes in an organism are disabled, or

”knocked out”. This is done by disrupting the DNA sequence in the region of the desired

gene. Experiments with the resulting organism can provide insight on biological properties of

the knocked-out gene. Of particular interest to us are knock-out experiments, which measure

changes of expression of other genes as a result of the knockout. A change of expression of one

gene as a result of a knockout of another gene can suggest that the corresponding proteins

are part of one signaling pathway. We refer to such pair of genes as a cause-effect pair. It

is reasonable to assume that the direction of the signaling pathway is from the knocked-out

gene (cause) towards the affected gene (effect).
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Figure 2.3: The Yeast Two Hybrid technique. A. The regular transcription process. B,C.

Y2H hybridization. The proteins do not interact - no transcription. D. The proteins interact,

transcription of the reporter gene occurs. (Source: Wikipedia.)
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Figure 2.4: The Immunoprecipitation process. (Source: www.genwaybio.com.)



Chapter 3

Problem Definition and Related Work

3.1 Maximum Tree Orientation

Let G = (V, E) be an undirected graph. An orientation ~G of G is a directed graph obtained

from G by orienting each edge (u, v) ∈ E either from u to v or from v to u. Let P ⊆ V × V

be a set of ordered source-target pairs. A pair (a, b) ∈ P is satisfied by a given orientation ~G

of G if there is a directed path from a to b in ~G. Our goal is to find an orientation ~G of G

that simultaneously satisfies as many pairs from P as possible.

If the graph G contains a cycle C, then it is easy to see that, for any set P , there is an

optimal orientation of G in which all the edges of C are oriented in the same direction and,

consequently, all pairs that connect two vertices in C are satisfied. The original problem can

therefore be solved by contracting the cycle C and then solving an equivalent problem on

the contracted graph. Thus, the interesting case is when the graph G is a tree.

Definition Maximum Tree Orientation (MTO): Given an undirected tree T and a

set P of ordered pairs of vertices, find an orientation of the edges of T that maximizes the

number of pairs in P that are satisfied.

In the decision version of the problem, the input includes T, P , and an integer k ≤ |P |,
and the question is whether the edges can be directed so that at least k pairs in P are

satisfied. As we show next, the problem is NP-hard even when T is a star or a binary tree.

11
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3.2 Intractability Results

Theorem 3.2.1 MTO is NP-complete.

Proof The problem is clearly in NP. We show NP-hardness by reduction from Max Di-

Cut [14], which is defined as follows: given a directed graph G = (V, E) and an integer

k ≤ |E|, is there a cut A ⊂ V such that there are at least k edges e = (u, v), with u ∈ A

and v ∈ V \A.

We map an instance (G, k) of Max Di-Cut into an instance (T = (V ′, E ′), P, k) of MTO

in the following way: V ′ = V ∪ {O}, E ′ = {(v, O) : v ∈ V } and P = E.

Given a cut A ⊂ V with k crossing edges, it is easy to see that each pair corresponding

to such an edge can be satisfied: for all v ∈ A direct the edge (v, O) toward O, and direct

all other edges away from O.

On the other hand, suppose that we have directed the edges of T so that k pairs are

satisfied. Note that if (u, v) is satisfied then u is directed toward O, and no pair (v′, u) can

be satisfied. Therefore, the cut defined by A = {u | (u, O) is directed toward O}, is of size

k.

Corollary 3.2.2 MTO is NP-complete even on stars.

As Max Di-Cut is hard to approximate to within a factor of 11
12
' 0.9166 (H̊astad [11]),

and the reduction is approximation preserving, we conclude:

Corollary 3.2.3 It is NP-hard to approximate MTO to within a factor of 11
12

.

Theorem 3.2.4 MTO is NP-complete on binary trees.

Proof The problem is clearly in NP. We prove NP-hardness by a reduction from Max 2-

SAT, where each clause is assumed to contain exactly two literals. Suppose f is a 2-SAT

formula with variables x1, ..., xn. Create a binary tree T with subtrees Ts and Tt, so that Ts

has a leaf si, and Tt has a leaf ti for each variable xi. Create two child nodes st
i and sf

i for

each si, and tti and tfi for each ti (see Figure 3.1).

