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Abstract

One of the most promising ways to determine evolutionary distance between two organisms is to compare the
order of appearance of orthologous genes in their genomes. The resulting genome rearrangement problem calls
for finding a shortest sequence of rearrangement operations that sorts one genome into the other. In this paper we
provide a 1.5-approximation algorithm for the problem of sorting by transpositions and transreversals, improving
on a five-year-old 1.75 ratio for this problem. Our algorithm is also faster than current approaches and requires
O(n3/2√log n) time forn genes.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

When trying to determine evolutionary distance between two organisms using genomic data, one wishes
to reconstruct the sequence of evolutionary events that have transformed one genome into the other. One
of the most promising ways to trace the evolutionary events is to compare the order of appearance of
orthologous genes in two different genomes[14,10]. This comparison, which relies on computing global
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rearrangement events, may provide more accurate and robust clues to the evolutionary process than the
analysis of local mutations.

In a genome rearrangement problem, the two compared genomes are represented by permutations,
where each element stands for a gene, and the goal is to find a shortest sequence of rearrangement
operations that transforms (sorts) one permutation into the other. Previous work focused on the problem
of sorting a permutation by reversal operations.This problem was shown to be NP-hard by Caprara[3]. One
of the most celebrated results in this area by Hannenhalli and Pevzner shows that for signed permutations
(every element of the permutation has a sign, which represents the direction of the corresponding gene;
a reversal reverses the order of the elements in a segment and flips their signs), the problem becomes
polynomial[7]. The algorithm is based on representing a permutation using a breakpoint graph (we defer
a formal definition to Section2) which decomposes uniquely into disjoint cycles, and studying the effect
of a reversal on its cycle decomposition. There has been less progress on sorting problems with respect
to other operations, such as transpositions and transreversals.

A transposition is a rearrangement operation in which a segment is cut out of the permutation and pasted
in a different location. The complexity of sorting by transpositions is still open, although several 1.5-
approximation algorithms are known for it[2,4,8], and, very recently, a 1.375-approximation algorithm
was given for this problem[5].

A transreversal is another biologically motivated operation that combines a transposition and a reversal:
a segment is cut out of the permutation, reversed and pasted in another location. In particular, a reversal
is also a transreversal. Gu et al.[6] gave a 2-approximation algorithm for sorting signed permutations
by transpositions and transreversals. Lin and Xue[12] improved this ratio to 1.75 by considering a
third rearrangement operation, called revrev, which reverses two contiguous segments. Walter et al.
[16] considered the problem of sorting by transpositions and reversals (without transreversals). For the
signed (resp., unsigned) case they provided a 2-approximation (resp., 3-approximation) algorithm. All
the algorithms mentioned above run in quadratic time.

In this paper we study the problem of sorting permutations by transpositions, transreversals and revrevs.
The question of whether the 1.75 known ratio for this problem can be improved, has been open for 5 years.
One of the main difficulties in tackling the complexity of this problem is the vast number of possible
configurations that need to be considered when analyzing general linear permutations. We make four
contributions toward greatly simplifying the problem. First, we show that the sorting problem is equivalent
for linear and circular permutations. This reduction allows us to restrict attention to two operations only—
transpositions and transreversals. Second, we reduce the general problem of sorting a circular permutation
to that of sorting a permutation with a very simple structure: In its breakpoint graph representation all
non-trivial cycles are of length 3. Third, we characterize cycle configurations in the breakpoint graph and
show that it suffices to restrict attention to one type of configuration. Fourth, we develop and characterize
a novel cycle representation, which allows us to use previous results on sorting by transpositions only in
further eliminating cycle configurations. These characterizations and simplifications are key to our main
result: a 1.5-approximation algorithm for sorting both linear and circular permutations by transpositions
and transreversals. Furthermore, we exploit a data structure introduced in[11] to implement the algorithm
in timeO(n3/2√log n), thus improving on the quadratic running time of previous algorithms[6,12].

Our results borrow ideas from our earlier work on sorting by transpositions only[8]. Briefly, the latter
paper presents a 1.5-approximation algorithm for sorting by transpositions, which is based on reducing the
problem to that of handling circular permutations with simple structure. Here we extend this reduction to
signed permutations under both transpositions and transreversals, and show that an even simpler structure
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can be obtained. We also develop novel characterizations of cycle configurations, allowing us to use some
of the sorting techniques presented in[8]. These characterizations are complemented by a detailed case-
analysis of the cycle configurations that may arise during the sorting process, which are more involved
than in the unsigned case.

The paper is organized as follows: Background on rearrangement operations, permutations and their
representation are given in Section2, where we also describe the reduction to sorting simple circular
permutations. The approximation algorithm is given in Section3. Finally, theO(n3/2√log n) implemen-
tation of the algorithm is described in Section4.

2. Preliminaries

A signed permutation� = [�1 . . . �n] on n(�) ≡ n elements is a permutation in which each el-
ement is labeled by a sign of plus or minus. Asegmentof � is a consecutive sequence of elements
�i , . . . , �k (k�i). We focus on four rearrangementoperations. A reversal� is an operation that reverses
the order of the elements in a segment and flips their signs. If the segment is�i , . . . , �j−1 then� · � =
[�1, . . . , �i−1, −�j−1, . . . ,−�i , �j , . . . , �n]. Two segments�i , . . . , �k and�j , . . . , �l arecontiguousif
j = k+1 ori = l+1.A transposition� exchanges two contiguous (disjoint) segments. If the segments are
A = �i , . . . , �j−1 andB = �j , . . . , �k−1 then� ·� = [�1, . . . , �i−1, �j , . . . , �k−1, �i , . . . , �j−1, �k, . . . ,

�n] (note that the end segments can be empty ifi = 1 ork = n+1).A transreversal��A,B is a transposition
that exchanges segmentsAandB and also reversesA, i.e.,��A,B ·� = [�1, . . ., �i−1, �j , . . ., �k−1, −�j−1,

. . ., −�i , �k, . . .�n] and ��B,A · � = [�1, . . . , �i−1, . . . ,−�k−1, . . . ,−�j , �i , . . . , �j−1, �k, . . . , �n].
A revrev operation reverses each of the two segments (without transposing them). Thus,�� · � =
[�1, . . . , �i−1, −�j−1, . . . , −�i , −�k−1, . . . ,−�j , �k, . . . , �n].

