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Abstract. Executable models of biological circuits offer the ability to
simulate their behavior under different settings with important biomedi-
cal applications. In particular, Boolean network models have been a prime
research focus and dozens of manually curated Boolean models are avail-
able in public databases. A key challenge in studying the dynamics of these
models is determining their asymptotic behavior, that is the state-sets or
attractors they converge to. This is particularly challenging for large net-
works, as the state space size grows exponentially. Here we introduce a
novel method for identifying stable components within attractors under
an asynchronous update scheme. Our method leverages the observation
that the majority of cellular functions in current models can be described
as linear threshold functions, facilitating an efficient integer programming
formulation for the problem. We conduct simulations on both synthetic
and real biological networks, demonstrating that our proposed method is
highly efficient and outperforms previous methods.

Keywords: Boolean network · asynchronous update · attractor
finding · quasi attractor · integer linear programming

1 Introduction

The construction of executable models of biological systems is one of the holy
grails of systems biology as they allow the simulation of the modeled systems
under different environmental and genetic cues [23]. Several models have been
proposed to describe a system’s dynamics, including those based on differential
equations [3,28,29] and discrete models [2,6,22]. The most common framework,
studied already 50 years ago in the pioneering work of Kauffman [12], is a Boolean
network model (BN) [25]. In this model, the activity value of each node is limited
to a binary choice: either it is in an ON state or an OFF state. This activity value
is determined by a Boolean function of the values of the node’s predecessors in
the network. Despite the model’s simplicity, it still captures crucial aspects of
the dynamic characteristics of the systems being modeled [10].

The model’s state at a specific time point can be represented as a vector
containing the activity values of all nodes. At each time point, the network’s state
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may change according to the previous network state and the Boolean functions
of the nodes. Several update schemes that determine which node can update its
value at each time point can be considered. The simplest update scheme is the
synchronous scheme [7] where all the nodes update their values simultaneously.
Under this update scheme each state can transition to only one state and the
resulting dynamic behavior is deterministic. In contrast, here we focus on the
asynchronous update scheme [26], where only one random node can modify its
value at each time point. This update scheme is stochastic in nature, as each
state may transition to multiple possible states, depending on the randomly
chosen node. While the analysis of asynchronous models is more complex, they
resemble better real biological processes [21].

The dynamics of the system consists of all possible trajectories in the state
space. Since there is a finite number of states, each trajectory will eventually
enter a state-set, called an attractor, from which it cannot escape. The attractors
characterize asymptotic behavior of the system. From a biological perspective,
different attractors represent different modes of the cell, which may indicate
potential asymptotic cellular functionalities [11]. An attractor can consist of
a single network state, a.k.a. a fixed point, or a group of alternating states.
In a fixed-point attractor all node values remain constant, while in a complex
attractor some nodes change states (oscillate) while others may remain fixed.
Figure 1a presents an example of a BN, and Fig. 1b depicts its state transition
graph and its attractors under an asynchronous update scheme.

Fig. 1. A Boolean network (a) and its state transition graph (b). The colors of the
edges in panel b indicate which node was updated. In this example, the network has two
attractors, denoted by dotted boxes: a fixed point attractor and a complex attractor.

While the state space is finite, exhaustive search is not feasible in large net-
works because the number of states is exponential in the network’s size. In the
synchronous case, any trajectory that visits the same state twice is inevitably an
attractor, facilitating SAT- or ILP-based approaches for their detection [4,5]. In
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contrast, an asynchronous update scheme may induce more complex attractor
structures, calling for different solutions. Klarner et al. [14,15] and Abdallah
et al. [1] used answer set programming, a declarative programming method, to
search for trap sets in the state transition graph. Mizera et al. [17] proposed
a strongly connected component decomposition method. Several other works
were based on creating an acyclic state transition graph, identifying fixed points
within it and expanding them to attractors of the original network [24,27].

A state-of-the-art approach for attractor detection in the asynchronous set-
ting is based on reducing the effective network size, thus shrinking the search
space to allow exhaustive enumeration [18,30]. This reduction is achieved by
identifying nodes that have no impact on the overall network dynamics, such as
nodes without outgoing edges, or identifying sets of nodes that, under specific
assignments, remain fixed regardless of the values of other nodes in the network.
In particular, Albert’s group introduced an algorithm to identify all such sta-
ble components within an attractor, referred to as a quasi-attractors [20,31].
The method searches for stable motifs, which are subsets of nodes together with
assigned values that do not depend on the values of the rest of the nodes, and
recursively constructs quasi-attractors from them. Notably, the search for stable
motifs is based on identifying minimal cycles in the Boolean network and, thus,
it is less efficient for networks containing many cycles.

