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Abstract

One of the most promising ways to determine evolutionary distance between two organisms is to compare the
order of appearance of orthologous genes in their genomes. The resulting genome rearrangement problem calls
for finding a shortest sequence of rearrangement operations that sorts one genome into the other. In this paper we
provide a 1.5-approximation algorithm for the problem of sorting by transpositions and transreversals, improving
on a five-year-old 1.75 ratio for this problem. Our algorithm is also faster than current approaches and requires
0 (n®2./log n) time forn genes.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

When trying to determine evolutionary distance between two organisms using genomic data, one wishes
to reconstruct the sequence of evolutionary events that have transformed one genome into the other. One
of the most promising ways to trace the evolutionary events is to compare the order of appearance of
orthologous genes in two different genonfig4,10] This comparison, which relies on computing global
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rearrangement events, may provide more accurate and robust clues to the evolutionary process than the
analysis of local mutations.

In a genome rearrangement problem, the two compared genomes are represented by permutations
where each element stands for a gene, and the goal is to find a shortest sequence of rearrangemer
operations that transformsdrtg one permutation into the other. Previous work focused on the problem
of sorting a permutation by reversal operations. This problem was shown to be NP-hard by {(3dpCara
of the most celebrated results in this area by Hannenhalli and Pevzner shows that for signed permutations
(every element of the permutation has a sign, which represents the direction of the corresponding gene;
a reversal reverses the order of the elements in a segment and flips their signs), the problem become:
polynomial[7]. The algorithm is based on representing a permutation using a breakpoint graph (we defer
a formal definition to SectioB) which decomposes uniquely into disjoint cycles, and studying the effect
of a reversal on its cycle decomposition. There has been less progress on sorting problems with respect
to other operations, such as transpositions and transreversals.

Atransposition is a rearrangement operation in which a segment is cut out of the permutation and pasted
in a different location. The complexity of sorting by transpositions is still open, although several 1.5-
approximation algorithms are known forf{&,4,8], and, very recently, a 1.375-approximation algorithm
was given for this problerb].

Atransreversal is another biologically motivated operation that combines a transposition and a reversal:
a segment is cut out of the permutation, reversed and pasted in another location. In particular, a reversal
is also a transreversal. Gu et B8] gave a 2-approximation algorithm for sorting signed permutations
by transpositions and transreversals. Lin and XL@® improved this ratio to 1.75 by considering a
third rearrangement operation, called revrev, which reverses two contiguous segments. Walter et al.
[16] considered the problem of sorting by transpositions and reversals (without transreversals). For the
signed (resp., unsigned) case they provided a 2-approximation (resp., 3-approximation) algorithm. All
the algorithms mentioned above run in quadratic time.

In this paper we study the problem of sorting permutations by transpositions, transreversals and revrevs.
The question of whether the 1.75 known ratio for this problem can be improved, has been open for 5 years.
One of the main difficulties in tackling the complexity of this problem is the vast number of possible
configurations that need to be considered when analyzing general linear permutations. We make four
contributions toward greatly simplifying the problem. First, we show that the sorting problem is equivalent
for linear and circular permutations. This reduction allows us to restrict attention to two operations only—
transpositions and transreversals. Second, we reduce the general problem of sorting a circular permutatior
to that of sorting a permutation with a very simple structure: In its breakpoint graph representation all
non-trivial cycles are of length 3. Third, we characterize cycle configurations in the breakpoint graph and
show that it suffices to restrict attention to one type of configuration. Fourth, we develop and characterize
a novel cycle representation, which allows us to use previous results on sorting by transpositions only in
further eliminating cycle configurations. These characterizations and simplifications are key to our main
result: a 1.5-approximation algorithm for sorting both linear and circular permutations by transpositions
and transreversals. Furthermore, we exploit a data structure introdJdddiio implement the algorithm
in time O (n®2,/log n), thus improving on the quadratic running time of previous algoritféyi2].

Our results borrow ideas from our earlier work on sorting by transpositiond®hlgriefly, the latter
paper presents a 1.5-approximation algorithm for sorting by transpositions, which is based on reducing the
problem to that of handling circular permutations with simple structure. Here we extend this reduction to
signed permutations under both transpositions and transreversals, and show that an even simpler structur
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can be obtained. We also develop novel characterizations of cycle configurations, allowing us to use some
of the sorting techniques presented8ih These characterizations are complemented by a detailed case-
analysis of the cycle configurations that may arise during the sorting process, which are more involved
than in the unsigned case.