To complete the reduction we need to specify a set of pairs to be satisfied. This set will

be composed of two subsets: P1, forcing the choice of a truth value for each variable, and

P2, relating these truth values to the clauses in f .
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Figure 3.1: An example of the reduction from MAX-2-SAT to MTO. The input 2-SAT

formula is (x1 ∨¬x2)∧ (x3 ∨¬x2); x1 and x3 are assigned a True value, and x2 is assigned a

False value.

The truth value of a variable will be set by forcing a directed path between st
i and sf

i . If

the path is directed from st
i to sf

i we will interpret it as assigning the value True to xi; if it

is directed the other way, we will associate the value False with xi. To this end, for every

variable xi participating in ni clauses, we will add 3ni pairs (st
i, s

f
i ) and 3ni pairs (sf

i , s
t
i) to

P1. Similarly, we will force a path between tti and tfi , indicating the truth value of xi, but this

time a path from tti to tfi will indicate False and the opposite direction will indicate True.

Again, this will be done by adding 3ni pairs (tti, t
f
i ) and 3ni pairs (tfi , t

t
i) to P1. Finally, to

force the consistency of truth association in Ts and Tt, we will force a directed path from st
i

to tti or from sf
i to tfi by adding 3ni pairs (st

i, t
t
i) and 3ni pairs (sf

i , t
f
i ) to P1.

The complementing subset of pairs is defined as follows:

P2 = {(st
i, t

t
j), (st

i, t
f
j ), (sf

i , t
t
j)|(xi ∨ xj) ∈ f} ∪

{(sf
i , t

t
j), (sf

i , t
f
j ), (st

i, t
t
j)|(¬xi ∨ xj) ∈ f} ∪

{(st
i, t

t
j), (st

i, t
f
j ), (sf

i , t
f
j )|(xi ∨ ¬xj) ∈ f} ∪

{(sf
i , t

t
j), (sf

i , t
f
j ), (st

i, t
f
j )|(¬xi ∨ ¬xj) ∈ f}
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Define P = P1 ∪ P2. We claim that c clauses in f can be satisfied iff 18n + c pairs in P

can be satisfied, where n is the total number of clauses in f .

Suppose that there is a truth assignment that satisfies c clauses in f . Direct the edges

(si, s
t
i), (si, s

f
i ), (ti, t

t
i) and (ti, t

f
i ) according to the assignment. Direct all other edges in Ts

upwards, and edges in Tt downwards. For each i, there are 9ni satisfied pairs in P1. Since∑
i ni = 2n, the number of satisfied pairs in P1 is 18n. Clearly, for every satisfied clause

there is a satisfied pair from P1. Thus, 18n + c pairs of P can be satisfied.

Conversely, suppose we have an orientation of T so that 18n + c pairs of P are satisfied.

For each i there are at most 9ni satisfied pairs in P1. If the total number of satisfied pairs

in P1 is less than 18n, then for some i there are less than 9ni satisfied pairs (out of the

ones associated with it). This implies that the directions of the edges (si, s
t
i), (si, s

f
i ), (ti, t

t
i),

(ti, t
f
i ) are inconsistent. Thus, either 6ni, 3ni or 0 of the corresponding pairs are satisfied.

However, if we make these edge directions consistent, we add at least 3ni satisfied pairs

from P1 and lose at most 3ni pairs involving one of st
i, s

f
i , t

t
i, t

f
i from P2. Thus, w.l.o.g., we

can assume that these edges are directed consistently, implying exactly 18n satisfied pairs

from P1. In addition, we have c satisfied pairs from P2. Moreover, due to the consistency

assumption, each clause can have at most one associated pair satisfied. It follows that c

clauses can be satisfied in f .

In the next chapter we show that MTO can be solved in polynomial time on a path. It

is therefore interesting to understand where exactly the tractability boundary lies.

Theorem 3.2.5 MTO is NP-complete on caterpillars.