Here we develop a novel integer linear programming (ILP) formulation for
finding quasi-attractors in Boolean networks. The ILP simultaneously identifies
all nodes that stabilize in an attractor, enabling a rapid and efficient detection
of all quasi-attractors. It is based on the observation that the vast majority of
biological Boolean functions (96% of the functions in the Cell Collective repos-
itory [9]) can be described as linear threshold functions. This insight facilitates
the formulation of constraints on the node activity states as dictated by their
Boolean functions in a concise manner. Moreover, it allows us to formulate linear
constraints that express the stabilization criteria for a node based on the states
of other nodes in the network. We evaluate our algorithm on both synthetic
and real biological networks, demonstrating that our proposed method is highly
efficient and outperforms previous methods.

2 Preliminaries

2.1 Boolean Networks

A Boolean network BN = (G,F) consists of a directed graph G = (V,E) with
N nodes, and a set F = {f1, f2, ..., fN} of associated Boolean functions. For a
node vi ∈ V , define Pi = {j ∈ [N ] : (vj , vi) ∈ E} as the set of indices of its
predecessors in the network, and let xi ∈ {0, 1} denote its associated binary
activity value.

Let f : {0, 1}k → {0, 1} be a Boolean function. We say that f(x1, x2, ..., xk)
is positive unate in xj , if for every possible assignment except xj , marked by
x−j ∈ {0, 1}k−1:

f({x−j , xj = 0}) ≤ f({x−j , xj = 1})
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Similarly, we say that f(x1, x2, ..., xk) is negative unate in xj , if for every x−j ∈
{0, 1}k−1:

f({x−j , xj = 0}) ≥ f({x−j , xj = 1})

If for every j ∈ [k], f is either positive or negative unate in xj , we say that f is
a unate function.

2.2 Linear Threshold Functions

A Boolean function f is a linear threshold function (LTF) [19] if and only if there
exist w1, w2, ...wk ∈ Z and a threshold τ ∈ Z such that for every assignment
x ∈ {0, 1}k:

f(x1, x2, ...xk) = 1 ⇐⇒ w1x1 + w2x2 + ... + wkxk ≥ τ

Note that for every j ∈ [k], if wj > 0 then f is positive unate in xj , and
if wj < 0 then f is negative unate in xj . Thus, a necessary (but insufficient)
condition for a Boolean function to be a LTF is that the function is unate.
Figure 2 illustrates an LTF.

Consider an LTF as described above. Let ymin be the minimum value that the
LTF can attain, and let {xmin

j }k
j=1 be the assignment that achieves this value:

ymin =
k∑

j=1

wjx
min
j , xmin

j =

{
0 wj > 0
1 wj < 0

Note that if ymin ≥ τ then for any possible assignment the value of f is 1.
Similarly, let ymax be the maximum value that the LTF can attain, and let
{xmax

j }k
j=1 be the assignment that achieves this value:

ymax =
k∑

j=1

wjx
max
j , xmax

j =

{
0 wj < 0
1 wj > 0

Note that if ymax ≤ τ then for any possible assignment the value of f is 0.

2.3 Network Dynamics

Given a BN with N nodes, a state of the network is an assignment of activity val-
ues to its nodes. A state (x1, . . . , xN ) can transition to another state (x′

1, . . . , x
′
n)

under an asynchronous update scheme if they differ by exactly one bit at some
position i and the Boolean function f of node i satisfies: f(x1, . . . , xN ) = x′

i. The
corresponding state transition graph has 2N nodes corresponding to all possible
network states, and every two nodes s and s′ are connected by a directed edge
iff s can transition to s′. We say that s reaches s′ iff s = s′ or there is a directed
path from s to s′ in the state transition graph.
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(x1, x2, x3) f(x1, x2, x3)
(0, 0, 0) 0
(0, 0, 1) 0
(0, 1, 0) 0
(0, 1, 1) 0
(1, 0, 0) 1
(1, 0, 1) 0
(1, 1, 0) 1
(1, 1, 1) 1

