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Cell-cell crosstalk involves simultaneous interactions of multiple receptors and ligands, followed by
downstream signaling cascades working through receptors converging at dominant transcription
factors, which then integrate and propagate multiple signals into a cellular response. Single-cell
RNAseq of multiple cell subsets isolated from a defined microenvironment provides us with a unique
opportunity to learn about such interactions reflected in their gene expression levels. We developed
the interFLOW framework to map the potential ligand-receptor interactions between different cell
subsets basedonamaximum flowcomputation in a network of protein-protein interactions (PPIs). The
maximum flow approach further allows characterization of the intracellular downstream signal
transduction from differentially expressed receptors towards dominant transcription factors,
therefore, enabling the association between a set of receptors and their downstream activated
pathways. Importantly, we were able to identify key transcription factors toward which the
convergence of multiple receptor signaling pathways occurs. These identified factors have a unique
role in the integration and propagation of signaling following specific cell-cell interactions.

Cellular microenvironments consist of a complex, heterogeneous assembly
of cells. The interactions or ‘crosstalk’ among these cells often dictate the
cellular response. Single-cell RNA sequencing (scRNAseq) technology
offers a glimpse into the transcriptional heterogeneity characterizing these
microenvironments.

Central to cell-to-cell interactions is the activation of receptors by their
corresponding ligands. Identifying such interactions using standard tran-
scriptomic data is challenging. As a result, heuristic methods have emerged
to estimate an “interaction potential” between cell populations. Although
many efforts have been directed at this challenge1, the absence of a clear gold
standard complicates evaluations and comparisons.

Broadly, current methods fall into two categories: those that predict
cell-cell interactions solely based on ligand-receptor expression, and those
that also detect intercellular signaling pathways, often using graph-based
approaches. For instance, NicheNet2 employs the Personalized PageRank
(PPR) on a ligand-signaling network to compute downstream gene acti-
vation scores. In contrast, methods like CellChat3 model the likelihood of

crosstalk between cell populations based on gene expression of ligand-
receptor pairs. We recognize that while some cell-cell interactions might be
mediated by single ligand-receptor pairs, others require simultaneous
interactions involving multiple receptors and ligands. Furthermore, we
hypothesize that in specific microenvironments, following an interaction,
downstream signaling often converges on dominant transcription factors
(TFs). These TFs integrate and relay multiple signals, culminating in a
cellular response.

Building on this understanding, we introduce interFLOW—an algo-
rithm that maps the expression of ligand/receptor pairs across cell popu-
lations using single-cell transcriptomes. Leveraging the concept of
maximum flow in a protein-protein interaction (PPI) network, we further
characterize the downstreampathways leading fromdifferentially expressed
(DE) receptors to dominant TFs. The maximum flow analogy aids in
uncovering vital ligand-receptor pairs involved in cell-cell crosstalk.
Moreover, it identifies likely signaling pathways and the central TFs
aggregating signals from diverse receptors. By defining clear starting and
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ending points for a signaling pathway, our framework avoids assumptions
regarding pathway length or confinement to a single route, enabling
modeling of intricate systems like the immune response in tumor micro-
environments. Applying interFLOW to a scRNAseq dataset from the
GL261 glioblastomabrain tumormodel4—comprising both infiltrating and
resident cells—we highlight themethod’s capability.We unearth significant
ligand-receptor pairs and spotlight key TFs orchestrating the intricate
interactions between cell types (Fig. 1).

Results
We developed a computational framework, interFLOW, that maps the
expression of ligand-receptor pairs between different cell populations based
on single-cell transcriptomes. interFLOW uses maximum flow computa-
tions in a PPI network to characterize the downstream pathways from a set
of DE receptors toward dominant TFs. Initially, we evaluated interFLOW’s
performancewithin a simulation framework, demonstrating the advantages
of our proposedmethod in identifying up-regulated signaling pathways and
uncovering activating receptors, while benchmarking against previous
published work. Next, we present a series of analyses that showcase inter-
FLOW’s ability to identify cell type-associated receptors andactivatedTFs in
real datasets. Finally, we present an in-depth analysis of the communication
between tumor-infiltrating CD4+ T cells andmacrophages, supplemented
with experimental evidence validating interFLOW’s predictions.

As a definitive ‘gold standard’ dataset for method validation is lacking,
we first employed a simulation framework (methods) to assess different
facets of the interFLOW pipeline. Initially, our goal was to verify whether
our maximum flow approach could effectively identify the key TFs within
the dataset. To accomplish this, we simulated solely the signal-receiving
cluster, featuring 10 activated TFs and 25 receptors within the downstream
activation pathway. Subsequently, we executed multi-source maximum
flowcalculations fromall receptors to theTFs, calculating the area under the
receiver operating characteristic (AUROC) for the activated TFs compared
to all others (Fig. 2a). We conducted this analysis across different mean
correlation values of the downstream activation pathways, running
50 simulations for each correlation value. As anticipated, our observations
indicated that higher mean correlation values in the pathways yielded
improved AUROC scores. Notably, with a mean correlation of 0.24, we
achieved AUROC values exceeding 0.8. This outcome substantiates the
effectiveness of the maximum flow approach in revealing the genuinely
activated TFs following intercellular communication. These results provide
strong evidence that interFLOW is relatively resilient to random correla-
tions of false edges.Despite 5%of all false edges having a correlation of 0.2 or
higher, we still observe adequate performance.

Next,we sought todetermine if a correlationof around0.2 is relevant in
real scRNA-seq datasets. Using our GBMmouse dataset, we calculated the
Spearman correlation for genes within specific protein-protein interaction
(PPI) edges that are part of known KEGG pathways relevant to specific cell

populations. In CD8 cells, we analyzed the genes in the “T-cell receptor
signaling” pathway and found an average Spearman correlation of 0.42.
Similarly, the “NF-kappaB signaling”pathway showed a correlation of 0.44.
For the macrophage population, we examined the “NOD-like receptor
signaling” and the “Toll-like receptor signaling” pathways, with average
correlations of 0.22 and 0.23, respectively. Finally, within the tumor cluster,
the “pathways in cancer” yielded a correlation of 0.15. As a reference, we
examined the mean random correlation, which was 0.043.