Proof Recall that a caterpillar is a graph in which all vertices are on a central path or at

most one edge away from it. As in the previous proof, we will prove by a reduction from Max

2-SAT. We will use the same notation as in the previous proof. Suppose that a formula f

contains variables x1, ..., xn. Build a path s1, s
′
1, ..., sn, s

′
n, t1, t

′
1, ..., tn, t

′
n. For each i, connect

a new vertex st
i to si, sf

i to s′i, tti to ti, and tfi to t′i. For each i the set P1 will contain the

pairs {(st
i, s

f
i ), (si, s

t
i), (tti, t

f
i ), (tfi , t

′
i), (st

i, t
t
i), (sf

i , t
f
i )} 3ni times. The set P2 will be defined as

previously. The rest of the proof is the same as for binary trees.

Corollary 3.2.6 MTO is NP-complete even on caterpillars of degree 3.
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3.3 Related Work

Although we could not find a previous work that aims to solve the same problem that we

have worked on, there are some problems that may be considered related to the work in this

thesis. Some of these works are presented here.

3.3.1 Graph Reachability

In [9] Hakimi et al. studied the problem of finding a graph orientation ~G, that maximizes

the reachability of a graph G. The reachability of a graph is the number of vertex pairs

(x, y), such that there is a directed path from x to y in ~G. As we can see this problem is

a restricted case of MTO, in which the set of pairs contains all the vertex pairs of G. The

authors show that this problem can be solved in O(n2) time.

3.3.2 Pair Connectivity

In [3] Arkin and Hassin study the problem of pair connectivity on mixed graphs: given a

mixed graph (a graph, in which some of the edges are directed) and a set vertex pairs, decide

whether there is an orientation, such that there is a directed path between all given vertex

pairs. The authors show that the problem is NP-Complete. Notice that in case of undirected

graphs the problem can be solved in polynomial time: the graph can be transformed into

a tree by cycle contraction, after which it is easy to verify whether there are pairs with

conflicting paths.

3.3.3 Maximum Integral K-Multicommodity Flow On Trees

In [8] N. Garg et al study the problem of k-multicommodity flow on trees. The problem

is defined as follows: given a tree T = (V, E), a capacity function c : E → N and k pairs

of vertices (si, ti), assign a flow fi ∈ N for each pair (si, ti), so that the total flow through

each edge does not exceed its capacity, and
∑

fi is maximized. The authors show that the

problem is APX-Complete, but can be approximated within 2.



CHAPTER 3. PROBLEM DEFINITION AND RELATED WORK 16

3.3.4 SPINE

A related work from biological point of view is presented in [20]. The authors aim to explain

gene expression changes in knockout experiments by searching signaling pathways in protein-

protein interaction networks, and assigning activation/repression attributes to interactions.

The authors solve the problem using an Integer Programming formulation.



Chapter 4

Exact and Approximation Algorithms

for MTO

We have shown that MTO is NP-hard in the general case, as well as in some special cases.

In this chapter we will describe exact and approximation algorithms for special cases and

for the general case of the problem.

4.1 Exact Algorithms

We start by providing an integer programming (IP) formulation of the problem that will be

useful for studying the practical performance of the algorithms we propose for MTO.

4.1.1 An Integer Program Formulation

Since every two vertices in a tree are connected by a unique path, MTO can be solved using

the following integer program:

1. For each vertex pair p ∈ P introduce a Boolean variable y(p), indicating whether it is

satisfied or not.

17
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2. For each edge e = (u, v) ∈ T , where u < v, introduce a Boolean variable x(e), indicating

its direction (1 if it is directed from u to v, and 0 otherwise).

3. For each pair p = (a, b) ∈ P and every tree edge e = (u, v) ∈ T , where u < v: if

the path from a to b in T uses e in the direction from u to v, introduce a constraint

y(p) ≤ x(e), and if it uses the edge in the direction from v to u, introduce a constraint

y(p) ≤ 1− x(e).

4. Maximize the objective function
∑

p∈P y(p).

It is possible to consider an LP-relaxation of the above integer programming, but it is

not very useful as a value of |P |/2 can always be obtained by setting x(e) = y(p) = 1
2

for

every e ∈ T and p ∈ P .

4.1.2 Solving MTO on Paths

In this section we present a simple dynamic programming algorithm that solves MTO on a

path in polynomial time.