The problem of finding a shortest sequence of transposition, transreversal and revrev operations that
transforms a permutation into the identity permutation is calledsorting by transpositions and transrever-
sals.1 Thedistanceof a permutation�, denoted byd(�), is the length of the shortest sorting sequence.

2.1. Linear vs. circular permutations

Key to our approximation algorithm is a reduction from the problem of sorting linear permutations to
that of sortingcircular permutations (indices are cyclic), on which the analysis is simpler. An operation
is said tooperateon the segments that are affected by it and on the elements in those segments. We say
that two operations� and�′ areequivalentif they have the same effect, i.e.,� · � = �′ · � for all �.
The following lemma is the basis for the reduction, and is used to prove the subsequent theorem on the
equivalence of the sorting problem for linear and circular permutations, similarly to[8].

Lemma 1. Let x be an element of a circular permutation�, and let� be an operation that operates on
x. Then there exists an equivalent operation�′ that does not operate on x.

1 We do not include revrevs in the problem name, as we provide in the next section a reduction of the problem that allows us
to mimic revrevs using transreversals.
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Fig. 1. The equivalence of operations on circular permutations.

Proof. For reversals, this result was proven by Meidanis et al.[13]; for transpositions this was shown
by Hartman[8]. For transreversals and revrevs, the claim relies on the observation that a chromosome is
equivalent to itsreflection, i.e., the reversed sequence of elements with their signs flipped[13] (see the
upper part of Fig.1). Consider a permutation with three segments:A, B andC, wherex ∈ A. Then a
transreversal that operates on segmentsA andB and reversesB (resp.,A) is equivalent to a revrev that
operates onA andC (resp.,B andC), since the result is a reflection of the permutation (as illustrated in
Fig. 1). Similarly, a revrev that operates onA andB (or C) is equivalent to a transreversal that operates
onB andC. �

Theorem 2. The problem of sorting linear permutations by transpositions and transreversals is linearly
equivalent to the problem of sorting circular permutations by transpositions and transreversals.

Proof. Given a linearn-permutation, circularize it by adding an additional element�n+1 = n + 1 and
closing the circle. Denote the new circular permutation by�c. By Lemma1, any operation on�c can
be mimicked by an operation that does not involve the segment that includesn + 1. Hence, there is an
optimal sequence of operations that sorts�c such that none of them operates on segments that include
n + 1. The same sequence can be viewed as a sequence of operations on the linear permutation�, by
ignoringn+1. This implies thatd(�)�d(�c). On the other hand, any sequence of operations on� is also
a sequence of operations on�c, sod(�c)�d(�). Hence,d(�) = d(�c). Moreover, an optimal sequence
for �c implies an optimal sequence for�.

Conversely, starting with a circular permutation, we can linearize it by removing an arbitrary element,
which plays the role ofn + 1 above. Using similar arguments as in the first direction of the proof, we
conclude that an optimal solution for the linear permutation translates to an optimal solution for the
circular one. �

We observe that for circular permutations revrevs and transreversals are equivalent operations. Thus,
for circular permutations we can restrict attention to transpositions and transreversals, which are better
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Fig. 2. The circular breakpoint graph of the permutation� = (1 − 4 6 − 5 2 − 7 − 3), for which f (�) =
(1 2 8 7 11 12 10 9 3 4 14 13 6 5). Black edges are represented as thick lines on the circumference, and gray edges are
chords.

motivated biologically compared to revrevs. Moreover, combined with Theorem2, this observation im-
plies that one can reduce the problem of sorting a linear permutation by transpositions, transreversals
and revrevs to that of sorting a circular permutation by transpositions and transreversals only. We note
that the problem of sorting circular permutations is important on its own, since many genomes including
mitochondrial and bacterial ones are circular.

2.2. The breakpoint graph

We follow the construction of Bafna and Pevzner for representing signed permutations[1]. First, a
permutation� onn elements is transformed into a permutationf (�) = �′ = (�′

1 . . . �′
2n) on 2n elements.

f (�) is obtained by replacing each positive elementi with two elements 2i − 1, 2i (in this order), and
each negative element with 2i, 2i −1. For the extended permutationf (�), only operations that cut before
odd positions are allowed. This ensures that every operation onf (�) can be mimicked by an operation
on�. In the rest of the paper we identify, in both indices and elements, 2n + 1 and 1.

Definition 1. Thebreakpoint graphG(�) is an edge-colored graph on 2n vertices{1, 2, . . . , 2n}. For
every 1�i�n, �′

2i is joined to�′
2i+1 by a black edge, and 2i is joined to 2i + 1 by a gray edge.