Fig. 2. An illustration of the linear threshold function f(x1, x2, x3) = (x1 ∧ x2) ∨ (x1 ∧
¬x3). Left: 3D-Boolean cube and the plane 2x1 + x2 − x3 = 2 that defines the LTF.
It can be seen that points corresponding to assignments with a value of 1 (blue) are
on or to the left of the plane, while points corresponding to assignments with a value
of 0 (red) are to the right of the plane. Right: the function’s truth table. (Color figure
online)

Let A ⊆ {0, 1}N be a set of states in a BN. We say that A is an attractor
iff any state in A can reach any other state in A and no state outside A. A
quasi-attractor is a maximal set of nodes and their assignment, such that their
values remain fixed under updates regardless of the values of all other nodes.

The definitions of an attractor and a quasi-attractor are closely related.
Specifically, it can be observed that each attractor has a corresponding quasi-
attractor (which could be empty): a set of nodes that stabilize within the attrac-
tor. Conversely, each quasi-attractor defines a subspace within the state space
that necessarily contains at least one attractor. For example, in Fig. 1b the fixed
attractor, ‘101’, has a corresponding quasi-attractor with the same value, and the
complex attractor, {‘000’, ‘100’}, has ‘X00’ as its corresponding quasi-attractor
(v1 oscillates).

3 ILP Framework for Finding Quasi-Attractors

In this section, we present the novel ILP framework we have designed to find
quasi-attractors in a Boolean network whose functions are all LTFs. Consider a
Boolean network BN = (G,F) with N nodes. Define a stable set to be a subset
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of nodes S ⊆ V of size k and their corresponding values {xi}vi∈S that satisfy
the following conditions:

– if vi ∈ S, its value remains fixed and equals to xi, given {xi}vi∈S , and under
all possible assignments of the nodes in V \ S.

– If vi /∈ S, given {xi}vi∈S , there must exist two different assignments of nodes
in V \ S that yield different values for vi.

3.1 LTF Representation

To represent a unate Boolean function as a linear threshold function, we design
an ILP formulation that learns the coefficients and threshold of the represen-
tation. While a non-integer linear program could be used instead, the integer
formulation is easily solved and the resulting integer coefficients enhance the
performance of the main program in Sect. 3.2. Specifically, for a given unate
Boolean function f with K predecessors P = {p1, p2, . . . , pK}, we introduce K
integer variables w1, w2, . . . , wK and an integer variable τ . For each possible
assignment of the predecessors (x1, x2, ..., xK) ∈ {0, 1}K , if f(x1, x2, ..., xK) = 1
we add a constraint:

K∑
k=1

wk · xk ≥ τ

if f(x1, x2, ..., xK) = 0 we add a constraint:
K∑

k=1

wk · xk ≤ τ − 1

For a compact representation, our objective minimizes
∑K

k=1 |wk| =
∑K

k=1 sk·wk,
where:

sk =

{
1 if f is positive unate in pk

−1 if f is negative unate pk

The representations are learned as an initial step of the algorithm and are kept
fixed throughout.

Higher Order Threshold Functions. To support a broader range of Boolean func-
tions, we generalized our algorithm to handle Boolean functions that cannot be
represented with a single LTF but with a combination of D LTFs. That is, given a
Boolean function f with K predecessors, we now allow D LTFs with parameters
{w

(d)
1 , w

(d)
2 , ..., w

(d)
K }D

d=1 and {τ (d)}D
d=1 such that for every possible assignment

(x1, x2, ..., xK) ∈ {0, 1}K it holds that:

f(x1, x2, ..., xK) = 1 ⇐⇒ ∀d ∈ D :
K∑

k=1

w
(d)
k xk ≥ τ (d)

We call such a function an LTF of order D. Interestingly, 94% of the unate
functions in the Cell Collective repository [9] are LTFs of order 1, while the
remaining functions are LTFs of order 2.
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3.2 Quasi-attractor Detection

For convenience, we define two disjoint sets: S0 = {vi ∈ S : xi = 0} and
S1 = {vi ∈ S : xi = 1}. Note that S0 ∪ S1 = S. For each vi ∈ V with an LTF
representation:

∑
j∈Pi

wi
jxj ≥ τi, we introduce the following binary variables:

– xi: A Boolean variable representing the value of node vi.
– Ivi∈S : An indicator variable for the event vi ∈ S.
– Ivi∈S0 : An indicator variable for the event vi ∈ S0.
– Ivi∈S1 : An indicator variable for the event vi ∈ S1.