The paper is organized as follows: Background on rearrangement operations, permutations and their
representation are given in Sectidnwhere we also describe the reduction to sorting simple circular
permutations. The approximation algorithm is given in Secdidfinally, theO (»%2./log n) implemen-
tation of the algorithm is described in Sectidn

2. Preliminaries

A signed permutatiom = [n1 ... m,] onn(x) = n elements is a permutation in which each el-
ement is labeled by a sign of plus or minus.sAgmenbf = is a consecutive sequence of elements
i, ..., (k>i). We focus on four rearrangemeoyterations A reversalp is an operation that reverses
the order of the elements in a segment and flips their signs. If the segment.is, n;_; thenp - = =
[n1, ..., -1, —7j_1,..., —m, @, ..., m,]. TWOo segments;, ..., 7 andn;, ..., n; arecontiguousf
j = k+1ori =[1+1.Atranspositiont exchanges two contiguous (disjoint) segments. If the segments are
A=m,...,mj—1andB =nj,...,m_1thent-n = [ng, ..., M1, ), ..., M1, Wiy oo, W1, Ty -

n,] (note thatthe end segments can be emptydfl ork = n+-1). Atransreversatp,  is atransposition
thatexchanges segmentandB and alsoreverses, i.e.,tpy p-n = [n1, ..., -1, W), ..., M1, —7j 1,
ey =T, Ty . Ty andrpB’A o= M, My e T Ty ey — Ty Ty e T, Ty e T
A revrev operation reverses each of the two segments (without transposing them).pphus, =
M1, ... Mo, =T, e, TG, T2y ey — T, Tk e T

The problem of finding a shortest sequence of transposition, transreversal and revrev operations that
transforms a permutation into the identity permutation is calating by transpositions and transrever-
sals! Thedistanceof a permutatiorr, denoted byi(z), is the length of the shortest sorting sequence.

2.1. Linear vs. circular permutations

Key to our approximation algorithm is a reduction from the problem of sorting linear permutations to
that of sortingcircular permutations (indices are cyclic), on which the analysis is simpler. An operation
is said tooperateon the segments that are affected by it and on the elements in those segments. We say
that two operationg andy’ are equivalentif they have the same effect, i.e., = = ¢/ - = for all =.
The following lemma is the basis for the reduction, and is used to prove the subsequent theorem on the
equivalence of the sorting problem for linear and circular permutations, similaf®}.to

Lemma 1. Let x be an element of a circular permutatienand letu be an operation that operates on
X. Then there exists an equivalent operatiothat does not operate on x

1We do not include revrevs in the problem name, as we provide in the next section a reduction of the problem that allows us
to mimic revrevs using transreversals.
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Q equivalence Q
transreversal revrey,

-B C

Fig. 1. The equivalence of operations on circular permutations.

Proof. For reversals, this result was proven by Meidanis ef1d]; for transpositions this was shown

by Hartman8]. For transreversals and revrevs, the claim relies on the observation that a chromosome is
equivalent to itgeflection i.e., the reversed sequence of elements with their signs flig@dsee the

upper part of Figl). Consider a permutation with three segmentsB andC, wherex € A. Then a
transreversal that operates on segmengnd B and reverse® (resp.,A) is equivalent to a revrev that
operates oM andC (resp.,B andC), since the result is a reflection of the permutation (as illustrated in
Fig. 1). Similarly, a revrev that operates @nand B (or C) is equivalent to a transreversal that operates
onBandC. 0O

Theorem 2. The problem of sorting linear permutations by transpositions and transreversals is linearly
equivalent to the problem of sorting circular permutations by transpositions and transreversals.

Proof. Given a lineam-permutation, circularize it by adding an additional element; = n + 1 and
closing the circle. Denote the new circular permutationzbyBy Lemmal, any operation o can
be mimicked by an operation that does not involve the segment that includels Hence, there is an
optimal sequence of operations that saftsuch that none of them operates on segments that include
n 4+ 1. The same sequence can be viewed as a sequence of operations on the linear permbtation
ignoringn + 1. This implies thatl (=) <d(z). On the other hand, any sequence of operationsisialso
a sequence of operations afy sod () <d(n). Henced(r) = d(=“). Moreover, an optimal sequence
for ¢ implies an optimal sequence for

Conversely, starting with a circular permutation, we can linearize it by removing an arbitrary element,
which plays the role ofi + 1 above. Using similar arguments as in the first direction of the proof, we
conclude that an optimal solution for the linear permutation translates to an optimal solution for the
circular one. O

We observe that for circular permutations revrevs and transreversals are equivalent operations. Thus,
for circular permutations we can restrict attention to transpositions and transreversals, which are better
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Fig. 2. The circular breakpoint graph of the permutation= (1 — 4 6 — 5 2 — 7 — 3), for which f(r) =
(12871112109 34 14 13 6)5Black edges are represented as thick lines on the circumference, and gray edges are
chords.

motivated biologically compared to revrevs. Moreover, combined with The@rdhis observation im-

plies that one can reduce the problem of sorting a linear permutation by transpositions, transreversals
and revrevs to that of sorting a circular permutation by transpositions and transreversals only. We note
that the problem of sorting circular permutations is important on its own, since many genomes including
mitochondrial and bacterial ones are circular.

2.2. The breakpoint graph

We follow the construction of Bafna and Pevzner for representing signed permutgfjor#rst, a
permutation: onn elements is transformed into a permutatjtix) = 7’ = (7] ... n5,) on 2z elements.
f(n) is obtained by replacing each positive elemenith two elements 2— 1, 2i (in this order), and
each negative element witli, 2i — 1. For the extended permutatigiir), only operations that cut before
odd positions are allowed. This ensures that every operatigf{encan be mimicked by an operation
onr. In the rest of the paper we identify, in both indices and elements; 2 and 1.