It is convenient to draw the breakpoint graph on a circle, such that black edges are on the circumference
and gray edges are chords (see Fig.2). Since the degree of each vertex is exactly 2, the graph uniquely
decomposes into cycles. Ak-cycleis a cycle withk black edges, and it isodd if k is odd.k is called the
lengthof the cycle. The number of odd cycles inG(�) is denoted bycodd(�). Gu et al.[6] have shown
that for all linear permutations� and operations� (reversals, transpositions, transreversals or revrevs), it
holds thatcodd(� · �)�codd(�) + 2. Their result holds also for circular permutations and can be used to
prove the following lower bound ond(�):
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Fig. 3. A (g, b)-split (taken from[8]). A dashed line indicates a path.
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Fig. 4. (a) The breakpoint graph of the permutation� = (1, −3, −4, 2, −5). (b) The graph of(1, −3, −5, 4, 2, −6), which is
obtained by a(C, b)-padding, whereb = (3, 7) andC is the 2-cycle containingb.

Theorem 3(Gu et al.[6] ). For all permutations�, d(�)�(n(�) − codd(�))/2.

2.3. Transformation into 3-permutations

Our goal in this section is to transform the input permutation into a permutation with simple structure, to
which we can apply our algorithm and mimic its steps on the original permutation.A permutation is called
simpleif its breakpoint graph contains onlyk-cycles, wherek�3. It is called a 3-permutationif it contains
only 1-cycles and 3-cycles. A transformation from� to �̂ is calledsafeif n(�)−codd(�) = n(�̂)−codd(�̂),
i.e., if it maintains the lower bound of Theorem3. Next, we show how to transform an arbitrary permu-
tation into a 3-permutation using safe transformations. We note that the transformation maintains only
the lower bound, not the exact distance. Our starting point is the standard safe transformation into simple
permutations (cf.[8]). For completeness, we describe it briefly in the sequel.

The transformation into a simple permutation is done by a series of safe cycle splits. Letb = (vb, wb) be
a black edge andg = (vg, wg) be a gray edge belonging to the same cycleC = (. . . , vb, wb, . . . , wg, vg,

. . .) in G(�). A (g, b)-splitof G(�) creates a new graphG(�̂) with one more cycle by: (1) removing edges
b andg; (2) adding two new verticesv andw; (3) adding new black edges(vb, v) and(w, wb); and (4)
adding new gray edges(wg, w) and(v, vg). This transformation is demonstrated in Fig.3. The reader is
referred to[8] for a proof that a split results in a new permutation (with one more element) and that every
permutation can be transformed into a simple one using safe splits.

It remains to show how to convert 2-cycles into 3-cycles using safe transformations. LetCbe a 2-cycle
and letb = (�′

2i , �′
2i+1) be one of its black edges. A(C, b)-paddingextends the original permutation�

by adding a new element�i +1, and renaming all elementsj > �i +1 byj +1 (the renaming is done on
the absolute values of the elements and then their signs are reintroduced, e.g.,−3 is renamed to−4). The
new element�i + 1 has the same sign as�i , and is placed after (resp., before)�i if it is positive (resp.,
negative). Finally, the sign of�i is flipped. The effect on the breakpoint graph is thatC is transformed
into a 3-cycle (see Fig.4 for an example). Overall, the permutation after the padding has an additional
element and one more odd cycle.
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(a) (b) (c) (d)

Fig. 5. Configurations of 3-cycles. (a,b) Unoriented 3-cycles. (c,d) Oriented 3-cycles.

Lemma 4. Every simple permutation� can be transformed into a3-permutation�̂ by safe paddings.
Moreover, every sorting of̂� mimics a sorting of� with the same number of operations.

Proof. Let � be a simple permutation that contains a 2-cycleC, and letb ∈ C. Let �̄ be the permutation
obtained by applying a(C, b)-padding to�. Clearly,n(�̄) = n(�) + 1 andcodd(�̄) = codd(�) + 1, so
the padding is safe. This process can be repeated until a 3-permutation�̂ is obtained. Sincê� is obtained
from � by padding new elements, every operation on�̂ can be mimicked on� by ignoring the padded
elements. �

In the rest of the paper we shall restrict attention to circular 3-permutations and often refer to the
3-cycles in our breakpoint graph simply as cycles. In Section3 we show how to sort a 3-permutation
using at most 1.5l operations, wherel is the lower bound of Theorem3. By Theorem2 and Lemma4 this
implies a 1.5-approximation algorithm for sorting arbitrary circular and linear permutations.

2.4. Cycle configurations

An operation that cuts some black edges is said toact onthese edges. It is called ak-operationif it
increases the number of odd cycles byk. A (0, 2, 2)-sequenceis a sequence of three operations, of which
the first is a 0-operation and the next two are 2-operations. Since a 2-operation is the best possible in one
step, a series of (0, 2, 2)-sequences guarantees a 1.5 approximation ratio.

Definition 2. An odd cycle is calledorientedif there is a 2-operation that acts on three of its black edges;
otherwise, it is unoriented.

A configurationof cycles is a subgraph of the breakpoint graph that contains one or more cycles. There
are four possible configurations of single 3-cycles, which are shown in Fig.5a–d. It is easy to verify that
cyclesa andb are unoriented, whereasc andd are oriented (see Observation5 below).

Definition 3. A black edge is calledtwistedif its two adjacent gray edges cross each other in the circular
breakpoint graph. A cycle isk-twistedif k of its black edges are twisted. For example, in Fig.5 cyclea

is 0-twisted andc is 2-twisted.

Observation 5. A 3-cycle is oriented iff it is2- or 3-twisted.