We now define the constraints that ensure the values of these indicators.

Stable Nodes with Value 0. For the indicator Ivi∈S0 , we introduce variables
{xmax

i,j }j∈Pi and yi
max, subject to the following constraints:

xmax
i,j =

⎧⎪⎨
⎪⎩

xj Ivj∈S = 1
0 Ivj∈S = 0 and wi

j < 0
1 Ivj∈S = 0 and wi

j > 0
yi

max =
∑
j∈Pi

wi
jx

max
i,j

Here, yi
max represents the maximum value achievable by the left side of the LTF

under the assignment of the nodes in S. If yi
max < τi (for any assignment to

the nodes in V \ S), the value of vi should be fixed at 0, implying the following
constraints:

yi
max ≤ τi − 1 + Λ · (1 − Ivi∈S0)

yi
max ≥ τi − Λ · Ivi∈S0

where Λ > N · maxi,j∈Pi
{|wi,j |} + maxi{|τi|} is some large constant. These

constraints ensure that Ivi∈S0 = 1 ⇐⇒ yi
max < τi. Finally, we add a constraint

to ensure that if Ivi∈S0 = 1 then xi = 0:

xi ≤ 1 − Ivi∈S0

Stable Nodes with Value 1. For the indicator Ivi∈S1 , we introduce variables
{xmin

i,j }j∈Pi and yi
min, subject to the following constraints:

xmin
i,j =

⎧⎪⎨
⎪⎩

xj Ivj∈S = 1
0 Ivj∈S = 0 and wi

j > 0
1 Ivj∈S = 0 and wi

j < 0
yi

min =
∑
j∈Pi

wi
jx

min
i,j

Here, yi
min represents the minimum value achievable by the left side of the LTF

under the assignment of the nodes in S. If yi
min ≥ τi (for any assignment to the

nodes in V \ S), the value of vi is fixed at 1. Therefore, we have the following
constraints:

yi
min ≤ τi − 1 + Λ · Ivi∈S1

yi
min ≥ τi − Λ · (1 − Ivi∈S1)



An Integer Programming Framework for Identifying Stable Components 93

These constraints ensure that Ivi∈S1 = 1 ⇐⇒ yi
min ≥ τi. Finally, we add a

constraint to ensure that if Ivi∈S1 = 1 then xi = 1:

xi ≥ Ivi∈S1

Stable Set Identification. It is immediate to compute the indicator Ivi∈S from
Ivi∈S0 and Ivi∈S1 . To restrict the ILP to find an assignment with |S| = k, we
simply require:

∑
i∈[N ] Ivi∈S = k.

In order to identify all possible solutions, we construct an ILP model for each
k ∈ [N ] and run them iteratively until no new solutions are found. To prevent
the ILP from finding the same solution twice, we store the stable set of each
solution found and add an auxiliary indicator as follows. Let us mark by Sn,
Sn

0 and Sn
1 the stable set of the nth solution. The indicator, In

Δ, specifies if the
current stable set differs from the nth solution with the following constraints:

∑
vi∈Sn

0

(1 − Ivi∈S0) +
∑

vi∈Sn
1

(1 − Ivi∈S1) +
∑

vi �∈Sn

Ivi∈S ≤ N · In
Δ

∑
vi∈Sn

0

(1 − Ivi∈S0) +
∑

vi∈Sn
1

(1 − Ivi∈S1) +
∑

vi �∈Sn

Ivi∈S ≥ In
Δ

3.3 External Nodes

An external node refers to an element or factor that exists outside the network
but interacts with nodes within it, thereby exerting influence on their behavior
or function. All other nodes are internal nodes. In the analysis of the network
dynamics, we allow these external factors to take any value, but their values
remain constant throughout the trajectory. To this end, we simply add to the
program above binary variables representing the external node activities (one per
external factor). Formally, consider a network BN with M external nodes Vext =
{vN+1, vN+2, . . . , vN+M}, where V = Vint ∪ Vext. As described in Sect. 3.2, the
variables {xi}vi∈Vint represent the values of the internal nodes. We introduce
new binary variables {em}vm∈Vext to represent the values of the external nodes
and include these variables in the LTF formulations of the internal nodes.