Definition 1. The breakpoint graphG (=) is an edge-colored graph om Zertices{1, 2, ..., 2n}. For
every 1<i<n, m is joined tor,,  , by a black edge, andi 2s joined to 2 + 1 by a gray edge.

Itis convenient to draw the breakpoint graph on a circle, such that black edges are on the circumference
and gray edges are chords (see RjgSince the degree of each vertex is exactly 2, the graph uniquely
decomposes into cycles.&cycleis a cycle withk black edges, and it isddif k is odd.k is called the
lengthof the cycle. The number of odd cycles@i(r) is denoted byoqq(). Gu et al.[6] have shown
that for all linear permutations and operationg (reversals, transpositions, transreversals or revrevs), it
holds thatcogq(i - ©) <cogd(n) + 2. Their result holds also for circular permutations and can be used to
prove the following lower bound od(x):
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Fig. 3. A(g, b)-split (taken from[8]). A dashed line indicates a path.
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Fig. 4. (a) The breakpoint graph of the permutatioa: (1, —3, —4, 2, —5). (b) The graph of1, —3, -5, 4, 2, —6), which is
obtained by gC, b)-padding, wheré = (3, 7) andC is the 2-cycle containing.

Theorem 3(Gu et al.[6]). For all permutationsr, d(n) > (n(xn) — cogd(n))/2.
2.3. Transformation into 3-permutations

Our goalin this section is to transform the input permutation into a permutation with simple structure, to
which we can apply our algorithm and mimic its steps on the original permutation. A permutation is called
simpleif its breakpoint graph contains ontycycles, wheré < 3. Itis called a 3permutatiorif it contains
only 1-cycles and 3-cycles. A transformation fratto 7 is calledsafeif 7 () — cogd(n) = n(n) — codd(n),

i.e., if it maintains the lower bound of Theore3nNext, we show how to transform an arbitrary permu-
tation into a 3-permutation using safe transformations. We note that the transformation maintains only
the lower bound, not the exact distance. Our starting point is the standard safe transformation into simple
permutations (cf[8]). For completeness, we describe it briefly in the sequel.

The transformation into a simple permutation is done by a series of safe cycle splits=L@#t,, w,) be
ablack edge ang = (v, w,) be a gray edge belonging to the same cytle (..., vy, wp, ..., wy, Vg,
...)InG(m).A (g, b)-splitof G(r) creates a new grapli(z) with one more cycle by: (1) removing edges
b andg; (2) adding two new vertices andw; (3) adding new black edgé&s,, v) and(w, wp); and (4)
adding new gray edgéws,, w) and(v, v,). This transformation is demonstrated in R3gThe reader is
referred td8] for a proof that a split results in a new permutation (with one more element) and that every
permutation can be transformed into a simple one using safe splits.

It remains to show how to convert 2-cycles into 3-cycles using safe transformatioi@sbkeet 2-cycle
and leth = (n);, 75, 1) be one of its black edges. &, b)-paddingextends the original permutation
by adding a new elemenrt + 1, and renaming all elemenis> =; + 1 by j + 1 (the renaming is done on
the absolute values of the elements and then their signs are reintroduced3ésyenamed te-4). The
new element;; + 1 has the same sign as, and is placed after (resp., beforg)if it is positive (resp.,
negative). Finally, the sign of; is flipped. The effect on the breakpoint graph is t8as transformed
into a 3-cycle (see Figl for an example). Overall, the permutation after the padding has an additional
element and one more odd cycle.
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Fig. 5. Configurations of 3-cycles. (a,b) Unoriented 3-cycles. (c,d) Oriented 3-cycles.

Lemma 4. Every simple permutation can be transformed into 8-permutationz by safe paddings.
Moreover every sorting oft mimics a sorting ofc with the same number of operations.

Proof. Letr be a simple permutation that contains a 2-cy¢jend leth € C. Let = be the permutation
obtained by applying &C, b)-padding tor. Clearly,n(n) = n(x) + 1 andcogd(t) = codd(n) + 1, SO

the padding is safe. This process can be repeated until a 3-permutéiobtained. Sincé is obtained

from = by padding new elements, every operationroten be mimicked or by ignoring the padded
elements. O

In the rest of the paper we shall restrict attention to circular 3-permutations and often refer to the
3-cycles in our breakpoint graph simply as cycles. In Sec3iove show how to sort a 3-permutation
using at most Bl operations, wherkis the lower bound of Theoref By Theoren? and Lemmat this
implies a 1.5-approximation algorithm for sorting arbitrary circular and linear permutations.

2.4. Cycle configurations

An operation that cuts some black edges is saidctoonthese edges. It is calledkaoperationif it
increases the number of odd cycleskb (0, 2, 2)sequencés a sequence of three operations, of which
the first is a 0-operation and the next two are 2-operations. Since a 2-operation is the best possible in one
step, a series of (0, 2, 2)-sequences guarantees a 1.5 approximation ratio.

Definition 2. An odd cycle is calledrientedif there is a 2-operation that acts on three of its black edges;
otherwise, it is unoriented.