Proof. For a 3-twisted cycle, a transposition is a 2-operation; for a 2-twisted cycle, a transreversal that
reverses the segment between the two twists is a 2-operation.�
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Fig. 6. (a) A pair of intersecting 3-cycles. (b) A pair of interleaving 3-cycles.

We now give terminology to describe certain configurations of cycles. A pair of black edges is said to
beconnectedif they are connected by a gray edge. A pair of connected black edges iscoupledif they are
read in the same direction when reading the edges along the cycle (for example, the top edges in Fig.5b
are coupled, and so are all pairs of edges in Fig.5a).

An arc is a segment of the circumference of a circular breakpoint graph.An arccontainsall black edges
whose endpoints belong to the arc’s segment. Letb = (i1, i2) andb′ = (j1, j2) be two black edges in the
breakpoint graph such thati1, i2, j1 andj2 occur in this order along the circle. Thenb andb′ inducetwo
disjoint arcs on the circle, one betweeni2 andj1 and the other betweenj2 andi1. Two arcs are called
adjacentif both endpoints of each arc are connected by gray edges to the endpoints of the other arc. (For
example, the arcs induced by the pairs (1, 2) and (4, 5) in Fig.7.)

Consider a cycleC and two of its black edgesb, b′. LetA be the arc induced byb andb′ that does not
contain any other black edge ofC (the other induced arc will contain all edges ofC exceptb andb′). We
shall refer to any black edge of another cycle as lyingbetween bandb′, if this edge is contained inA.

Two pairs of black edges are calledintersectingif they alternate in the order of their occurrence along
the circle.A pair of black edges intersects with cycleC, if it intersects with a pair of black edges that belong
to C. CyclesC andD intersectif there is a pair of black edges inC that intersect withD (see Fig.6a).
Two intersecting cycles are calledinterleavingif their black edges alternate in their order of occurrence
along the circle (see Fig.6b). Thus, the relation between two cycles is one of: (1) non-intersecting; (2)
intersecting but non-interleaving (which we will simply call intersecting); or (3) interleaving.

Given a breakpoint graphG(�), we define itscomplementas the graph formed fromG(�) by replacing
each black edge that connects�′

2i to �′
2i+1 with a black edge that connects�′

2i−1 to �′
2i (this notion

is related to Caprara’s Hamiltonian Matching[3]). By construction, every vertexi is connected in the
complement graph toi − 1 andi + 1, hence:

Observation 6. The complement breakpoint graph of a permutation is a cycle of length2n.

The following lemma, proved originally by[6], follows from the latter observation:

Lemma 7 (Gu et al.[6] ). Let (b1, b2) be a pair of coupled black edges. Then there exists another pair
of black edges that intersects with(b1, b2).

Proof. Suppose to the contrary that no pair intersects(b1, b2). Then the complement graph contains at
least two disjoint cycles, one in each of the arcs induced by the endpoints ofb1 andb2, in contradiction
to Observation6. �
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Fig. 7. A 5-cycle with signed canonical labeling(1, −4, −3, −2, 5).

Lemma 8. Let i1 and i2 be a pair of adjacent arcs. Then there exist two connected black edgesb1 and
b2 such that: (1) b1 is either ini1 or in i2; and(2) b2 is neither ini1 nor in i2.

Proof. Suppose to the contrary that no such gray edge exists. Then in the complement graph there is a
cycle that lies in arcsi1 andi2, but does not include all the vertices, a contradiction.�

A 1-twisted cycle is calledclosed(w.r.t. a configuration) if its two coupled edges intersect with some
other cycle in the configuration. A configuration isclosedif at least one of its 1-twisted cycles is closed;
otherwise it is calledopen. As we show next, any graph with a 1-twisted cycle has a closed configuration.

Observation 9. LetG(�) be a breakpoint graph that contains a1-twisted cycle C. ThenG(�) contains
a closed configuration.

Proof. By Lemma7 there exists another cycleD that intersects with the coupled edges ofC. The
configuration which consists of cyclesC andD is closed. �

2.5. Canonical labeling of cycles

In this section we develop a characterization of oriented cycles that allows us to borrow some of
the theory developed in[8] for unsigned permutations. A useful tool that we will require is the signed
canonical labeling2 of a cycle in a breakpoint graph, which we present next.

For a given cycleC (of any length), consider the labeling of its black edges obtained by labeling an
arbitrary edge by 1, and labeling the rest of the cycle’s black edges according to their occurrence in
clockwise order along the circle. Thesigned canonical labelingof C is the signed permutation obtained
by starting with the edge labeled 1 and reading the labels in the order they appear along the cycle, where
the signs stand for the direction in which the edge is read: An edge that is visited in the same direction
as the edge labeled 1 is positive, and otherwise it is negative (see Fig.7). This definition captures the
notion of twists in 3-cycles; indeed, a 0-twisted 3-cycle has labeling (1, 2, 3), a 1-twisted cycle has
labeling(1, −3, −2), etc. Note that a cycle typically has more than one possible canonical labeling, since
it depends on the choice of the first edge.

2A generalization of the notion of canonical labeling[4].
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Fig. 8. A general 5-cycle that has a canonical labeling that starts with 1, b, a. The dashed line stands for a path of two black
edges and two gray edges (the black edges can be located anywhere along the circle).
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Fig. 9. General 5-cycles that have a canonical labeling that starts with 1, −a, −b and 1, −b, a and 1, b, −a.

A canonical labeling of a 5-cycle is calledorientedif it starts with 1, b, a or 1, −a, −b or 1, −b, a or
1, b, −a, where 1< a < b. The motivation for this definition comes from the following observation:

Lemma 10. A 5-cycle is oriented iff it has an oriented canonical labeling.