One noteworthy observation in networks that include external nodes is that
various assignments of these external factors can often yield identical solutions
for the non-external nodes. However, exhaustively finding each of these solutions
would be too costly. To address this computational challenge, we introduce a
compact ILP designed to identify all potential assignments of external factors in
the context of a single solution of the ILP above.

Specifically, given {xi}vi∈S , S ⊆ Vint, we seek solutions {em}vm∈Vext such
that:

– if vi ∈ S, its value remains fixed at xi for all possible assignments of the nodes
in V \ S.

– If vi /∈ S, there must exist two different assignments of nodes in V \ S that
yield different values for vi.
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To this end, we compute maximum and minimum values for every internal
node vi disregarding the external nodes as follows:

yi
min =

∑
vj∈Vint
j∈Pi∩S1

wi
j +

∑
vj∈Vint

j∈Pi∩(V \S)

min{0, wi
j}

yi
max =

∑
vj∈Vint
j∈Pi∩S1

wi
j +

∑
vj∈Vint

j∈Pi∩(V \S)

max{0, wi
j}

Next, if any of vi’s predecessors is an external node, we add one of the
following sets of constraints depending on the status of vi:

– If vi ∈ S0, we make sure its value does not surpass the threshold using the
constraint: ∑

vm∈Vext
m∈Pi

wi
mem ≤ τi − yi

max − 1

– If vi ∈ S1, we similarly add:∑
vm∈Vext
m∈Pi

wi
mem ≥ τi − yi

min

– If vi ∈ V \ S, we add the following constraints:∑
vm∈Vext

m∈Pi

wi
mem ≥ τi − yi

max

∑
vm∈Vext

m∈Pi

wi
mem ≤ τi − yi

min − 1

3.4 Implementation Details

Our complete algorithm implementation is available on GitHub at https://
github.com/shanijacobson/AttractorsILP. We utilized the Gurobi optimizer
[8] as the solver for our ILP. For Stable Motif, we used the imple-
mentation in https://github.com/jcrozum/pystablemotifs. For the answer-set-
programming approach, we used the implementation in https://github.com/
hklarner/pyboolnet [16]. All experiments were executed on a personal MacBook
Air (M1, 2020, 16 GB RAM, 512 GB SSD).

4 Results

We evaluated our algorithm on both synthetic and real biological networks and
compared to previous work. The synthetic networks were generated randomly
using the N-K model [13], in which each of the N nodes has K predecessors.
The real networks were taken from the Cell Collective repository [9].
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4.1 Synthetic Networks

We generated synthetic networks using the N-K model [13], with the constraint
that their functions are unate. We varied N from 20 to 200 and set K = 2
or K = 4. These parameter choices follow the characteristics of the real net-
works analyzed below. For each (N,K) pair, we generated 100 synthetic net-
works. We applied our ILP algorithm and compared to the Stable Motif (SM)
framework [20,31], limiting each algorithm to run up to one hour per network.
Figure 3 shows the results for each (N,K) pair. The superiority of our method
is evident, as it successfully solves all generated networks and its performance
remains almost independent of K. In contrast, Stable Motif encounters growing
difficulties as K and N increase along with the number of trajectories in the
network.

Fig. 3. Performance results on synthetic N-K networks. a) Average running time. b)
Percent of network solved within a time limit of one hour.

Fig. 4. Success rate of solving real networks under a time limit of 4 h as a function of
the total number of nodes in the network.



96 S. Jacobson and R. Sharan

Table 1. Performance evaluation on real networks with a time limit of 4 h per network.

Network Parameters Quasi-Attractors Performance [sec]
# States # Externals # Edges # 1st order

LTFs

# 2nd order LTFs Fixed Complex Avg Stable

Nodes

ILP ASP SM

Cortical Area Development 5 0 14 5 0 2 0 5 0.05 0.15 0.2

CD4 T cell dynamics Workshop v2 6 10 40 6 0 10 0 6 3.72 191.7 418.57

Metabolic Interactions in the Gut Microbiome 8 4 30 8 0 8 0 8 0.16 3.2 7.09

Mammalian Cell Cycle 2006 9 1 35 8 1 1 1 5.5 0.38 0.49 0.65

Regulation of the Larabinose operon of Escherichia coli 9 4 22 9 0 9 0 9 0.11 1.36 1.32