A configurationof cycles is a subgraph of the breakpoint graph that contains one or more cycles. There
are four possible configurations of single 3-cycles, which are shown irb&igl. It is easy to verify that
cyclesa andb are unoriented, whereasandd are oriented (see Observatibielow).

Definition 3. A black edge is calletivistedif its two adjacent gray edges cross each other in the circular
breakpoint graph. A cycle is-twistedif k of its black edges are twisted. For example, in Eigyclea
is O-twisted and is 2-twisted.

Observation 5. A 3-cycle is oriented iff it i2- or 3-twisted.

Proof. For a 3-twisted cycle, a transposition is a 2-operation; for a 2-twisted cycle, a transreversal that
reverses the segment between the two twists is a 2-operation.
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Fig. 6. (a) A pair of intersecting 3-cycles. (b) A pair of interleaving 3-cycles.

We now give terminology to describe certain configurations of cycles. A pair of black edges is said to
beconnectedf they are connected by a gray edge. A pair of connected black edgesptedif they are
read in the same direction when reading the edges along the cycle (for example, the top edgébin Fig.
are coupled, and so are all pairs of edges in b&).

An arcis a segment of the circumference of a circular breakpoint graph. Asoatainsall black edges
whose endpoints belong to the arc’s segmentblet (i1, i2) andb’ = (j1, j») be two black edges in the
breakpoint graph such that, i, j1 and j> occur in this order along the circle. Thérandb’ inducetwo
disjoint arcs on the circle, one betweenand j; and the other betweej» andi;. Two arcs are called
adjacentf both endpoints of each arc are connected by gray edges to the endpoints of the other arc. (For
example, the arcs induced by the pairs (1, 2) and (4, 5) inF)g.

Consider a cycl€ and two of its black edgds b'. Let A be the arc induced blyand?’ that does not
contain any other black edge 6f(the other induced arc will contain all edgestoexceptb andb’). We
shall refer to any black edge of another cycle as lypegveen tandp’, if this edge is contained id.

Two pairs of black edges are calledersectingf they alternate in the order of their occurrence along
the circle. A pair of black edges intersects with cy€léf it intersects with a pair of black edges that belong
to C. CyclesC andD intersectif there is a pair of black edges @ that intersect witlD (see Fig6a).

Two intersecting cycles are calléterleavingif their black edges alternate in their order of occurrence
along the circle (see Figb). Thus, the relation between two cycles is one of: (1) non-intersecting; (2)
intersecting but non-interleaving (which we will simply call intersecting); or (3) interleaving.

Given a breakpoint grapti (=), we define itcomplemenas the graph formed froii (=) by replacing
each black edge that conneats to =), , with a black edge that conneci$; _, to =5, (this notion
is related to Caprara’s Hamiltonian Matchif]). By construction, every verteis connected in the
complement graph to— 1 andi + 1, hence:

Observation 6. The complement breakpoint graph of a permutation is a cycle of lehgth

The following lemma, proved originally bj], follows from the latter observation:

Lemma 7 (Gu et al.[6]). Let (b1, b2) be a pair of coupled black edges. Then there exists another pair
of black edges that intersects witby, b2).

Proof. Suppose to the contrary that no pair inters€bis b2). Then the complement graph contains at
least two disjoint cycles, one in each of the arcs induced by the endpoibtsaotib,, in contradiction
to Observatior6. O
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Fig. 7. A 5-cycle with signed canonical labeling, —4, —3, —2, 5).

Lemma 8. Leti1 andi» be a pair of adjacent arcs. Then there exist two connected black édgexd
b such that (1) b1 is either iniq or in iz; and(2) b2 is neither iniy nor in io.

Proof. Suppose to the contrary that no such gray edge exists. Then in the complement graph there is a
cycle that lies in arc$, andiz, but does not include all the vertices, a contradictionl.

A 1-twisted cycle is calledlosed(w.r.t. a configuration) if its two coupled edges intersect with some
other cycle in the configuration. A configuratiorciesedif at least one of its 1-twisted cycles is closed;
otherwise it is calledpen As we show next, any graph with a 1-twisted cycle has a closed configuration.

Observation 9. Let G(rn) be a breakpoint graph that containslatwisted cycle C. The@ (x) contains
a closed configuration

Proof. By Lemma? there exists another cycle that intersects with the coupled edgesf The
configuration which consists of cycl€sandD is closed. O

2.5. Canonical labeling of cycles

In this section we develop a characterization of oriented cycles that allows us to borrow some of
the theory developed i8] for unsigned permutations. A useful tool that we will require is the signed
canonical labeling of a cycle in a breakpoint graph, which we present next.

For a given cycleC (of any length), consider the labeling of its black edges obtained by labeling an
arbitrary edge by 1, and labeling the rest of the cycle’s black edges according to their occurrence in
clockwise order along the circle. Tlsggned canonical labelingf C is the signed permutation obtained
by starting with the edge labeled 1 and reading the labels in the order they appear along the cycle, where
the signs stand for the direction in which the edge is read: An edge that is visited in the same direction
as the edge labeled 1 is positive, and otherwise it is negative (se&)Fithis definition captures the
notion of twists in 3-cycles; indeed, a O-twisted 3-cycle has labeling (1, 2, 3), a 1-twisted cycle has
labeling(1, —3, —2), etc. Note that a cycle typically has more than one possible canonical labeling, since
it depends on the choice of the first edge.