Proof. A general 5-cycle that has a canonical labeling that starts with 1, b, a (where 1< a < b) is
depicted in Fig.8. A transposition that acts on 1, a andb transforms the cycle into two 1-cycles and one
3-cycle, showing that the 5-cycle is oriented. A general 5-cycle that has a canonical labeling that starts
with 1, −a, −b (resp., 1, −b, a or 1, b, −a) is depicted in Fig.9. In these cases we consider a transreversal
that acts on these three edges, while reversing the segment between edgesa andb (resp., 1 anda, or b

and 1). This operation breaks the 5-cycle into two 1-cycles and one 3-cycle, implying that the 5-cycle is
oriented.

Conversely, consider a 5-cycleC that admits a 2-operation. By definition, this operation creates two
1-cycles and one 3-cycle. An example for the case of a 2-transposition is given in Fig.8. Thus, starting
clockwise with the edge that will be part of the 3-cycle as edge 1, we obtain the requested canonical
labeling (see, e.g., Fig.8). �

Lemma 11. Let C be a5-cycle that admits a2-transposition, and let D be a cycle that has the same
canonical labeling as C, up to flipping the sign of one element. Then D is also oriented.

Proof. By the proof of Lemma10, C has a canonical labeling that starts with 1, b, a, where 1< a < b.
Let x be the element whose sign is flipped. Ifx is one of the last two elements in the canonical labeling
thenD still has a labeling that starts with 1, b, a and, thus, admits a 2-transposition. Ifx is the second
(resp., third) element ofD thenD has a canonical labeling that starts with 1, −b, a (resp., 1, b, −a).
Hence, by Lemma10the 5-cycle is oriented. Ifx is the first element, we observe that the reflection ofD

has a canonical labeling that starts with 1, −a, −b. �
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3. The algorithm

In this section we provide a 1.5 approximation algorithm for sorting by transpositions and tran-
sreversals. We first develop an algorithm for sorting 3-permutations, and then use the results of Section
2.3 to generalize it to arbitrary permutations. By definition, an oriented cycle can be eliminated by a 2-
operation that acts on its black edges. Thus, from now on, we will only consider unoriented cycles. Since
configurations involving only 0-twisted cycles were handled in[8], by Observation9 we may restrict
attention to closed configurations. For each possible closed configuration we shall prove the existence of
a (0, 2, 2)-sequence of operations.

A 1-twistedpairis a pair of 1-twisted cycles, whose twists are consecutive on the circle in a configuration
that consists of these two cycles only. The following lemma deals with interleaving cycle pairs:

Lemma 12. Let � be a permutation that contains two unoriented, interleaving cycles C and D that do
not form a1-twisted pair. Then� admits a(0, 2, 2)-sequence.

Proof. If both cycles are 0-twisted then a (0, 2, 2)-sequence of transpositions is given in[8]. Suppose
thatC is 0-twisted andD 1-twisted (resp., both are 1-twisted and their twists are not consecutive on the
circle). First apply a 0-transposition that acts on the black edges ofC. This makesD 2-twisted, so it is
possible to eliminate it using a 2-transreversal. The latter operation makesC 2-twisted (resp., 3-twisted).
A 2-transreversal (resp., 2-transposition) onC completes the (0, 2, 2)-sequence. The (0, 2, 2)-sequences
are depicted in Fig.10. �

In order to deal with intersecting cycles we use the notion of canonical labeling of cycles, defined in
Section2.5. The following lemma handles the case of two intersecting 0-twisted cycles.

Lemma 13. Let� be a permutation that contains a closed configuration with two intersecting, 0-twisted
cycles C and D. Then� admits a(0, 2, 2)-sequence.

Proof. SinceC andD are intersecting,C has a pair of coupled edges that do not intersect withD. By
Lemma7 there exists a cycleE that intersects with this pair of edges. The case in whichE is 0-twisted
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x *

x

x

*

*

*

x

*

x *

x

x

Fig. 10. (0, 2, 2)-Sequences for the two cases of two interleaving cycles considered in Lemma12. Here and throughout the paper,
three asterisks represent a transposition that acts on the three marked black edges. Two x’s and a asterisk stand for a transreversal
that acts on the three marked edges and reverses the segment between the two x’s.
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Fig. 11. (0, 2, 2)-sequences for three 0-twisted cycles, where two of the cycles are non-intersecting, and a third one intersects
both (taken from[8]). At each step the transposition acts on the three black edges marked by an asterisk. For simplicity, every
1-cycle is shown only when it is formed and not in subsequent graphs.

F

*
d

e2

*

*

C

e1

ED
C

F

Fig. 12. Three mutually intersecting 0-twisted cycles (taken from[8]). A dashed line represents a path.

was treated in[8]. If E is 1-twisted there are two cases to consider:

1. D andE are non-intersecting. Our starting point is the (0, 2, 2)-sequences for configurations of three
0-twisted cycles given in Fig.11, where two of the cycles are non-intersecting, and the third one
intersects both. In our case, one of the non-intersecting cycles corresponds toE and is 1-twisted.
Depending on the location of the twist inE, it is always possible to apply the first two transpositions
shown in Fig.11 to the closed configuration—the first transposition is applied to the edges shown
in the figure, if all are non-twisted, or to a symmetric set of edges. Since the three configurations
given here are symmetric with respect to the two non-intersecting cycles, we can ensure that the black
edge(s) from cycleE that are involved in the transposition do not include a twist. Indeed, if this is not
the case, we simply exchange the choice of edges betweenD andE, choosing in each case symmetric
edges from the other cycle. By Lemma11, the resulting 5-cycle is oriented, which completes the
(0, 2, 2)-sequence.