Toll Pathway of Drosophila Signaling Pathway 9 2 13 9 0 3 0 9 0.05 0.24 0.25

Cell Cycle Transcription by Coupled CDK 9 0 19 9 0 1 0 9 0.11 0.15 0.11

Arabidopsis thaliana Cell Cycle 14 0 66 10 4 0 1 0 1.68 0.29 3.19

VEGF Pathway of Drosophila Signaling Pathway 10 8 26 10 0 5 0 10 4.64 15.55 15.23

Lac Operon 10 3 24 10 0 4 0 10 0.15 0.92 0.8

HH Pathway of Drosophila Signaling Pathways 11 13 45 11 0 12 0 11 3.09 938.35 997.58

SKBR3 Breast Cell Line Shortterm ErbB Network 11 5 46 11 0 31 0 11 0.35 278.3 Failure

HCC1954 Breast Cell Line Shortterm ErbB Network 11 5 51 11 0 17 0 11 0.4 39.25 Failure

BT474 Breast Cell Line Shortterm ErbB Network 11 5 51 11 0 28 0 11 0.42 87.37 Time out

Wg Pathway of Drosophila Signalling Pathways 12 14 43 12 0 10 0 12 0.33 1998.9 2552.81

Cardiac development 13 2 39 12 1 6 0 13 0.52 0.86 1.16

TOL Regulatory Network 14 10 58 12 2 62 0 14 6.37 195.57 128.75

CD4+ T Cell Differentiation and Plasticity 12 6 84 12 0 24 1 11.88 8.38 29.61 Time out

Predicting Variabilities in Cardiac Gene 13 2 39 12 1 6 0 13 0.52 0.89 0.69

Body Segmentation in Drosophila 2013 14 3 31 13 1 5 0 14 0.22 1.37 3.48

FGF pathway of Drosophila Signalling Pathways 14 9 31 14 0 13 0 14 4.83 51.81 86.51

Neurotransmitter Signaling Pathway 14 2 22 14 0 1 1 8.5 0.17 0.98 3.23

Human Gonadal Sex Determination 19 0 78 15 4 3 0 19 2.17 0.53 2.86

Budding Yeast Cell Cycle 2009 18 0 57 15 3 0 1 0 0.8 Failure 55.33

B cell differentiation 17 5 44 17 0 58 0 17 0.42 6.24 19.5

Processing of Spz Network 18 6 34 17 1 42 0 18 1.01 6.02 3.34

Aurora Kinase A in Neuroblastoma 19 4 47 17 2 2 2 15.25 0.64 12.3 6.24

TLGL Survival Network 2011 Reduced Network 18 0 43 18 0 1 2 16.67 0.41 0.67 2.54

Oxidative Stress Pathway 18 1 32 18 0 1 0 18 0.31 0.43 54.31

Iron acquisition and oxidative 20 2 40 18 2 0 1 0 0.55 2.37 2.33

HCC1954 Breast Cell Line Longterm ErbB Network 19 6 74 19 0 212 0 19 3.15 2565.34 Failure

BT474 Breast Cell Line Longterm ErbB Network 19 6 74 19 0 139 0 19 1.53 1721.38 Failure

Mammalian Cell Cycle 19 1 51 19 0 3 0 19 0.35 0.48 1.12

T cell differentiation 19 4 38 19 0 29 0 19 0.31 7.37 7.59

SKBR3 Breast Cell Line Longterm ErbB Network 21 4 85 21 0 412 0 21 6.39 951.62 Failure

PTM in Acute Lymphoblastic Leukemia 24 2 80 22 2 2 1 23.33 1.28 2.95 1.78

Trichostrongylus retortaeformis 25 1 59 24 1 6 1 23.86 0.74 9.61 2.4

FA BRCA pathway 28 0 122 25 3 0 1 27 2.94 11.28 2.45

Death Receptor Signaling 25 3 48 25 0 16 0 25 0.54 32.13 7.14

CD4+ T cell Differentiation 29 9 100 27 2 237 14 28.63 10.26 Time out Time out

Treatment of CastrationResistant Prostate Cancer 28 14 64 28 0 954 0 28 0.85 Time out 4100.9