2 A generalization of the notion of canonical labelifg.
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Fig. 8. A general 5-cycle that has a canonical labeling that starts withal The dashed line stands for a path of two black
edges and two gray edges (the black edges can be located anywhere along the circle).

Fig. 9. General 5-cycles that have a canonical labeling that starts with,1-b and 1 —b, a and 1 b, —a.

A canonical labeling of a 5-cycle is calledientedif it starts with 1, b,a or 1, —a, —b or 1, —b, a or
1, b, —a, where 1< a < b. The motivation for this definition comes from the following observation:

Lemma 10. A 5-cycle is oriented iff it has an oriented canonical labeling.

Proof. A general 5-cycle that has a canonical labeling that starts withd (where 1< a < b) is
depicted in Fig8. A transposition that acts on & andb transforms the cycle into two 1-cycles and one
3-cycle, showing that the 5-cycle is oriented. A general 5-cycle that has a canonical labeling that starts
with 1, —a, —b (resp.,1—b,aor 1, b, —a)is depicted in Fig9. In these cases we consider a transreversal
that acts on these three edges, while reversing the segment between atgés(resp., 1 and:, orb

and 1). This operation breaks the 5-cycle into two 1-cycles and one 3-cycle, implying that the 5-cycle is
oriented.

Conversely, consider a 5-cyclethat admits a 2-operation. By definition, this operation creates two
1-cycles and one 3-cycle. An example for the case of a 2-transposition is given B Flgus, starting
clockwise with the edge that will be part of the 3-cycle as edge 1, we obtain the requested canonical
labeling (see, e.g., Fi@). O

Lemma 11. Let C be a5-cycle that admits &-transposition and let D be a cycle that has the same
canonical labeling as Qup to flipping the sign of one element. Then D is also oriented.

Proof. By the proof of Lemmd.0, C has a canonical labeling that starts witlbla, where 1< a < b.
Let x be the element whose sign is flippedxIfs one of the last two elements in the canonical labeling
then D still has a labeling that starts with &, a and, thus, admits a 2-transpositionxlfs the second
(resp., third) element ob then D has a canonical labeling that starts with-b, a (resp., 15, —a).
Hence, by Lemmda0the 5-cycle is oriented. If is the first element, we observe that the reflectiobof
has a canonical labeling that starts with-ku, —5. O
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3. The algorithm

In this section we provide a 1.5 approximation algorithm for sorting by transpositions and tran-
sreversals. We first develop an algorithm for sorting 3-permutations, and then use the results of Section
2.3to generalize it to arbitrary permutations. By definition, an oriented cycle can be eliminated by a 2-
operation that acts on its black edges. Thus, from now on, we will only consider unoriented cycles. Since
configurations involving only O-twisted cycles were handled8h by Observatior® we may restrict
attention to closed configurations. For each possible closed configuration we shall prove the existence of
a (0, 2, 2)-sequence of operations.

A 1-twisted pairis a pair of 1-twisted cycles, whose twists are consecutive on the circle in a configuration
that consists of these two cycles only. The following lemma deals with interleaving cycle pairs:

Lemma 12. Let = be a permutation that contains two unoriente@tterleaving cycles C and D that do
not form al-twisted pair. Therr admits a(0, 2, 2)sequence.

Proof. If both cycles are O-twisted then a (0, 2, 2)-sequence of transpositions is giy8h Buppose
thatC is O-twisted andD 1-twisted (resp., both are 1-twisted and their twists are not consecutive on the
circle). First apply a O-transposition that acts on the black edgé€s ®his makesD 2-twisted, so it is
possible to eliminate it using a 2-transreversal. The latter operation maRdwisted (resp., 3-twisted).

A 2-transreversal (resp., 2-transposition)@mrompletes the (0, 2, 2)-sequence. The (0, 2, 2)-sequences
are depicted in Figl0. O

In order to deal with intersecting cycles we use the notion of canonical labeling of cycles, defined in
Section2.5. The following lemma handles the case of two intersecting O-twisted cycles.

Lemma 13. Letn be a permutation that contains a closed configuration with two intersedigisted
cycles C and D. Then admits a(0, 2, 2)sequence.

Proof. SinceC and D are intersectingC has a pair of coupled edges that do not intersect WitlBy
Lemma? there exists a cycl& that intersects with this pair of edges. The case in whigh O-twisted

3 * X
o s o
p ap Xs==> X a=—™vp q
“ X ~ a T e
3 * X
° s b
p ap Xs==> X a=™p q
% X ~ g T o
Fig. 10. (0, 2, 2)-Sequences for the two cases of two interleaving cycles considered in l@ntieae and throughout the paper,

three asterisks represent a transposition that acts on the three marked black edges. Two x’s and a asterisk stand for a transrevers.
that acts on the three marked edges and reverses the segment between the two x’s.
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Fig. 11. (0, 2, 2)-sequences for three O-twisted cycles, where two of the cycles are non-intersecting, and a third one intersects
both (taken froni8]). At each step the transposition acts on the three black edges marked by an asterisk. For simplicity, every
1-cycle is shown only when it is formed and not in subsequent graphs.