Assume that the vertices on the path are numbered consecutively from 1 to n. The edges

of the path are (i, i + 1), for 1 ≤ i < n. We think of vertex i as lying to the left of vertex

i + 1. We also let [i, j] = {i, i + 1, . . . , j}.
Let P be the input set of pairs. For every 1 ≤ i < j ≤ n, let v+

ij = |{(a, b) ∈ P | i ≤
a < b ≤ j}| and v−ij = |{(b, a) ∈ P | i ≤ a < b ≤ j}|. In other words, v+

ij is the number

of pairs of P with both endpoints in the interval [i, j] that are satisfied when the edges

(i, i + 1), . . . , (j − 1, j) are all oriented to the right, while v−ij is the number of such pairs

satisfied when the edges are oriented to the left. Let vij be the maximal number of pairs

of P with both endpoints in [i, j] that can be simultaneously satisfied using any orientation

of the edges in the interval [i, j]. We claim:

Lemma 4.1.1 For every 1 ≤ i < j ≤ n we have vij = max{ v+
ij , v

−
ij , max

i<k<j
vik + vkj}.

Proof The proof that vij ≥ max{ v+
ij , v

−
ij , maxi<k<j vik + vkj} is straightforward. We prove,

therefore, the opposite inequality. Consider the orientation of [i, j] that achieves the maximal

value of vij. If all the edges in this orientation are oriented to the right, then vij = v+
ij and



CHAPTER 4. EXACT AND APPROXIMATION ALGORITHMS FOR MTO 19

we are done. Similarly, if they are all oriented to the left, then vij = v−ij . Otherwise, there is

a vertex i < k < j for which the edges (k− 1, k) and (k, k + 1) have opposite orientations. It

follows that no pair (a, b) with a < k < b or b < k < a can be satisfied by such an orientation.

Hence, all edges satisfied by this orientation lie in either [i, k] or [k, j]; thus, vij = vik + vkj,

as required.

As an immediate corollary we get:

Theorem 4.1.2 MTO on paths of length n can be solved in O(n3) time.

4.2 Approximation Algorithms

4.2.1 Approximating MTO on Stars

In this section we describe an approximation algorithm for MTO on stars that will also serve

as a building block in our approximation algorithms for general trees.

Lemma 4.2.1 If T is a star then at least 1/4 of all pairs can be satisfied.

Proof Choose a random orientation. Each pair is then satisfied with a probability of at

least 1/4.

It is easy to use the method of conditional expectations to obtain a deterministic linear

time algorithm that produces an orientation of a star that satisfies at least 1/4 of the

pairs. This immediately gives us a 1/4-approximation algorithm for the problem. As the

MTO problem on stars is equivalent to the Max-DI-Cut problem, an 0.874-approximation

for the problem can be obtained using the semidefinite programming based approximation

algorithms [5, 16].

Lemma 4.2.1 can be improved as follows:

Lemma 4.2.2 If T is a star, and k = maxx |{y|(x, y) ∈ P}|, then at least

k + 1

4k + 2

of all pairs can be satisfied.
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Proof The lemma follows directly from the result in [2], in which authors show that a

digraph with m edges and maximum outdegree of k has a directed cut of size at least k+1
4k+2

m.

4.2.2 Approximating MTO on Caterpillars

Recall that MTO is NP-complete even for caterpillars with maximum degree 3 (see 3.2.6).

We show the following:

Lemma 4.2.3 Let T be a caterpillar. At least 1/8 of all pairs can be satisfied.

Proof Partition edges into ’path’ edges which lie on the caterpillar path, and ’bush’ edges

which “stick” from it. Direct the path edges in a single direction by choosing one of the two

at random. Also, randomly direct each of the bush edges. Note that each pair of vertices

(u, v) is connected by at most two bush edges and a sub-path. Therefore, the probability

that (u, v) is satisfied by the random assignment is at least 1/8. The claim follows.

4.2.3 Approximating MTO on Bounded-Depth Trees

In this section we present approximation algorithms for rooted, bounded-depth trees that

make use of the approximation algorithm for stars. All the results can be extended to

unrooted, bounded-diameter trees by rooting them at a “central” vertex so that their depth

is bounded by roughly half the diameter.