2. D andE are intersecting. Consider the (0, 2, 2)-sequences for three mutually intersecting 0-twisted
cycles given in Fig.12. In our case eitherD orE are 1-twisted. If all three edgesd, e1 ande2 that are
cut by the first transposition are non-twisted, we apply the first two transpositions as in Fig.12. By
Lemma11, the resulting 5-cycleF is oriented. The same holds for any set of symmetric edges that are
non-twisted. The only closed configurations in which no such symmetric set is possible is when some
arc induced by a pair of black edges ofC contains a single twist. There are three such configurations,
for which (0, 2, 2)-sequences are described in Fig.13. �
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(a) (b) (c)

Fig. 13. (0, 2, 2)-sequences for some cycle configurations that contain two intersecting 0-twisted cycles. First we apply a 0-tran-
sreversal on the three marked edges, such that the segment between the two x’s is reversed, resulting in an oriented 3-cycle and
a 5-cycle. Next, we eliminate the oriented 3-cycle and are left with a 5-cycle, which can be verified to be oriented by Lemma
10. Hence, a (0, 2, 2)-sequence is possible.

Fig. 14. Examples of configurations that admit a(2, 2)-sequence by (a) Observation14and (b) Observation16.

Next, we deal with closed configurations that include two intersecting, 1-twisted cycles. We need the
following observations:

Observation 14. Let� be a permutation that contains a2-twisted cycle C and a1-twisted cycle D, such
that C and D are intersecting and none of the arcs induced by the two twists of C contains both non-twists
of D (see, e.g., Fig. 14(a)).Then� admits two consecutive2-operations.

Proof. Applying a 2-transreversal onC eliminates it, while makingD 2-twisted. Thus, two consecutive
2-operations are possible.�

Observation 15. Let C be a2-twisted cycle such that in a given configuration there are no black edges
from other cycles between its two twists. Then it is possible to apply a2-operation on C that does not
affect other cycles in the configuration.

Proof. A 2-transreversal onC switches the segment between its two twists with a segment between a
twist and a non-twist ofC. Since the former segment does not involve black edges from other cycles in
the configuration, the claim follows.�

Observation 16. Let C and D be two2-twisted, interleaving cycles. Then these cycles admit two con-
secutive2-operations iff at least three of their twists are consecutive on the circle.

Proof. Suppose thatC andD have at least three consecutive twists (see, e.g., Fig.14(b)). Then a 2-
operation on any of them leaves the other cycle 2-twisted, and the claim follows. Conversely, suppose
to the contrary that the non-twist of each cycle lies between the two twists of the other cycle (which is
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Fig. 15. Closed configurations of two intersecting 1-twisted cycles.

the only configuration in which there are no three consecutive twists). Then a 2-operation on one cycle
makes the other one 0-twisted, a contradiction.�

Lemma 17. Let� be a permutation that contains a closed configuration with two intersecting, 1-twisted
cycles C and D. Then� admits a(0, 2, 2)-sequence.

Proof. There are six possible cases, shown in Fig.15. For cases (a–d), we first apply a 0-reversal that
acts on the black edges that are marked by an asterisk. This makes the other cycle 2-twisted, and two
additional 2-operations follow from Observation14. For cases (e–f), we observe that by Lemma7 there is
another cycle that has a black edge in the arc denotedx, and a black edge in one of the other five arcs. We
apply a reversal that acts on these two edges of the third cycle. If the edges are coupled then the reversal
does not affect the cycle. Otherwise, it breaks this 3-cycle into a 1-cycle and a 2-cycle (which we safely
transform into a 3-cycle). Thus, in both cases the reversal is a 0-operation. To show that two 2-operations
follow, we consider three possible cases with respect to the resulting configuration ofC andD:

• The resulting configuration consists of a 1-twisted cycle and a 2-twisted cycle. In all cases the config-
uration fulfills the condition of Observation14and, thus, two 2-operations follow.

• C and D intersect and are both 2-twisted. In all cases one of the cycles fulfills the condition of
Observation15and can be eliminated, while leaving the other cycle 2-twisted. Thus, two 2-operations
are possible.

• C andD interleave and are both 2-twisted. In all casesC andD have at least three consecutive twists
on the circle, and two 2-operations follow from Observation16. �

The following two lemmas deal with closed configurations that involve two intersecting cycles, one of
which is 0-twisted and the other 1-twisted.

Lemma 18. Let � be a permutation that contains a0-twisted cycle C that intersects with the coupled
edge pairs of two non-intersecting, 1-twisted cycles D and E. Then� admits a(0, 2, 2)-sequence.

Proof. Since cyclesD andE both intersect withC, there is an arca induced by two black edges of
C that includes edges from bothD andE. We apply a 0-transreversal on the edges ofC that reverses
a. In the resulting permutation,D andE are both 2-twisted and remain non-intersecting, implying two
2-transreversals. An example of such a (0, 2, 2)-sequence is given in Fig.16. �

Lemma 19. Let � be a permutation that contains a0-twisted cycle, which intersects with the coupled
edges of a1-twisted cycle. Then� admits a(0, 2, 2)-sequence.
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Fig. 16. One possible scenario of Lemma18. C is a 0-twisted cycle that intersects with the coupled edge pairs of two
non-intersecting, 1-twisted cyclesD andE. First we apply a 0-transreversal on the three marked edges. Now bothD and
E become oriented and remain non-intersecting, allowing two 2-transreversals.
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Fig. 17. Closed configurations consisting of two intersecting cycles, such that one is 0-twisted and the other is 1-twisted.
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Fig. 18. (0, 2, 2)-sequences for configurations described in Table1.