Fig. 12. Three mutually intersecting O-twisted cycles (taken f{@fh A dashed line represents a path.

was treated ifi8]. If E is 1-twisted there are two cases to consider:

1. D andE are non-intersecting. Our starting point is the (0, 2, 2)-sequences for configurations of three
O-twisted cycles given in Figll, where two of the cycles are non-intersecting, and the third one
intersects both. In our case, one of the non-intersecting cycles correspoRdand is 1-twisted.
Depending on the location of the twist iy it is always possible to apply the first two transpositions
shown in Fig.11 to the closed configuration—the first transposition is applied to the edges shown
in the figure, if all are non-twisted, or to a symmetric set of edges. Since the three configurations
given here are symmetric with respect to the two non-intersecting cycles, we can ensure that the black
edge(s) from cycl& that are involved in the transposition do not include a twist. Indeed, if this is not
the case, we simply exchange the choice of edges beteed E, choosing in each case symmetric
edges from the other cycle. By Lemma, the resulting 5-cycle is oriented, which completes the
(0, 2, 2)-sequence.

2. D andE are intersecting. Consider the (0, 2, 2)-sequences for three mutually intersecting O-twisted
cycles given in Figl2. In our case eitheD or E are 1-twisted. If all three edges e1 ande» that are
cut by the first transposition are non-twisted, we apply the first two transpositions as t2FRy
Lemmall, the resulting 5-cycl€ is oriented. The same holds for any set of symmetric edges that are
non-twisted. The only closed configurations in which no such symmetric set is possible is when some
arc induced by a pair of black edges®@tontains a single twist. There are three such configurations,
for which (0, 2, 2)-sequences are described in E§). O
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@) (b) (©

Fig. 13. (0, 2, 2)-sequences for some cycle configurations that contain two intersecting O-twisted cycles. First we apply a O-tran-
sreversal on the three marked edges, such that the segment between the two x’s is reversed, resulting in an oriented 3-cycle an
a 5-cycle. Next, we eliminate the oriented 3-cycle and are left with a 5-cycle, which can be verified to be oriented by Lemma
10. Hence, a (0, 2, 2)-sequence is possible.

(a) (b)

Fig. 14. Examples of configurations that admi®a2)-sequence by (a) Observatidd and (b) Observatiot6.

Next, we deal with closed configurations that include two intersecting, 1-twisted cycles. We need the
following observations:

Observation 14. Letz be a permutation that containszatwisted cycle C and &-twisted cycle Dsuch
that C and D are intersecting and none of the arcs induced by the two twists of C contains both non-twists
of D (seg e.qg, Fig. 14(a)). Thenr admits two consecutiv&operations.

Proof. Applying a 2-transreversal d@ eliminates it, while makind 2-twisted. Thus, two consecutive
2-operations are possible]

Observation 15. Let C be a2-twisted cycle such that in a given configuration there are no black edges
from other cycles between its two twists. Then it is possible to apptgeration on C that does not
affect other cycles in the configuration.

Proof. A 2-transreversal o€ switches the segment between its two twists with a segment between a
twist and a non-twist of. Since the former segment does not involve black edges from other cycles in
the configuration, the claim follows.O

Observation 16. Let C and D be tw@-twisted interleaving cycles. Then these cycles admit two con-
secutive2-operations iff at least three of their twists are consecutive on the circle.

Proof. Suppose thaC andD have at least three consecutive twists (see, e.g.,1#{dp)). Then a 2-
operation on any of them leaves the other cycle 2-twisted, and the claim follows. Conversely, suppose
to the contrary that the non-twist of each cycle lies between the two twists of the other cycle (which is
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%%g%%%
- * % X
(a) (b) (O] (d) (e) (0]

Fig. 15. Closed configurations of two intersecting 1-twisted cycles.

the only configuration in which there are no three consecutive twists). Then a 2-operation on one cycle
makes the other one O-twisted, a contradictionl

Lemma 17. Letn be a permutation that contains a closed configuration with two intersectitgisted
cycles C and D. Then admits a(0, 2, 2)sequence.

Proof. There are six possible cases, shown in Big.For cases (a—d), we first apply a O-reversal that

acts on the black edges that are marked by an asterisk. This makes the other cycle 2-twisted, and two
additional 2-operations follow from Observatib#d For cases (e—f), we observe that by Lemflaere is

another cycle that has a black edge in the arc dengtadd a black edge in one of the other five arcs. We
apply a reversal that acts on these two edges of the third cycle. If the edges are coupled then the reversa
does not affect the cycle. Otherwise, it breaks this 3-cycle into a 1-cycle and a 2-cycle (which we safely
transform into a 3-cycle). Thus, in both cases the reversal is a 0-operation. To show that two 2-operations
follow, we consider three possible cases with respect to the resulting configuratioanafD:

e The resulting configuration consists of a 1-twisted cycle and a 2-twisted cycle. In all cases the config-
uration fulfills the condition of Observatiatd and, thus, two 2-operations follow.

e C and D intersect and are both 2-twisted. In all cases one of the cycles fulfills the condition of
Observatiori5and can be eliminated, while leaving the other cycle 2-twisted. Thus, two 2-operations
are possible.

e C andD interleave and are both 2-twisted. In all caéeand D have at least three consecutive twists
on the circle, and two 2-operations follow from Observatlén O

The following two lemmas deal with closed configurations that involve two intersecting cycles, one of
which is O-twisted and the other 1-twisted.