Next,we applied the sameconfiguration to validate the identificationof
all genes within the downstream activation pathways. Again, we observed
that higher mean correlation values correlated with superior results.
However, when considering the identification of all genes within the
pathways, we observed relatively lower performance, with the maximum
AUROC reaching approximately 0.7 (Fig. 2b). This discrepancy suggests
that the network’s topology may limit the flow propagation in certain parts
of the downstream activation pathways, resulting in some pathways
remainingunidentified.Consequently, our approachexhibitshighprecision
(above 0.9) but lower recall (around 0.4) in this context.

Finally, we assessed interFLOW’s capacity to accurately identify true
receptors, comparing its performance against the CellChat (version 1.6.1)
and NicheNet (version 1.1.1) methods (Fig. 2c, d). For this evaluation, we
simulated two distinct clusters wherein the selected receptors and their
corresponding ligands exhibited DE between the signal sender and signal
receiver clusters. Simultaneously, all other genes underwent alteration by
random noise with a mean of 0, ensuring the inclusion of randomly DE
genes, including both erroneous receptors and ligands. For this benchmark,
we updated all prior PPI networks and ligand-receptor databases to be
consistent with NicheNet. Our observations consistently reveal that inter-
FLOW achieves notable outcomes, with AUROC values above 0.9. Con-
versely, other methodologies such as CellChat, which does not compute
downstream activation scores, or NicheNet, which does not calculate
weights for the downstreamactivation pathway, yield results around0.6 and
0.75 respectively within our simulation framework. It is important to note
that our simulation framework operates under the assumption that acti-
vated pathways typically exhibit co-expression. Thus, in this setting, we do
not expect to see improvement in performance for methods that do not
compute downstream activation scores.

In each validation scenario, we compared the identified active set
against a randomly sampled negative set of similar size to maintain balance
in our classification problem. To mitigate any potential bias from the ran-
dom sampling of positive and negative sets, we conducted each simulation
50 times, maintaining the same settings across runs.

Next, to evaluate our framework, interFLOW, using real data, we
performed systematic analyses at each step using a single-cell RNA-seq
dataset from the GL261 murine brain tumor model4. Initially, we
compared the ability of interFLOW, CellChat, and NicheNet to iden-
tify cell-type-associated receptors. To this end, we curated an unbiased

Fig. 1 |Workflow summary. interFLOW starts with
a normalized, clustered, and annotated scRNAseq
dataset. For each cell cluster pair, we define a “signal
sender” and a “signal receiver” cluster, then identify
ligands and receptors between them. For each
receptor, we estimate its potential downstream sig-
naling impact by calculating the maximum flow
directed to a group of transcription factors within
the Protein-Protein Interaction (PPI) network. The
significance of these receptors, along with their
converging transcription factors, is assessed using
permutation tests. Conclusively, the algorithm
determines an average interaction score between
clusters, culminating in the construction of a com-
prehensive global interaction map for the dataset.
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dataset containing known cell-type-associated receptors (CD8, CD4,
Macrophages, andMicroglia) and a combined set of negative receptors
(B cells, Mast cells). The full list used for this benchmark is presented in
Supplementary Table 1. Our methodology involved calculating the
AUROC for each cell population, assessing the method’s ability to
accurately identify cell-type-specific interactions compared to the
negative set (Fig. 3a). As we expect that receptors known to be asso-
ciated with specific cell types will generally be more active than those
that are not. We observed that interFLOW presents higher perfor-
mance relative to previous methods across all tested cell types,
achieving an area under the curve (AUC) of around 0.8 across all cell
types, with particularly notable performance in CD4 T cells, achieving
an AUC of 0.93.

Validation of identified transcription factors
We hypothesized that the intracellular signals from multiple interacting
receptors should flow towards a layer of transcription factors, which in turn
will propagate the signaling into a cellular response.We further assume that
enrichment of the TF target gene expression strongly indicates TF activa-
tion.To investigate this, we compared the -log (Targets EnrichmentP value)
and the normalized flow score of all TFs in each cell type.However, without
normalization, the importance value of eachTFwas strongly associatedwith
the node’s degree of centrality in thePPI network. Therefore, wenormalized
the flow value by its centrality.We found a Spearman correlation of 0.4-0.64
for eachof the immune cell populations (Fig. 3b). This suggests that ourflow
score provides some indication for the activation of a given transcription
factor.

Fig. 2 | Simulation results.Across all plots, the horizontal axis represents the mean
Spearman correlation of the genuine downstream activation pathway. aAccurate TF
identification through multi-source maximum flow from all receptors to all TFs.
b Precise identification of all genes within the authentic downstream activation
pathway. c Effective recognition of true receptors using the FLOW score within the

signal-receiving cluster. d Comparative assessment of interFLOW, CellChat, and
NicheNet’s performance in the identification of genuine receptors within our
simulation framework. In panels a–c the 90% and the 10% percentiles are also
presented.
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Fig. 3 | Validation of converging receptors and TFs. a AUROC of different methods tasked with the identification cell-type specific receptors. b Spearman correlation
between TFs flow score normalized by node degree and the gene target enrichment score per cell type.
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There was a relatively high variance in performance quality across
different cell populations (Fig. 3b).Consequently,weperformedan in-depth
analysis of the low-scoring endothelial cell population, which averaged
around 0.07, compared to 0.3 in theCD4 cells. This suggests that endothelial
cells may not undergo significant interactions in the current biological
settings, which could result in lower scores.

Validation of downstream gene scores against MSigDB
To validate our downstream gene scores, we utilized theMSigDB5 immune
signature database (C7). This database contains over 5000 gene signatures
associated with various cell types and conditions. We carefully curated a
dataset of signatures regulated in each cell type, ensuring the inclusion of
only up-regulated signatures for each cell type while deliberately excluding
gene sets that compared the same cell types under different conditions.

Weperformed an enticement analysis of the geneswith significantflow
values against the curated subset of the C7 database. To this end, we first
performed a permutation test (methods) for the amount of flow going into
each node in the network, nodes/genes with significant flow values were
used to perform an enrichment test for each gene signature. Next, we used
Fisher Exact Test to examine if the proportion of the gene signatures that
were returned from the analysis and are associatedwith the correct cell types
is significantly greater than the overall proportion of the cell type signatures
in the database.