Proof. There are two possible configurations of a 0-twisted cycleC that intersects the coupled edges of
a 1-twisted cycleD, depicted in Fig.17. By Lemma7, there is another cycleE that has a black edge in
the arc marked byx, and in some other arc(s) (see Fig.17). If E is 0-twisted then a (0, 2, 2)-sequence
follows from Lemma13. Otherwise,E is 1-twisted and (0, 2, 2)-sequences for all possible configurations
are summarized in Table1 (see also Fig.18). �
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Table 1
(0, 2, 2)-sequences for the two configurations shown in Fig.17

Configuration of 2nd black edge 3rd black edge of Twisted edge (0, 2, 2)-
cyclesC & D of E in arc E in arc in arc sequence by

a,b 1 2 all cases Lemma17
a,b 1 or 2 3 or 4 or 5 all cases Lemma12
a 3 4 4 Figure18(k)
a 3 4 x Figure18(l)
a 3 4 3 Lemma12
b 3 4 4 Figure18(n)
b 3 4 x Lemma12
b 3 4 3 Figure18(o)
a,b 3 5 all cases Lemma17
a 4 5 4 Figure18(m)
a 4 5 x or 5 Lemma17
b 4 5 all cases Lemma17
a,b 1, 5 same arc E closed byC Lemma18
a 1, 5 same arc E not closed byC Figure18(a–d)
b 1, 5 same arc E not closed byC Figure18(e–h)
a,b 2, 3 same arc all cases Lemma17
a 4 same arc E not closed byC Figure18(i–j)
a 4 same arc E closed byC Lemma17
b 4 same arc all cases Lemma17

Each row of the table describes possible configurations of cyclesC, D andE. The first column indicates to which of the two
configurations from Fig.17this row refers. As explained in the proof of Lemma19, cycleEhas black edges in arcxand in some
other arc(s), with the possible locations listed in the second and third columns. The fourth column specifies the location of the
twist of E, completing the description of the configuration of cyclesC, D andE. The last column points to a reference for a
(0, 2, 2)-sequence in each case.

The final configuration that needs to be taken care of involves 1-twisted pairs of interleaving cycles.
This case is handled by the following lemma:

Lemma 20. Let � be a permutation that containsk�2 mutually interleaving1-twisted cycles, such
that all their twists are consecutive on the circle and k is maximal with this property. Then� admits a
(0, 2, 2)-sequence.

Proof. Such an arrangement is possible iff the edges of all cycles alternate along the circle (see Fig.19).
Consider the arc induced by the twist of thekth cycle and the first non-twisted edge of the first cycle;
further consider the arc induced by the twist of the first cycle and the second non-twisted edge of thekth
cycle. These two arcs (marked by an asterisk in Fig.19) are adjacent, so by Lemma8 there is a cycleC
that has a black edge in one of these arcs, and another black edge in some other arc.

Now, ifC interleaves with one of thek interleaving cycles then a (0, 2, 2)-sequence follows from Lemma
12(the case in whichC is 1-twisted and interleaves with allk cycles is impossible, since it contradicts the
maximality ofk). If C has an edge that lies between the two non-twists of one of thek cycles, then these
two intersecting cycles form a closed configuration; a (0, 2, 2)-sequence then follows from Lemma19, if
C is 0-twisted (resp., Lemma17, if C is 1-twisted). IfC is 1-twisted, has an edge between two twists of
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Fig. 19. Mutually interleaving 1-twisted cycles.
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Fig. 20. (0, 2, 2)-sequences for some closed configurations that involve a 1-twisted pair and a third cycle that intersects at least
one of the other cycles.

thek cycles and forms a closed configuration with one of the cycles it intersects, then a (0, 2, 2)-sequence
follows from Lemma17. There are five other configurations that are not covered by these cases. The five
configurations and (0, 2, 2)-sequences for them are depicted in Fig.20. �

We are now ready to describe our sorting algorithm, which is given in Fig.21. For 3-permutations,
Step 2 suffices for the sorting and we call this partAlgorithm Sort3Perm. The following lemma shows
that Algorithm Sort3Perm is a quadratic 1.5-approximation algorithm for sorting 3-permutations:

Lemma 21. AlgorithmSort3Permis a1.5-approximation algorithm for sorting3-permutations, running
in timeO(n2).

Proof. First, we observe that it suffices to consider only closed configurations, since for configurations
that contain only 0-twisted cycles a (0, 2, 2)-sequence is given in[8]; in all other cases, by Observation9
there must exist a closed configuration.

The sequence of operations that is generated by the algorithm contains only 2-operations and
(0, 2, 2)-sequences of operations. Therefore, every sequence of three operations increases the number
of odd cycles by at least 4 out of 6 possible in 3 steps (as implied from the lower bound of Theorem 3).
Hence, the approximation ratio is 1.5.

We now analyze the running time of the algorithm. The number of iterations in step 2 is linear, since
in every iteration two cycles are eliminated and there is a linear number of cycles. Deciding whether
two given cycles are interleaving or intersecting can be done in constant time. Thus, the bottleneck in
each iteration is to apply an operation to the permutation, and to find an arbitrary cycle that intersects a
given coupled pair of black edges (Step 2b). The latter task can be performed by a procedure that finds
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Fig. 21. Algorithm Sort. (∗) If any oriented cycle is found to be involved in the resulting configurations, a 2-operation is applied
to it and the algorithm continues with the next iteration.

an arbitrary pair of connected black edges that intersects with a given pair of connected black edges.
These tasks can be done easily in linear time. The number of new 2-cycles introduced in each iteration
is constant and, therefore, Step 2g takes constant time. Overall, the algorithm can be implemented in
quadratic time. �

Now we are ready to prove the correctness of Algorithm Sort:

Theorem 22. AlgorithmSort is a 1.5-approximation algorithm for sorting arbitrary permutations by
transpositions and transreversals, and it runs in timeO(n2).