Lemma 18. Let = be a permutation that contains@twisted cycle C that intersects with the coupled
edge pairs of two non-intersectingr-twisted cycles D and E. Thenadmits a(0, 2, 2)sequence.

Proof. Since cycleD andE both intersect withC, there is an ar@ induced by two black edges of
C that includes edges from both and E. We apply a O-transreversal on the edge€ahat reverses

a. In the resulting permutatio) and E are both 2-twisted and remain non-intersecting, implying two
2-transreversals. An example of such a (0, 2, 2)-sequence is given ibaFigl]

Lemma 19. Let = be a permutation that contains@twisted cyclewhich intersects with the coupled
edges of d-twisted cycle. Then admits a(0, 2, 2)sequence.
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Fig. 16. One possible scenario of Lemrh& C is a O-twisted cycle that intersects with the coupled edge pairs of two
non-intersecting, 1-twisted cyclgd and E. First we apply a O-transreversal on the three marked edges. NowZbaid

E become oriented and remain non-intersecting, allowing two 2-transreversals.

5
(@ (b)

Fig. 17. Closed configurations consisting of two intersecting cycles, such that one is O-twisted and the other is 1-twisted.

; X X X X X X .
To © X5 Y5 O
X X *
(@) (b) (c) (d)

e X
X X X X X X X
U] (9) (h) 0] @

X X X X *
e GF AP &%
X X * * X X R X
K 0 (m) () (0)

Fig. 18. (0, 2, 2)-sequences for configurations described in Table

Proof. There are two possible configurations of a O-twisted c{that intersects the coupled edges of
a 1-twisted cycleD, depicted in Figl7. By Lemma7, there is another cyclg that has a black edge in
the arc marked by, and in some other arc(s) (see Fig). If E is O-twisted then a (0, 2, 2)-sequence
follows from Lemmal3. Otherwise E is 1-twisted and (0, 2, 2)-sequences for all possible configurations

are summarized in Table (see also Figl8). O
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(0, 2, 2)-sequences for the two configurations shown in Fig.
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Configuration of

2nd black edge

3rd black edge of

Twisted edge

©,2,2)-

cyclesC & D of Einarc Einarc inarc sequence by
a,b 1 2 all cases Lemni/

a,b lor2 3ordor5 all cases Lemr2a

a 3 4 4 Figurel8(k)

a 3 4 X Figure18(l)

a 3 4 3 Lemmé2

b 3 4 4 Figurel8(n)

b 3 4 X Lemmal2

b 3 4 3 Figurel8(o)
a,b 3 5 all cases Lemniy

a 4 5 4 Figurel8(m)
a 4 5 xor5 Lemmal?

b 4 5 all cases Lemm&r7

a,b 1,5 same arc E closed byC Lemmal8

a 1,5 same arc E not closed byC Figure18(a—d)
b 1,5 same arc E not closed byC Figure18(e—h)
a,b 2,3 same arc all cases Lemiva

a 4 same arc E not closed byC Figure18(i—j)
a 4 same arc E closed byC Lemmal?

b 4 same arc all cases Lemnha

Each row of the table describes possible configurations of cytlésandE. The first column indicates to which of the two
configurations from Figl7 this row refers. As explained in the proof of Lem®, cycleE has black edges in akand in some
other arc(s), with the possible locations listed in the second and third columns. The fourth column specifies the location of the
twist of E, completing the description of the configuration of cyalesD and E. The last column points to a reference for a
(0, 2, 2)-sequence in each case.

The final configuration that needs to be taken care of involves 1-twisted pairs of interleaving cycles.
This case is handled by the following lemma:

Lemma 20. Let = be a permutation that contains>2 mutually interleavingl-twisted cyclessuch
that all their twists are consecutive on the circle and k is maximal with this property. 7 lagimits a
(0, 2, 2)sequence.

Proof. Such an arrangement is possible iff the edges of all cycles alternate along the circle (& Fig.

Consider the arc induced by the twist of thid cycle and the first non-twisted edge of the first cycle;

further consider the arc induced by the twist of the first cycle and the second non-twisted edgélof the
cycle. These two arcs (marked by an asterisk in E8@).are adjacent, so by Lemn&there is a cycle€

that has a black edge in one of these arcs, and another black edge in some other arc.

Now, if Cinterleaves with one of theinterleaving cycles then a (0, 2, 2)-sequence follows from Lemma
12 (the case in whiclt is 1-twisted and interleaves with &ltycles is impossible, since it contradicts the
maximality ofk). If C has an edge that lies between the two non-twists of one dftleles, then these
two intersecting cycles form a closed configuration; a (0, 2, 2)-sequence then follows from L&yima
Cis O-twisted (resp., Lemmay, if Cis 1-twisted). IfC is 1-twisted, has an edge between two twists of
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Fig. 19. Mutually interleaving 1-twisted cycles.