Consider a tree T with d levels (and depth d−1). We denote the vertices at level i by Li,

starting from the root at level 1. For a node v, denote by Tv the subtree rooted at v. Two

notions of separation will be useful to us in the approximation algorithms that we design in

the sequel.

Definition A node w in a tree separates a pair (u, v), if w is on the path between u and v.

w is called the lowest common ancestor (LCA) of u and v if in addition it lies on the lowest

possible level in the tree.

Lemma 4.2.4 For any vertex v in T , at least 1/4 of the pairs separated by v can be satisfied.
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Proof Re-root the tree at v, and denote its subtrees by T1, . . . , Tl. We will direct all edges

in Ti either toward v or away from v, consistent with the edge between v and Ti. To direct

the edges between v and Ti, construct an instance of MTO on a star T ′ as follows: the root is

v, and there are l leaves v1, . . . , vl. For each (u, w) separated by v, where u ∈ Tx, w ∈ Ty, add

(vx, vy) to P ′. By Lemma 4.2.1, 1/4 of the pairs in P ′ can be satisfied. The edge directions

in T ′ are used to direct the edges of the tree. It is easy to see that any pair (u, w) separated

by v, where u ∈ Tx, w ∈ Ty, is satisfied iff (vx, vy) is satisfied in T ′. The claim follows.

Corollary 4.2.5 For any vertex v in T , at least 1/4 of the pairs whose LCA is v can be

satisfied.

Definition For a tree T rooted at a vertex v, we denote by StarMTO(T, P, v) the star-based

solution of the MTO problem on T , as described in the proof of Lemma 4.2.4.

Lemma 4.2.6 Let T be a rooted tree with d levels. At least 1/(4d) of the pairs in P can be

satisfied.

Proof As there are d levels, there must be a level j that contains at least |P |/d LCAs of

the pairs in P . Compute StarMTO(Tv, P, v) for each node v ∈ Lj. By Corollary 4.2.5, at

least |P |/(4d) of the pairs are satisfied.

Theorem 4.2.7 Lemma 4.2.6 is tight up to a constant factor.

Proof Let Tn be a complete binary tree with n levels and root R. Create a set of pairs

between different leaves of Tn with weights w(u, v), so that w(u, v) = 2l(u,v), where l(u, v) is

the 0-based level number of the lowest common ancestor of u and v.

For a tree with n levels, denote v[n, k] the maximal weight of satisfied pairs in all

orientations, in which exactly k leaves have a directed path to R. Denote v[n] = maxk v[n, k].

Note that since all pairs are symmetrical, reversing all edges of the tree does not change

the weight of the satisfied pairs. Thus v[n, k] also denotes the maximal weight of satisfied

pairs in all orientations, in which exactly k leaves have a directed path from R.

Proposition 4.2.8

v[n, k] =


4n+2k̄2

3
− k̄k, k ≥ 1

4n−4
3

, k = 0
(4.1)

where k̄ = 2blog kc
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Proof The equation is easy to verify for n = 1 (a tree with 2 leaves). We assume correctness

for n, and prove for n + 1. Let us check the relation between v[n + 1, k] and v[n, k].

First verify eq. (4.1) for k = 0. Note that since k̄ ≤ k, v[n, k] ≤ 4n−1
3

= v[n, 1]. Since

none of the leaves have a path to R, only pairs within the two main subtrees can be satisfied.

Since each subtree of Tn+1 is of the form Tn with double weights, the maximal total weight

of satisfied pairs is

v[n + 1, 0] = 4 ·max
k

v[n, k] = 4 · 4n − 1

3
=

4n+1 − 4

3
.

Next, assume k ≥ 1. Define ∆v[n, k] = v[n, k]−v[n, k +1] . For simplicity, define 0̄ = −1.

Lemma 4.2.9 ∆v[n, k] = k̄ .