Tumour Cell Invasion and Migration 30 2 158 30 0 7 0 30 15.15 97.22 141.2

Cholesterol Regulatory Pathway 32 2 43 32 0 3 0 32 0.74 1.87 1.17

Bordetella bronchiseptica 33 0 79 32 1 3 0 33 1.16 7.48 4.35

TCell Signaling 2006 37 3 56 37 0 3 0 37 1.01 21.9 2.36

Guard Cell Abscisic Acid Signaling 40 4 80 39 1 6 4 35.6 1.06 82.16 19.41

Apoptosis Network 39 2 75 39 0 0 8 30.63 0.96 132.32 11.57

Differentiation of T lymphocytes 41 9 106 39 2 1510 0 41 3.05 Time out Failure

Virtual chondrocyte GRN layer 43 10 146 41 2 568 0 43 14.68 Time out 1164.62

Virtual chondrocyte PPI layer 44 12 109 43 1 832 64 43.41 2.38 Time out 906.28

Senescence Associated Secretory Phenotype 49 2 98 48 1 14 2 47.56 2.08 6356.13 7.86

MAPK Cancer Cell Fate Network 49 4 108 49 0 6 3 46 2.02 Failure 37.67

B bronchiseptica and T retortaeformis coinfection 52 1 136 50 2 30 0 52 3.82 Time out Failure

Signaling Pathway for Butanol Production 53 13 150 53 0 12 76 36.53 3.53 Failure Time out

TLGL Survival Network 2011 54 6 201 54 0 5 6 52.18 4.36 Time out 305.1

Glucose Repression Signaling 2009 55 18 114 54 1 10332 0 55 27.16 Failure Time Out

TLGL Survival Network 2008 54 7 200 54 0 11 22 51.12 5.14 Time out 722.43

Bortezomib Responses in U266 Human Myeloma Cells 62 5 131 61 1 38 0 62 3.36 Time out 94.26

PC12 Cell Differentiation 61 1 109 61 0 3 0 61 2.58 114.08 2

HGF Signaling in Keratinocytes 62 6 109 62 0 13 0 62 3.04 Time Out 25.46

IGVH mutations in chronic lymphocytic leukemia 66 25 137 65 1 576 1392 44.95 11.05 Time out Time out

Lymphopoiesis Regulatory Network 67 14 174 65 2 12280 161 66.93 47.83 Time out Time out

Colitisassociated colon cancer 69 1 154 69 0 2 6 58.375 4.44 Time out 2435.06

IL6 Signalling 71 15 163 71 0 16 100 29.21 5.27 Failure Time out

T Cell Receptor Signaling 94 7 165 93 1 56 24 86.73 4.86 Time Out 43.71

IL1 Signaling 104 14 232 104 0 36 0 104 6.77 Time out Time out

Influenza A Virus Replication Cycle 120 11 305 120 0 329 19 119.14 156.7 Time out Time out

Signaling in Macrophage Activation 268 26 552 267 1 112640 36864 329.03 286.64 Time Out Failure

4.2 Real Biological Networks

Next, we applied our algorithm to real BNs taken from the Cell Collective repos-
itory [9], a database of Boolean representations of real biological networks. We
focused on 68 networks where all functions could be expressed using LTFs. We
compared our results against Stable Motif (SM) and against an answer-set pro-
gramming (ASP) algorithm [14,15], which finds full attractors. We imposed a
time limit of 4 hours on each method (per network).
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The results are presented in Table 1. Clearly, our ILP-based method out-
performs the other two algorithms in almost all tested networks, solving each
network on average in 10 s and spending a maximum of 5 min. In comparison,
ASP solved only 46 (68%) of the networks and Stable Motif solved only 50 (74%)
of the networks under the time limit (Fig. 4). It is worth mentioning that the
only one non-LTF network that could be solved by our competitors had 15 nodes
and could also be solved by a simple exhaustive search approach. Additionally,
in cases where ASP succeeded, we verified that for each quasi-attractor there is
exactly one corresponding full attractor; moreover, for each such matching pair,
all the nodes that do not stabilize in the quasi-attractor, oscillate in the full
attractor. This implies that in all these cases the quasi-attractor finding could
be complemented by exhaustive search to identify full attractors efficiently.

5 Conclusions

In this work, we proposed a novel ILP-based method for identifying quasi-
attractors in asynchronous Boolean networks. The method leverages the rep-
resentation of most Boolean functions in biological networks as linear threshold
functions to construct an efficient integer program for quasi-attractor detection.
Future research may use the properties of linear threshold functions to efficiently
find the oscillatory parts of the corresponding attractors.
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