Indeed, the proportion of the gene signatures associated with the
correct cell types is, in most cases, significantly larger than their proportion
in the entire database (Fig. 4). Thus, there is an association between genes
with significant flow value and biological function in a given cell type. We
illustrated a similar analysis conducted using NicheNet, which

demonstrated a comparatively lower accuracy in associating the correct cell
type (Supplementary Fig. 4).

Robustness of interFLOW
We evaluated the robustness of interFLOW and further compared it to
CellChat andNicheNet by interactively sampling the data set in fractions of
0.7, 0.5, 0.1, and 0.05. For eachmethod, we calculated the intersection of the
top 10 predictions from each fraction to the top 10 predictions for the full
dataset. interFLOW exhibited exceptional robustness, outperforming both
NicheNet and CellChat across most data fractions tested. Notably, while
NicheNet showed superior performance over interFLOW at higher data
fractions, interFLOW consistently demonstrated the best performance
when the dataset was reduced to less than 50% of its original size (Fig. 5).

A further in-depth comparison between interFLOW results and
CellChat across multiple cell types on the GBM dataset shows that overlap
predictions between the methods resulted in higher DSA scores overall
(Supplementary Fig. 5). Furthermore, we applied interFLOW with the
presented validation framework to an additional single-cell RNAseqdataset
of Glioma brain tumor6 (Supplementary Fig. 6).

In-depth analysis of Macrophages - CD4+ T cell interaction
After establishing the accuracy of our method, we investigated spe-
cific cell-cell interactions inferred from the brain tumor dataset. As
was previously shown, increased infiltration of T cells is associated
with prolonged survival of GBM patients7 and CD4+ T cells play a
key role in coordinating antigen-specific immunity through their
high plasticity and cytokine-producing ability8. However, tumor-
associated macrophages (TAMs) have been associated with high-
grade gliomas and a worsened outcome. It has been proposed that
they produce cytokines and other factors to promote a tumor-
supportive environment by suppressing the proliferation of anti-
tumor CD4+ and CD8+ T cells and promoting the activity of reg-
ulatory CD4+ T cells9. In fact, we have previously identified
increased infiltration of CD4 T cells following perturbation of the P-
selectin/P-selectin ligand-1 (SELP/PSGL-1) axis. Interfering with the
crosstalk between pro-tumorigenic macrophages and CD4+ T cells
has been proposed as a therapeutic strategy; however, detailed
information about this interaction is lacking. Thus, out of the mul-
tiple cell-cell interactions detected by our method, we used inter-
FLOW to specifically investigate the interaction between
macrophages and CD4+ T cells in the SELP-knockdown-GL261
murine glioblastoma brain tumor model.

interFLOW identified 37 ligands and 39 corresponding recep-
tors, altogether forming 102 DE ligand-receptor interactions. To
visually demonstrate the ligands and receptors detected by our

Fig. 4 | Validation against MSigDB C7 immuno-
logical signature database. interFLOWwas applied
to the interaction between each two cell types, and a
signature containing significant genes in the
receiving cell type was defined. Enrichment of each
gene signature associated with the correct corre-
sponding cell type from the MSigDB C7 immuno-
logical database was calculated. The blue line
represents the significant threshold as -log(0.05)
using Fisher exact test.
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Fig. 5 | Robustness evaluation. Intersection between the 10 highest predictions in
the full dataset to the highest prediction of the sampled dataset at different fractions.
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analysis, we projected their signature scores onto the tSNE reduction
plot (Fig. 6). As expected, the signal-receiving cluster was strongly
associated with the receptors, while the signal-sender cluster was
associated with the corresponding ligands.

Following the identification of ligand-receptor pairs and further cal-
culation of the DSA for each receptor, interFLOW generates a visualization
plot that can be further examined for specific interaction between the two
clusters. This plot provides the following information: the many-to-many
ligand-receptor potential interactions, expression level, the significance of
differential expression, indication for the downstream signal activation and
its statistical significance (Fig. 7).

Out of these multiple significant ligand-receptor interactions, here we
focuson twoopposite potential interactionsbetweenmacrophages andCD4
T cells, which further highlights the complexity of signals a cell receives in
this microenvironment. On the one hand, a pro-inflammatory interaction
through the IL18 receptor and its ligand IL18a, leads to type I activation in
the form of IFNγ synthesis from Th1 cells10. On the other hand, an
immunosuppressive interaction through the TGF-β receptor and its ligand
TGF-β. Moreover, signaling via TGF-β can subvert T-cell immunity by
favoring regulatory T-cell differentiation, further reinforcing immunosup-
pression within tumor microenvironments11. Another example of the
complexity of this crosstalk between these two cell types is the two receptors

co-stimulatory CD2812 and co-inhibitory CTLA4 which compete for the
same ligand CD86.

Signaling converging transcription factors in CD4+ T cells fol-
lowing interaction with macrophages
As part of the framework, interFLOW highlights significant TFs that are
likely to be activated by the signals received frommultiple receptors. To this
end, we applied the multi-source max flow algorithm from all the receptors
down to the defined setof transcription factors and calculated the amount of
flow that goes through each transcription factor. Next, to rank the con-
tribution of the differentTFs, we calculated the importance coefficient of the
TF (Fig. 8a). Specifically, we removed each of the TFs from the network, and
recalculated themulti-sourcedmax flow in order to obtain the difference in
the maximum flow in the network. This yielded a subnetwork that repre-
sents the flow pathways from multiple receptors toward a specific TF,
allowing us to further investigate a specific signal transduction pathway and
detect potential hubs (Fig. 8b).

The top-ranking transcription factor, Stat5, was found to play an
important role in the differentiation of various T helper type 1 (TH1), TH2,
TH9, T helper type GM-CSF (TH GM), and Treg cell subsets. In B-cell
lymphoma tumor models persistent STAT5 activation reprograms the
epigenetic landscape in CD4+T cells to drive polyfunctionality and
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antitumor immunity6. Another TF that was highly ranked was Stat3 which
inmany cases opposes Stat5 indifferentiation13.While the importance of the
identifiedTFs to the survival, differentiation and cytotoxic capacity has been
previously demonstrated, here we show that these TFs play a role in the
specific interaction between macrophages and CD4+ tumor-infiltrating
lymphocytes (TILs) in the context of the brain tumor microenvironment14.