Proof For k = 0,

∆v[n, 0] = v[n, 0]− v[n, 1] =
4n − 4

3
− 4n − 1

3
= −1

For k > 0,

∆v[n, k] =
4n + 2k̄2

3
− k̄k − 4n + 2(k + 1)

2

3
+ (k + 1)(k + 1)

=
2

3

(
k̄2 − (k + 1)

2)
+ (k + 1)(k + 1)− k̄k

If (k + 1) = k̄ then ∆v[n, k] = k̄(k + 1− k) = k̄; Otherwise, (k + 1) = k + 1 = 2k̄, and

∆v[n, k] =
2

3

(
k̄2 − 4k̄2

)
+ 4k̄2 − k̄k = k̄(2k̄ − k) = k̄ .

Back to Tn+1: if we examine the two topmost edges, there are two cases:

1. Both edges are directed upwards;

2. The edges are oppositely directed.

Define v1[n + 1, k] and v2[n + 1, k] as maximal weight of satisfied edges in each of the two

cases. Naturally, v[n + 1, k] = max{v1[n + 1, k], v2[n + 1, k]}.



CHAPTER 4. EXACT AND APPROXIMATION ALGORITHMS FOR MTO 23

Examine the first case. If we define v1[n + 1, k, r] as the maximal number of satisfied

pairs, when one of the subtrees main has r leaves with a path to R, then

v1[n + 1, k, r] = 2v[n, r] + 2v[n, k − r]

v1[n + 1, k] = max
0≤r≤k/2

v1[n + 1, k, r]

For the second case, define v2[n + 1, k, r] as the maximal number of satisfied pairs, when

one subtree has k leaves with a path to R, and the other has r leaves with a path from R.

Then

v2[n + 1, k, r] = 2v[n, r] + 2v[n, k] + kr

v2[n + 1, k] = max
0≤r≤2n

v2[n + 1, k, r] .

For i = 1, 2 define:

∆vi[n + 1, k, r] = vi[n + 1, k, r]− vi[n + 1, k, r + 1]

Observe that

∆v1[n + 1, k, r] = v1[n + 1, k, r]− v1[n + 1, k, r + 1]

= 2(v[n, r] + v[n, k − r])− 2(v[n, r + 1] + v[n, k − r − 1])

= 2∆v[n, r]− 2∆v[n, k − r − 1] = 2(r̄ − (k − r − 1))

• For r = 0, ∆v1[n + 1, k, r] = −2− 2(k − 1) ≤ 0;

• For r = k − 1, ∆v1[n + 1, k, r] = 2((k − 1) + 1) ≥ 0;

• If 0 < r < k− 1, then ∆v1[n + 1, k, r] = 2(r̄− (k − r − 1)) is monotonically increasing.

Thus, v1[n + 1, k, r] is maximized when ∆v1[n + 1, k, r] crosses 0. If k = k̄ is a power of two,

then this happens at r = r̄ = k/2, that is,

v1[n + 1, k, r] = 2v[n, r] + 2v[n, k − r] = 4v[n, r] = 4 · 4n − r2

3
=

4n+1 − k2

3

=
4n+1 + 2k̄2

3
− k̄k
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Otherwise k = 2t + d, 0 < d < 2t. Define r as:

r =

 2t−1, d < 2t−1

d, d ≥ 2t−1

Then r̄ = (k − r − 1) = 1
2
k̄, and

v1[n + 1, k, r] = 2v[n, r] + 2v[n, k − r]

= 2v[n, r]− 2∆v[n, k − r − 1] + 2v[n, k − r − 1]

= 2

[
4n + 2r̄2

3
− r̄r

]
− 2(k − r − 1)

+2

4n + 2(k − r − 1)
2

3
− (k − r − 1)(k − r − 1)


=

4n+1

3
+

8

3

k̄2

4
− k̄(r + k − r − 1 + 1) =

4n+1 + 2k̄2

3
− k̄k .

Now examine ∆v2[n + 1, k, r].

∆v2[n + 1, k, r] = v2[n + 1, k, r]− v2[n + 1, k, r + 1]

= (2v[n, r] + 2v[n, k] + kr)− (2v[n, r + 1] + 2v[n, k] + k(r + 1))

= 2∆v[n, r]− k = 2r̄ − k

Since ∆v2[n + 1, k, r] is increasing with r, v2[n + 1, k, r] is maximized at the first r such that

2r̄ > k, i.e., r = k̄. Therefore,

v2[n + 1, k] = 2v[n, k] + 2v[n, k̄] + kk̄

= 2

(
4n + 2k̄2

3
− kk̄

)
+ 2

(
4n + 2k̄2

3
− k̄2

)
+ kk̄

=
4n+1 − 2k̄2

3
− kk̄ .