Proof. By Lemma21, we are guaranteed thatalg(�̂)�1.5d(�̂), wherealg(�̂) is the number of operations
used by Algorithm Sort3Perm to sort�̂. Thus, by Theorem3

alg(�̂)�1.5d(�̂)�1.5

(
n(�̂) − codd(�̂)

2

)
= 1.5

(
n(�) − codd(�)

2

)
�1.5d(�).

Using Lemma4, we can sort� by alg(�̂) operations, which implies an approximation ratio of 1.5.
Since the transformation into 3-permutations can be done in linear time, Lemma21 implies that the

running time of Algorithm Sort isO(n2). �

4. AnO(n3/2√log n) implementation of Algorithm Sort

In this section we give a faster implementation of Algorithm Sort, using a special data structure,
introduced in[11]. As explained in the proof of Lemma21, the bottleneck in each iteration is to apply an
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( 1  2  11  12  10     9  7  8  14  13    6  5  3  4  )
9   13    5      10    3             8   11   6     1      4    7   14  2   12

(a)

[ 10  11  1  12  2 ]   [ 14  13  8  9  7 ]   [ 3  6  4  5 ]
(b)

Fig. 22. Let� = (1 6 − 5 4 − 7 − 3 2), f (�) = (1 2 11 12 10 9 7 8 14 13 6 5 3 4). (a) Partition of the permutation
into roughly�(

√
n/ log n) blocks. Below each element, the location of its mate in� is indicated. (b) The internal order of the

elements in each block (according to the order of their mates in�.)

operation to the permutation, and to find an arbitrary cycle that intersects a given coupled pair of black
edges (Step 2b). In the sequel we describe a data structure that allows to perform these tasks in sub-linear
time. This data structure is similar to the one suggested by Kaplan and Verbin in[11], although here the
required tasks are slightly different.

For clarity, we describe the data structure for linear permutations. Consider the doubled permutation
f (�) (see Section2.2), which is denoted here simply by�. A connected pair of black edges (b1, b2) is
represented by the pair (2i, 2i +1), which is connected by a gray edge. Thus,� is a union of disjoint pairs.
The two elements in each pair are calledmates. We need a data structure that supports the following tasks
in sub-linear time:

• Query(�, e1, e2): Find a pair that intersects (e1, e2) in �.
• Operation(�, e1, e2, e3): Apply an operation on� that cuts before elementse1, e2 ande3 (for reversals

e2 = e3).

Next, we describe the data structure. The permutation� is divided into�(
√

n/ log n) blocks of size
�(

√
n log n) each. The elements in each block are ordered according to the order of their mates in� (see

an example in Fig.22). A splay tree[15] is attached to each block, in which the elements of the block
are maintained. This is a balanced binary search tree that is re-balanced via rotations, and supports splits
and concatenations in logarithmic time. We also maintain a lookup-table that contains for each element
a pointer to its block.

In order to maintain signed permutations we introduce a “reverse” flag for each node in the splay tree.
This flag indicates whether the elements of its subtree should be reversed (in order and sign). The reverse
flag of a node can be flipped by exchanging the order of its two children, and flipping their own flags.
The ability to clear the reverse flag allows us to implement splits and concatenations, while correctly
maintaining the permutation[11].

As shown in[11], we may assume that queries and operations involve only elements that are on block
boundaries. More specifically, for queries we assume in the sequel thate1 is the first element in its block
ande2 is the last element in its block. For operations we assume in the sequel thate1, e2 ande3 are all
first elements in their blocks.

Lemma 23. Tasks Query and Operation can be performed in timeO(
√

n log n).

Proof.

• Query(�, e1, e2): Let B1 andB2 be the blocks that containe1 ande2 (the blocks are found by using the
lookup-table) and assume, w.l.o.g., thatB1 is located beforeB2. For each block which is beforeB1 or



T. Hartman, R. Sharan / Journal of Computer and System Sciences 70 (2005) 300–320 319

afterB2 do the following: Split the attached splay tree after locatione1 and beforee2, and consider
the subtree that is bounded by these two elements. If this subtree is not empty then pick an arbitrary
element in it. By construction, this element and its mate are intersecting with (e1, e2), i.e., the query
is answered. Otherwise, continue to the next block. The split is done in logarithmic time. Since there
areO(

√
n/ log n) blocks between blocksB1 andB2, the total time isO(

√
n log n).

• Operation(�, e1, e2, e3): A transposition can be done by applying three reversals, and a transreversal
or a revrev can be mimicked by two reversals. Since a reversal takes timeO(

√
n log n) [11], all

operations can be done within the same time bound.�

Corollary 24. Each iteration in Step2 of Algorithm Sort can be implemented in timeO(
√

n log n).

We are now ready to state the main result of this paper:

Theorem 25. Algorithm Sort is a1.5-approximation algorithm for sorting by transpositions and
transreversals, which runs in timeO(n3/2√log n).

Proof. The number of iterations in the algorithm is linear. By Corollary24, each iteration can be
implemented in timeO(

√
n log n). In total, the algorithm runs in timeO(n3/2√log n). �
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