Next, we aimed to demonstrate that the predictions generated by
interFLOW can effectively capture interactions that are specifically asso-
ciated with a distinct biological context. We have previously shown that
bonemarrow-derivedmacrophages, the silencing of SELP inmurineGL261
glioblastoma cells induced a more anti-tumorigenic phenotype of the Bone
marrow-derived macrophages (DMDM) and additional alterations in the
tumormicroenvironment including increasedCD4+ T cell infiltration and
activation4. Our objective was to highlight changes in factors involved in the
macrophage and CD4+ T cell interaction following SELP silencing. To
achieve this, we conducted immunofluorescence staining of selected
potential candidates on frozen section slides (Fig. 9, Methods). To investi-
gate the phenotypic alterations in CD4+T cells, and their potential inter-
actions with macrophages within the tumors, we first analyzed the
expression level of CD86 on macrophages by performing co-
immunostaining for IBA1 and CD86 (Fig. 9a). Among the IBA1+ popula-
tion, we noted an elevated proportion of cells co-expressing CD86, sug-
gesting increased microglial/macrophages activation (Fig. 9a).

CD86 on macrophages was predicted to interact with CD28 on
tumor infiltrating CD4+ T cells. To corroborate this prediction, we

first examined the expression of CD28 on CD4+ T cells by con-
ducting co-immunostaining for CD4 and CD28. As expected, we
indeed observed elevated levels of CD28 expression in CD4+ T cells
following SELP knockdown (Fig. 9b). Furthermore, our predictions
indicated that intracellular signaling initiated from CD28, along with
multiple other receptors, would converge toward the transcription
factor STAT5 (Fig. 8). In line with these predictions, we conducted
co-immunostaining for CD4 and STAT5 and confirmed increased
STAT5 expression in CD4+ T cells after SELP knockdown (Supp.
Figure 7a). Moreover, we identified a positive correlation of
approximately 0.3 between the expression levels of CD28 and STAT5
across different slides, suggesting co-expression between the receptor
and its downstream transcription factor. As the downstream func-
tionality of STAT5 depends on its phosphorylation, we further
stained the cells for pSTAT5 and confirmed its increased expression
in CD4+ T cells after SELP knockdown (Fig. 9c). However, overall,
we found only a slight negative correlation between the levels of
pSTAT5 on CD4+ T cells and their distance from macrophages,
which could be attributed to the dynamic nature of these cells (Supp.
Figure 7b). Together, these results demonstrate the validity of our
predicted cell-cell interactions at the protein level. They validate the
existence of a specific and context-related ligand-receptor interaction
between macrophages and CD4+ T cells in glioblastoma while also
shedding light on the intracellular mechanism within CD4+ T cells
following this interaction.
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Crosstalk between tumor and macrophages
BMDMs recruited to the brain under pathology interactwith tumor cells via
SELP/PSGL-1, contributing to glioblastoma progression. However, SELP/
PSGL-1 is not the only axis of interaction between the two cell types. Thus,
we used interFLOW, as shown above, to investigate the interaction between
macrophages and tumor cells in the SELP-knockdown-GL261 murine
glioblastoma brain tumor model.

To initiate the process, we first identified DE ligand-receptor pairs,
which encompassed 37 distinct ligands and 39 corresponding receptors,
collectively resulting in a total of 102 unique ligand-receptor interactions
(Supp. Figure 8a).

Here, we chose to highlight the interaction between the ligand Ccl5,
found on tumor cells, and its corresponding receptors, Ccr1 and Ccr5,
which are present in macrophages. Notably, Ccl5 operates within the glio-
blastoma microenvironment through Ccr1 and Ccr5 in a redundant fash-
ion. This redundant action is associated with the mediation of microglia/
macrophage-stimulated glioma invasion, indicating that the infiltration of
immune cells and their survival rates do not rely solely on the individual
expression of either receptor. This is another example of the complexity of
signals a cell receives in this microenvironment.

Next, we identified signaling converging transcription factors in
macrophages following interaction with tumor cells (Supp. Figure 8b). One
of the top-ranking TFs was Nfe2l2 (NRF2), which was previously suggested
to suppress macrophage inflammatory response by blocking proin-
flammatory cytokine transcription15,16 (Fig. 10a).

Experimental validation of Ccr1 expression on tumor-
infiltrating macrophages, using co-immunostaining for F4/80 and
CCR1, revealed a notable increase in the SELP-knockdown-GL261
murine glioblastoma brain tumor model when compared to the
control group (Fig. 10b). Further validation of Nfe2l2 expression on
macrophages, using co-immunostaining for F4/80 andNRF2, showed
an increase upon SELP silencing (Fig. 10c). Again, we observed a
positive correlation of 0.55 between the expression of CCR1 and
Nfe2l2. NRF2 regulates the transcriptional activation of its target
genes through various mechanisms, encompassing transcriptional,
post-transcriptional, and post-translational processes. Under oxi-
dative stress conditions, NRF2 translocates into the nucleus, but it

also plays a crucial role in preserving the integrity of mitochondrial
DNA17. Therefore, NRF2 operates in both the cytoplasm and the
nucleus. Indeed, further analysis revealed an increase in NRF2
nuclear expression in macrophages following SELP knockdown
(Supp. Figure 8c,d). Together, these results highlight some of the
additional alterations that macrophages undergo once the SELP/
PSGL-1 axis is perturbed.

Global interactions in the tumor microenvironment
By applying the previously described method on each pair of clusters in the
data set, we have generated a global map of interactions between all cell
populations in the dataset (Fig. 11a).We hypothesized that generating such
an interaction map could help us to better understand the global dynamics
between different cell populations in the data set, and uncover the key
interaction axes common and cell-type specific to a studied biological sys-
tem (Fig. 11b).

As can be observed in Fig. 11b, there are almost no meaningful
interactions between non-immune cell populations (endothelial, vascular,
tumor and oligodendrocyte) (Supp. Figure 9). However, they do show
relatively strong interactions with antigen-presenting myeloid cells (mac-
rophages and microglia). In addition, we detected expected interactions
between CD4+ helper T cells and the antigen-presenting populations.