Therefore, eq. (4.1) holds.

It is easy to see that v[n, k] is maximal for k = 1, hence the maximal weight of satisfied

pairs for the tree Tn is v[n] = 4n−1
3

. Since the total weight of pairs in Tn is 2n4n−1, at most

(4n − 1)/3

2n4n−1
=

1

6n

4n − 1

4n−1
<

2

3n

of the pairs can be satisfied.
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The above lemma provides us with a lower bound on the number of pairs that can be

satisfied. It implies an approximation algorithm to MTO with a ratio of 1/(4d), but the

latter ratio can be improved as we show next:

Lemma 4.2.10 Let T be a tree with d levels. MTO can be approximated to within a factor

of 1/(2d) on T .

Proof We form a d-partite graph Gd, in which each node corresponds to a pair in P . The

i-th layer is the set of pairs whose LCAs lie on Li. We connect two vertices (in two layers) by

an edge if the two pairs cannot be simultaneously satisfied. Clearly, the maximum number

of pairs that can be satisfied is no more than a maximum sized independent set I in Gd.

For the algorithm, find an independent set I ′ in Gd. Next, solve StarMTO starting with

the root level of the tree, and going down the tree. Specifically, for each vertex v ∈ Li,

solve StarMTO(Tv, I
′, v) on the pairs in the independent set I ′. Note that some of the edge

directions have been pre-set by previous levels. However, as I ′ is an independent set, the

edge directions set by previous levels do not contradict any of the pairs in the current level.

By Lemma 4.2.1, at least |I ′|/4 pairs are satisfied. The approximation ratio is therefore

|I ′|
4|I|

=
αd

4

where αd = 2/d is the approximation ratio achievable for independent sets on a d-partite

graph [12]. Overall we get an approximation ratio of 1/(2d).

Lemma 4.2.10 implies a 1/(2 lg n) approximation algorithm for a complete binary tree,

as it contains lg n levels.

4.2.4 Approximating MTO on General Trees

Lemma 4.2.11 In every tree of size n there is a centroid node whose removal breaks the

tree into components of size at most n/2.

Our approximation algorithm for general trees is as follows:
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Algorithm 1 MTO(T,P)

1: Find a centroid v,with resulting subtrees T1, . . . , Tl.

2: Let As = StarMTO(T, P, v).

3: For all 1 ≤ j ≤ l, let Pj = MTO(Tj, P ).

4: return max{As,
∑

j Pj}.

Theorem 4.2.12 Let T be a tree with n nodes. For any set P , MTO(T, P ) finds an

orientation that satisfies at least 1/(4 lg n) of the pairs.

Proof Let R(n) be a lower bound on the fraction of the pairs satisfied by the orientation

produced by the algorithm when run on a tree with n vertices. We show by induction that

R(n) ≥ 1
4 lg n

.

At the base of the induction n = 2. In this case, at least 1/2 of the pairs are satisfied,

and R(n) ≥ 1/2. Suppose now that R(k) ≥ 1/(4 lg k) for any k < n. Let P (n) = |P |R(n)

denote the minimum number of pairs satisfied by running MTO on an input of size n. Also,

let A be the subset of pairs separated by the centroid v. By the induction assumption,∑
j P (nj) ≥ |P |−|A|

4 lg(n/2)
. Therefore, applying to the recursion

P (n) = max

 |A|4
,
∑
j

P (nj)

 ≥ max

{
|A|
4

,
|P | − |A|
4 lg(n/2)

}

The two sub-expressions are balanced for |A| = |P |/ lg n, implying that

R(n) =
P (n)

|P |
≥ 1

4 lg n
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Experimental Results

We implemented the general approximation algorithm described above and tested it on

simulated and real network data. To evaluate its performance we also implemented the

integer-program algorithm which provides an optimal solution to MTO.