Finally, our global analysis can also be used to highlight common
ligand-receptor interactions between different cell types. Indeed, we found
many such interactions which are common to communications between
multiple cell types.

Taken together, our global analysiswaswell adapted to capture someof
the known cell-cell interactions in this microenvironment and highlighted
unique and more common interactions that must be taken into account in
perturbation applications.

Discussion
The task of quantitative cell-to-cell interaction modeling based on tran-
scriptomic data and single cell transcriptomics specifically is heuristic by
nature. First, gene expression data is not able to detect direct interaction
between different cells, which leaves us only with the detection of the
interaction potential. Second, gene expression also does not necessarily

a b

Il27ra

Il7r

Ntrk3

Il12rb2

Klrc1

Cd28

Cd247

Il2rg

Jak3

Ptpn2

Jak1

Lck

Jak2

Ptpn1

Grb2

Ptpn11

Ctla4

Stat1

Stat5a

Cbl

0.34 0.580.11

Interaction score

Fig. 8 | Identification of downstream signaling converging transcription factors
for CD4T cells. aAbar plot showing the top-ranking TFs in the interaction between
macrophages and CD4+ T cell clusters shown in Fig. 7. b Subnetwork of the flow

from multiple receptors (orange) to Stat5 transcription factor. The edge color and
width represent the amount offlow that is passing through the edge as a proxy for the
significance of the pathway in the subnetwork.

https://doi.org/10.1038/s41540-024-00391-z Article

npj Systems Biology and Applications |           (2024) 10:66 7



reflect gene activation. Third, the relatively low mRNA capture rate of the
scRNAseq technologies generates “zero-inflated” datasets, which makes it
harder to detect such complex events per cell.

Here, we proposed a computational framework view of the maximum
flowproblem.Ourworking hypothesis is that a significant proportion of the
signals received by the cell via its receptors will propagate downstream
toward a layer of transcription factors. These TFs will in turn affect a vast
number of genes and converge into a cellular response. To examine the
validity and performance of our suggested framework, we compared it to
two state-of-the-art methods, showing that interFLOW is both robust and
biologically relevant. Importantly, we performed an end-to-end analysis of
the interaction between macrophages and CD4+T cells in glioblastoma
microenvironment including experimental validations. We showed that
interFLOW could uncover interesting ligand-receptor interactions in the
data, and identify a set of TFs that may have an important role in regulating
the functionality of CD4+ cells following such interaction in the tumor
microenvironment.

More specifically, to validate the proteins identified by our algorithm
involved in the interaction between macrophages and CD4+ T cells, we
performed co-staining of CD4+ cells together with STAT5, pSTAT5 and
CD28. STAT5 enhances robust expansion, infiltration, and the response of
CD8+ T cells6. This is driven by the constitutive expression of STAT5 in
CD4+ T cells, which leads to extensive remodeling of their transcriptional
and epigenetic profile.We found that the downregulation of SELP in glioma
cells results in increased expression of CD28 in CD4+ T-cells. CD28 is

widely acknowledged as a co-stimulatory molecule for T-cell activation,
interacting with CD80/86 on antigen-presenting cells, such as TAMs12.
Consequently, the upregulation of CD86 in macrophages and CD28 in
CD4+ T-cells implies a significant role for SELP-PSGL-1 axis in mod-
ulating the brain’s immune system. However, our analysis identified
numerous ligand-receptor interactions between macrophages and
CD4+ T cells converging on STAT5. Therefore, we cannot exclusively
attribute the upregulation of STAT5 or pSTAT5 to the CD86-CD28
interaction, particularly considering the detection of IL7r, which has pre-
viously been shown to promote STAT5 phosphorylation18

However, SELP-PSGL-1 is not the only axis bywhich tumor cells affect
macrophages.Herewe highlightCCR1-NRF2 as an additional pathway that
is upregulated following SELP perturbation. According to previous studies,
increased levels of CCR1 are associated with increased invasion of glioma
cells. Glioma-conditioned medium enhances the expression of CCR1 on
TAMs, establishing an autocrine loop that facilitates the response to CCR1
ligands: CCL3, CCL5, CCL6, and CCL919. The Nuclear factor erythroid 2
(NRF2)/Keap1 pathway has garnered significant interest for its role in
cancer progression and glioma in particular as a TF regulating several
antioxidant elements and associated with poor prognosis16,20. Regarding
NRF2’s role as a transcription factor in redox control, it has been demon-
strated thatNRF2 inhibits RNApolymerase 2 binding to pro-inflammatory
cytokines in macrophages, leading to a decrease in the locus activity of IL6
and IL1β19.Collectively, thesefindings suggest that a combinationof aCCR1
inhibitor and aSELP inhibitormay exhibit a synergistic effect in suppressing
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Fig. 9 | Silencing SELP inGL261 glioblastoma tumors alters themacrophages’ co-
stimulation of CD4 T cells. Immunostaining analysis of GL261 glioblastoma
tumors showed increased expression of CD86 in macrophages (a) and higher levels
of CD28 and pSTAT5 in CD4+ T cells (b, c) in SELP knockdown GL261 tumors

(shSELP) compared to the negative control (shNC). For all panels, data are repre-
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the invasive characteristics of gliomas. Such an approach holds the potential
to reshape the immune landscape and enhance patient survival rates.

To further demonstrate the power of interFLOW, we applied it to
another scRNAseq obtained from an independent Glioma brain
tumor mouse model containing both wild-type and myeloid MHCII
knockout mice21. Using interFLOW, we identified multiple potential
interactions between various cell types some of which were differ-
ential between theWT and the KO cells. Spp1- Itgb1 was found to be a
key communication axis between macrophages and CD8+ T cells in
the KO samples. Furthermore, our method identified that the
downstream signaling pathways in the interaction between these two
cell types converged at the transcription regulator Nfat2, which is a
positive regulator of Tox (critical regulator of T cell exhaustion).

Complementary biological experiments were able to validate the
effect of Spp1-Nfat2-Tox axis as was predicted by our method.

Cell-cell interaction involves the activation of multiple receptors fol-
lowed by complex intracellular signal transduction. These signals must be
aggregated for the cell to reach a reaction decision, thus highlighting the role
of key transcription factors as a layer that aggregates thedifferent signals into
a cellular response is unique to our approach. Further characterization of
transcription factors identified in a specific biological setting is, however,
needed. Nevertheless, this approach opens new therapeutic avenues for the
perturbation of a cellular response following cell-cell interactions.

Similar to our framework,CellCall22 assumes that signaling via receptor
leads to transcription factor activation. The CellCall model assigns an
activation score for a set of KEGG pathways while also taking into account
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the enrichment of TF’s target genes in each pathway. Rather than looking at
a set of disjoint pathways, our suggested interFLOW approach takes
advantage of an interaction network. This allows the discovery of novel
activation pathways related to specific cell populations and biological con-
ditions. Furthermore, our maximum flow framework can model the
underlying assumption that signals from different receptors are converging
into a subset of dominant transcription factors. Lastly, our methodology
could assign activation scores for transcription factors based on network
importance rather than a single pathway. In this article, we have shown that
the amount of flow of a given receptor is associated with its upregulation in
different cell populations. The signal flow was also found to be associated
with the upregulation of the transcription factor predicted to further con-
verge the signals. Thus, our interaction potential between two clusters
includes not only the expression of the receptor and ligand but its entire
signal transduction pathway.

On a global scale, our framework allows us to inspect the interaction
map of an entire single-cell data set. Indeed, variousmicroenvironments are
characterized bymultiple cell-type populations that constantly interact with
each other. Such complex and dynamic interaction as well as a comparison
between different states of the system could greatly benefit from such global
analysis.

It is important to note that the activation of a signaling pathway in
biological systems usually also includes post-translational modifications,
which are not measured by any form of RNA seq data. Thus, any activation
score that is based solely on RNA expression will never capture the entire
pathway activation process. Using data sets taken from the tumor micro-
environment, we have shown that our method can reflect dynamics in the
data that agree with known biological assumptions. To reduce the effect of
the data sparsity associated with scRNAseq most of our calculations are
done at the cluster level. However, we believe that our suggested framework,
with the proper normalization, may enable us to assign an interaction
potential score to every single cell in the dataset, and by that reveal more
complex biological dynamics inside the clusters. Combining such cell-
specific scores with other single cell analysis approaches will allow us to ask
more complex questions, such as how the interactions can affect the cell
differentiation trajectories, and understand how cell-to-cell interactions
change in different biological conditions.

Recent work in the field has begun to emphasize the integration of
biological replicates and different conditions into theirmodels to reduce false
predictions23. In our study, we presented the interFLOW framework speci-
fically for single-dataset analysis, primarily to demonstrate the potential and
advantages of our maximum flow methodology. Accounting for multi-
sample gene-gene relationships in our analysis, in order to refine our pre-
dictions, remains an importantdirection for futureworkwithour framework.

Methods
Data processing, clustering and annotation
The pipeline receives Seurat objects following data processing, normal-
ization, clustering and annotation as previously described24. Briefly, the

pipeline consists of the following steps. LogNormalize: each feature count
for each cell is divided by the total counts for that cell and multiplied by a
scale factor.Dimensionality reduction:PCA and tSNE are calculated from
the scale normalized datamatrix, where each feature normalized expression
is scaled across the cells. The number of PCs for the clusteringwasmanually
selected based on an elbow plot showing the gain in variance with each
additional vector. Clustering: First, we calculated the k-nearest neighbors
and constructed theKNNgraph, in the reducedPCAspace.On that graph, a
modularity score is optimized using the Leiden clusteringmethod25.Cluster
annotation: was performed manually by the use of known cell population
markers and projection of known cell-type gene signatures on the tSNE
plots26.

Single-cell gene signature scoring
Single-cell gene signature scoring was used to emphasize the differential
expression of ligands and receptors on interacting cell subtypes, as pre-
viously described27. Briefly, scores were computed by first sorting the nor-
malized scaled gene expression values for each cell followed by summing up
the indices (ranks) of the signature genes. A contour plot which takes into
account only cells that have a signature score above the indicated threshold
was addedon topof the tSNE space, to further emphasize the region of high-
scoring cells.

Finding differentially expressed receptor-ligand pairs
Ligand and receptor pairs were retrieved from the CellTalkDB database28.
As a first step, we identified receptors that are DE in the signal receiving
cluster and their corresponding ligands which are DE in the signal sending
cluster, using the Seurat package “FindMarkers” function. We applied the
WilcoxonSumRankwith limit testing chosen to detect genes that display an
average of at least 0.2-fold difference (log-scale) between the two groups of
cells and genes that are detected in a minimum fraction of 0.2 in the
upregulated group.

Threshold optimization
The threshold for differentially expressed (DE) receptor-ligand pairs
determines the initialfilteringprior to in-depth analysis. This thresholdmay
vary across datasets containingdifferent cell populations,whichcandiffer in
their levels of similarity to one another. Generally, we prefer to choose a
more inclusive threshold, as the Downstream Signaling Activity (DSA)
score indicates which receptors might be significant in interactions. Thus,
we typically set the threshold at either 0.1 or 0.2.A lower threshold includesa
larger number of receptors for analysis, though these receptors generally
have lower DSA scores. To illustrate the impact of different thresholds,
SupplementaryFig. S1displays thedynamicsof thenumberof receptors and
the mean DSA score across various thresholds.

Identifying activated transcription factors
To pinpoint potentially activated transcription factors within each cluster,
we conducted an enrichment test utilizing the Dorothea TF-gene target
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Fig. 11 | Global interaction map. a Global interaction plot, demonstrating inter-
actions between the different clusters in the dataset. Edges radiate from the signal
sender cluster to the signal receiving cluster, edge colors and width represent the

strength of the interaction.bTop 25 ligand-receptor interactions that were identified
as active between multiple cell types in the dataset.
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database29. For a specified gene target list, an unpairedWilcoxon SumRank
test was applied to compare the rank distributions of the gene list against the
remaining gene expression vector. This allowed us to test whether themean
expression of genes in the list stemmed from the same distribution as the
background. P-values obtained were subsequently adjusted using the FDR
correction.

Calculation of downstream activation score (DSA)
Beyond identifying DE receptors, we sought to compute their potential
downstream activation signaling.We postulate that such signaling cascades
are evident in the cell’s transcriptomic profile, eventually converging at a
downstream transcription factor.