5.1 Performance on Simulated Data

Pairs Satisfaction

As a first test of the algorithm, we measured its approximation ratio performance on random

trees, by comparing the solutions it obtained to those obtained by the IP algorithm. The

random trees contained 1,000 vertices and were generated by iteratively adding a vertex,

and connecting it to one of the already existing vertices uniformly at random. The cause-

effect pairs were generated randomly with uniform distribution. We tested the algorithm’s

performance when varying the number of cause-effect pairs from 20 to 1000. The percentage

of satisfied pairs along with the implied approximation ratio are displayed in Figure 5.1.

Evidently, in case of evenly distributed pairs the algorithm attains very high approximation

ratios in practice reaching up to 0.9 and higher ratios on instances with 500 or more pairs.

27
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Figure 5.1: Performance on simulated data - pair satisfaction. Percents of satisfied pairs

are displayed for both an optimal solution (based on IP) and the approximation algorithm’s

solution. A third plot depicts the implied approximation ratio.

Figure 5.2: Performance on simulated data - edge directions prediction accuracy. The

plot displays the percentage of correctly predicted edge directions for different noise levels,

together with the approximation ratio achieved (in terms of pair satisfaction).
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Edge Directions Prediction

To test the utility of the algorithm in predicting edge directions, we simulated input with

known edge directions as follows: we generated 1,000 pairs of vertices, so that at least k of

the pairs could be satisfied simultaneously. The remaining pairs were generated randomly,

to simulate noise. We randomly chose 50 edges on the paths of the ”correct” pairs, and

tested the algorithm’s accuracy in predicting their direction. We varied the percent of

consistent pairs, k/1000, from 0.5 to 1. The resulting edge prediction ratio, together with

the corresponding approximation ratio (the number of satisfied pairs / maximal number of

satisfied pairs) and the total number of satisfied pairs are displayed in Figure 5.2. Noticeably,

the percent of correctly predicted directions does not strongly depend on noise level, but is

highly correlated with the approximation ratio.

5.2 Biological Data

Next, we tested the performance of our algorithm on real data. To this end, we used a yeast

protein-protein interaction (PPI) network consisting of 15,147 protein-protein interactions

obtained from the Database of Interacting Proteins [22]. We complemented this network

by additional 596 (kinase-substrate) PPIs from [21] for which the direction of signal flow is

known (from the kinase to the substrate), represented as undirected edges in the constructed

network. For cause-effect pairs, we used knockout data obtained from [25]. The data set

contained 24,457 pairs of a knocked out gene (cause) and an affected gene (effect), out of

which 14,295 are pairs of proteins from the network.

After removal of small disconnected components (of size ≤ 3) and cycle-contraction, we

obtained a tree with 2,027 vertices and 3,370 cause-effect pairs. Interestingly, about 90% of

the vertices in the contracted tree were aligned in a star form. Applying our approximation

algorithm to the tree yielded an orientation that satisfied 3,262 of the 3,370 pairs. The

optimal solution, obtained using integer programming, satisfied 3,295 pairs, implying a

practical approximation ratio of 0.99. This tight ratio matches the ratios observed in the

simulations (Figure 5.1).

The orientation produced by the algorithm provided predictions for 3,880 interaction

directions. 148 of these interactions were from the kinase-substrate data set and, hence,
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their true directions were known. Remarkably, 147 of these 148 directions were predicted

correctly. Notably, none of the kinase-substrate interactions were also cause-effect pairs, but

rather lied on paths connecting such pairs.



Chapter 6

Conclusions

In this paper we have studied the problem of orienting a graph so as to satisfy a maximum

number of ordered pairs. We have given exact and approximate algorithm to certain

restrictions of the problem, and an O(log n) approximation algorithm for the general case.

The algorithm was shown to yield very tight approximation ratios in practice, and attained

remarkable accuracy in predicting edge directions on a real protein network.

Several open problems that require further investigation include: (i) closing the gap

between the guaranteed approximation ratio in the general case and the approximation

hardness result and (ii) tackling the graph orientation problem when some of the edge

directions are pre-set (in the biological context this happens when there is prior biological

knowledge on directionality or when considering other types of interactions such as

transcriptional regulatory ones).
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