Initially, transcription factorswith enriched target genes in each cluster
were identified. To counteract the inherent “zero inflated” data in single-cell
analyses, we computed these parameters on a cluster-specific basis. Tran-
scription factors with an FDR-adjusted p-value ≤ 0.05 were retained. We
thendeterminedamaximumflow fromevery receptor towards the enriched
layer of transcription factors, utilizing a network of protein-protein
interaction28.

To enhanceour confidence in the identifiedpathways, the networkwas
normalized. Each edgewas weighted based on themutual information (MI)
between expression distributions in the cluster’s constituent genes. This was
defined as:

I X : Yð Þ ¼
X

x

X

y

PX;Y x; y
� � � log PX;Y x; y

� �

PXðxÞ � PY ðyÞ

 !

ð1Þ

Where ðX;YÞ is a pair of random variables, PX;Y ðx; yÞ is their joint dis-
tribution and PX , PY the margin distribution of X;Y . To calculate the MI,
we initially discretize the gene expression values. This was achieved by
grouping the expression values into bins, with each bin containing
expression data from 100 cells. For smaller clusters, we ensured aminimum
of 10 bins per cluster. Using theMI between each pair of genes in the cluster,
we marked the edge weight as follows:

8 < g1; g2 > 2 E : weight g1; g2
� � ¼

I e1; e2
� �� min

<gi;gj>
Iðei; ejÞ

max
<gi;gj>

Iðei; ejÞ � min
<gi ;gj>

Iðei; ejÞ
ð2Þ

Here, <g1; g2> denotes an edge in the PPI network, and e1; e2 are the
expression vectors in the signal receiver cluster of the genes g1; g2
respectively.

Upon creating this weighted network, a virtual ‘sink’ node was inte-
grated. Each identified transcription factor was linked to this sink with an
infinite edge weight. Within the resultant normalized network, each edge
weight defines its flow capacity. Subsequently, Dinitz’s algorithm30 was
applied to discern the maximum flow from receptors through the signaling
pathway, concluding at the virtual sink. In our basic setting, the maximum
flow is calculated separately for each receptor, resulting in a unique score for
each receptor.This process aids in ranking the impact of various receptors in
the interaction. Additionally, interFLOW can be configured in a multi-
source mode, enabling simultaneous flow analysis from all receptors. Using
this setting we can calculate the scores of downstream transcription factors
(TFs), integrating cumulative signals frommultiple receptors to a single TF.

To gauge the flow value’s significance, we employed a random, degree-
preserving permutation on the signaling network. Each permutation
involved edge shuffling 10x|E| times, with |E| representing the graph’s edge
count. The switching algorithm31 was employed and max flow was calcu-
lated for each permutation. This allowed for an empirical statistical value
representation of observed flow (post-FDR correction), compared against
flows on randomized networks.

The integration ofMI into our framework enables the identification of
gene-gene relationshipswhile alsoproviding robustness against the inherent
characteristics of scRNAseq data, zero-inflation and loss of correlation.

Although MI has the potential to capture unrelated gene relationships, the
use of the maximum flow algorithm in our framework adds a layer of
specificity. For a high-weighted edge to significantly influence our predic-
tions, itmust formpart of a clearly definedpath fromthe source to the target.
This requirement substantially reduces the likelihood of false positives
arising from unrelated relationships.

Generating a global interactions map
Finally, the interaction score between clusters (c1, c2) was computed for
every cluster pair using the formula:

Score c1; c2
� � ¼

X

r2Receptors

X

L2LigandsðrÞ
DSA rð Þ � �e1r � �e2l ð3Þ

Here, LigandsðrÞ represents ligands in c2 corresponding to receptor r,
DSAðrÞ denotes the receptor r’s flow score, while e1r and e2l are the nor-
malized expressions of receptor r in cluster c1 and ligand l in clusterc2,
respectively.

Simulations
To capture the underlying assumption that activated pathwaysmanifest co-
expression patterns in the data we devised a simulation framework. This
framework necessitated the capacity to simulate a correlated gene expres-
sion structure. To initiate this process, we leveraged the PPI network to
randomly select pathways from a given set of k transcription factors to a
distinct subset of w>k receptors. These randomly generated paths served as
representative downstream activation pathways (DSPs). Subsequently, we
proceeded to model latent gene expression representations using Multi-
variate Normal (MVN) distributions, denoting xl ∼MVNð�0;ΣÞ; where �0
signifies the zero vector and Σ represents the covariance matrix. In accor-
dance with our design, we specified the covariance between any two genes,
bothi and j, not part of the DSP ði; j=2DSPÞ as covði; jÞ∼Nð0; σÞ. For genes
within the true downstream activation pathway ði; j 2 DSPÞ, the covariance
was defined as covði; jÞ∼Nðμ; σÞ, where μ quantifies the degree of co-
expression within the downstream activation pathway. To control for the
potential of unrelated genes to exhibit high correlation by chance, we tested
the performance of our framework under high noise conditions by selecting
a relativelyhighσvalueof 0.1.This selection resulted in approximately 5%of
false edges achieving a correlation of more than 0.2 (Supplementary Fig. 2),
thereby introducing negative edges with medium-to-high correlation into
the framework. Recognizing that authentic gene expression data does not
conform to a normal distribution but can be modeled more appropriately
using the Zero-InflatedNegative Binomial (ZINB) distribution, we sought a
transformation that would preserve the inherent correlation structure. Our
approach involved applying the cumulative distribution function (CDF) of
the standard normal distribution to our latent gene expression values,
yielding a set of correlated uniformdeviates: subsequently, we employed the
quantile function of the Negative Binomial distribution (with a randomly
sampled mean) and added random dropout to derive the final gene
expression values for the given cluster. After implementing these transfor-
mations, we achieve our final simulated dataset. In this dataset, the corre-
lation structure is preserved in a nonlinear manner. Interestingly, the
Pearson correlation within the DSP loses significance, while the Spearman
correlation remains significant. This configuration better captures the
attributes of real single-cell data.

Specific dimensions of our simulated data (number of genes that were
simulated) were based on the union of our prior knowledge databases.
Genes not present in any of these databases do not influence the prediction
of interFLOW and, thus should be excluded from the simulation. It is also
important to note that the correlation structure between different cell
populations has minimal impact on our model’s performance. This is
because the weighting of the PPI network, which is calculated using the co-
expression within the signal-receiving cluster alone, as this network aims to
model only this cluster’s intracellular signaling pathway. Consequently, our
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prepose simulation framework does not account for this correlation
structure.

Materials and Methods IHC
Primary Immunostaining antibodies
Rabbit anti-mouse IBA1 (Cat. No. NBP2-19019; Lot. No. 43796; Dilution:
1:200), rabbit anti-mouse CCR1 (Cat. No. NB100-56334SS; Lot. No. B-03;
Dilution: 1:200), rat anti-mouse F4/80 (Cat. No. NBP1-60140; Lot. No.
28094M1219-A; Dilution: 1:100), and rabbit anti-mouse NRF2 (Cat. No.
NBP1-32822; Lot. No. 44749; Dilution: 1:100) were purchased fromNovus
(Colorado, USA). Rat anti-mouse CD4 (Cat. No. 14-9766-B2; Lot. No.
2526300; Dilution: 1:100), mouse anti-mouse CD68 (Cat. No. MA1-7631;
Lot. No. ZA4163501; Dilution: 1:50), and rabbit anti-mouse STAT5 (Cat.
No.PA5-40241; Lot.No.YH4029074;Dilution: 1:150)werepurchased from
Invitrogen (Massachusetts, USA). Rabbit anti-mouse CD28 (Cat. No.
ab243228; Lot. No. 1003834-6; Dilution: 1:50), rabbit anti-mouse CD86
(Cat. No. ab119857; Lot. No. 1004179-2; Dilution: 1:50), rabbit anti-mouse
RelA/p65 (Cat. No. ab32536; Lot. No. 1006853-3; Dilution: 1:100), and
rabbit anti-mouse pSTAT5 (Cat. No. AB32364; Lot. No. 1020646-16;
Dilution: 1:50) were purchased from Abcam (Cambridge, UK).

Secondary immunostaining antibodies
Goat anti-rat Alexa Fluor® 647 (Cat. No. ab150159; Lot. No. 1005431-5;
Dilution: 1:250), Goat anti-rabbit Alexa Fluor® 568 (Cat.No. ab175471; Lot.
No. 1044159-1; Dilution: 1:250), and Goat anti-rabbit Alexa Fluor® 488
(Cat. No. ab150113; Lot. No. 1001014621; Dilution: 1:250) were purchased
from Abcam (Cambridge, UK). Goat anti-mouse Alexa Fluor® 647 (Cat.
No. 115-605-166; Lot. No. 161227; Dilution: 1:250) was purchased from
Jackson ImmunoResearch (Pennsylvania, USA).

Immunostaining
OCT blocks of brain tumors from GL261 glioblastoma-bearing mice
(shSELP and shNC)were cut into 5 µm thick sections. Immunostainingwas
performedusing theBONDRXMultiplex IHCAutoStainer (Leica).Double
immunostaining sections were stained for F4/80 using rat anti-mouse
together with either rabbit anti-mouse RelA/p65, rabbit anti-mouse NRF2,
or rabbit anti-mouse CCR1. CD4 using rat anti-mouse together with either
rabbit anti-mouse CD28 or rabbit anti-mouse STAT5. Alexa Fluor® 647
goat anti-rat and Alexa Fluor® 568 goat anti-rabbit were used as secondary
antibodies. Triple sections were stained with CD4 using mouse anti-mouse
together with both rat anti-mouse F4/80 and rabbit anti-mouse pSTAT5.
Alexa Fluor®647 goat anti-mouse,AlexaFluor®568 goat anti-rat, andAlexa
Fluor® 488 goat anti-rabbit were used as secondary antibodies. Prior to
antibody incubation, slides were incubated with 10% normal goat serum in
1x Tris-buffered saline, 0.1% Tween-20®, for 30min to block non-specific
binding sites. Slides were incubated with the primary antibody for 1 h, then
washed and incubated for another 1 h with the secondary antibody. The
slides were stainedwithHoechst for nuclei detection. Then, ProLong®Gold
mounting was applied on the slides prior to being covered with coverslips.
The stained slides were captured using a Cytation C10 confocal imaging
reader (spinning disk 60 µm) (Agilent, California, USA) and analyzed using
the Gen5 program (Agilent, California, USA). Nuclear expression of NRF2
was analyzed by measuring the pixel area of NRF2 within the nucleus
(DAPI). The distance matrix was analyzed using the MACSiQView app
(Miltenyi, Germany).

scRNA and Prior Information Dataset

1. Simulated Data: This framework was developed and utilized to gen-
erate multiple simulated scRNAseq datasets. These datasets comprise
signal-receiving and signal-sending clusters, with each cluster contain-
ing 1000 cells across 6347 genes. They were employed to evaluate the
performance of interFLOW across various tasks.

2. Yeini et al. Glioblastoma Multiforme (GBM) Mouse Model: As
described in4, this dataset includes 9175 cells and 18,531 genes from

both control and treatment GL261 tumor model samples (treatment
involved inhibition of P-selectin). It served for further validation of our
framework and for conducting an in-depth analysis of the crosstalk
between tumor infiltrating CD4 T cells and macrophages.

3. Glioma Brain Tumor Mouse Model: This dataset, referenced in 21,
comprises 18,023 cells across 15,749 genes. It was utilized as an addi-
tional data source for validation andbenchmarking, demonstrating the
robustness of the analysis.

4. Protein-Protein Interaction Network: Detailed in28 the size of the
network used varies depending on the expressed genes within each cell
cluster, according to our datasets. The average number of genes was
4054, with a standard deviation of 164 genes. The average number of
edges was 36,504, with a standard deviation of 1452.

5. Ligand-ReceptorDatabase:As outlined in9 this database contains 643
ligands and 829 receptors, encompassing 12,156 interactions.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
All datasets analyzed in thismanuscript are publicly available and have been
documented under the “scRNA and Prior Information Dataset” section.

Code availability
interFLOW is available for download via the git repository github.com/
madilabcode/interFLOW, including all the necessary files and conda
environment, along with an explanation of basic usage of the framework.
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