X
% f% % Xz % X X X
* *
X x ¥ %" ) % % x ¥ %Zx
Fig. 20. (0, 2, 2)-sequences for some closed configurations that involve a 1-twisted pair and a third cycle that intersects at least
one of the other cycles.

thek cycles and forms a closed configuration with one of the cycles it intersects, then a (0, 2, 2)-sequence
follows from Lemmal?. There are five other configurations that are not covered by these cases. The five
configurations and (0, 2, 2)-sequences for them are depicted i2F-ig

We are now ready to describe our sorting algorithm, which is given inHigFor 3-permutations,
Step 2 suffices for the sorting and we call this pegorithm Sort3PermThe following lemma shows
that Algorithm Sort3Perm is a quadratic 1.5-approximation algorithm for sorting 3-permutations:

Lemma 21. AlgorithmSort3Perms al.5-approximation algorithm for sortin§-permutationsrunning
in time O (n?).

Proof. First, we observe that it suffices to consider only closed configurations, since for configurations
that contain only O-twisted cycles a (0, 2, 2)-sequence is givf8iiin all other cases, by Observatién
there must exist a closed configuration.

The sequence of operations that is generated by the algorithm contains only 2-operations and
(0, 2, 2)-sequences of operations. Therefore, every sequence of three operations increases the numbe
of odd cycles by at least 4 out of 6 possible in 3 steps (as implied from the lower bound of Theorem 3).
Hence, the approximation ratio is 1.5.

We now analyze the running time of the algorithm. The number of iterations in step 2 is linear, since
in every iteration two cycles are eliminated and there is a linear number of cycles. Deciding whether
two given cycles are interleaving or intersecting can be done in constant time. Thus, the bottleneck in
each iteration is to apply an operation to the permutation, and to find an arbitrary cycle that intersects a
given coupled pair of black edges (Step 2b). The latter task can be performed by a procedure that finds
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Algorithm Sort ()
1. Transform 7 into a 3-permutation % (Lemma 4).

2. While G(#) contains a 3-cycle C' do:

(a) If C is oriented, apply a 2-operation to it.
(b) Otherwise, find a cycle D that intersects with a coupled pair of C.
(c) If D is oriented then apply a 2-operation to it.

(d) Else if C and D interleave, apply a (0,2,2)-sequence* (Lem-
mas 12, 20).

(e) Else if C' or D are l-twisted, apply a (0,2,2)-sequence* (Lem-
mas 17, 19).

(f) Otherwise, apply a (0,2, 2)-sequence® (Lemma 13).
(g) If new 2-cycles were introduced by the last operations, transform 7
into a 3-permutation @’ by safe paddings (Lemma 4), and let 7 = 7',

3. Mimic the sorting of 7 using the sorting of 7 (Lemma 4).

Fig. 21. Algorithm Sort.¥) If any oriented cycle is found to be involved in the resulting configurations, a 2-operation is applied
to it and the algorithm continues with the next iteration.

an arbitrary pair of connected black edges that intersects with a given pair of connected black edges.
These tasks can be done easily in linear time. The number of new 2-cycles introduced in each iteration
is constant and, therefore, Step 2g takes constant time. Overall, the algorithm can be implemented in
quadratic time. OJ

Now we are ready to prove the correctness of Algorithm Sort:

Theorem 22. Algorithm Sortis a 1.5-approximation algorithm for sorting arbitrary permutations by
transpositions and transreversaknd it runs in timeoO (n?).

Proof. By Lemma21, we are guaranteed thalg(n) < 1.5d (7), wherealg(n) is the number of operations
used by Algorithm Sort3Perm to sdrt Thus, by Theorer3

alg(R) <15d(R) <15 ("(”)_—200‘“'(”)) — 15 (”(”)_—ch’dd(”)) <15d(n).

Using Lemmad, we can sortz by alg () operations, which implies an approximation ratio of 1.5.
Since the transformation into 3-permutations can be done in linear time, L&timaplies that the
running time of Algorithm Sort i) (n?). O

4. An 0 (n®?./log n) implementation of Algorithm Sort

In this section we give a faster implementation of Algorithm Sort, using a special data structure,
introduced iM11]. As explained in the proof of Lemnttd, the bottleneck in each iteration is to apply an
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(121112100978 141300605 3 4)

9 13 5 10 3 8 11 6 1 4 7 14 2 12
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[101121123 [1413897F [3645
(b)

Fig.22. Letr =(16 —54 -7 —-32, f(x) =(1 21112109 7 8 14 13 6 5 3)4(a) Partition of the permutation
into roughly®(/n/log n) blocks. Below each element, the location of its mate ia indicated. (b) The internal order of the
elements in each block (according to the order of their mates in

operation to the permutation, and to find an arbitrary cycle that intersects a given coupled pair of black
edges (Step 2b). In the sequel we describe a data structure that allows to perform these tasks in sub-linea
time. This data structure is similar to the one suggested by Kaplan and Vet jmlthough here the
required tasks are slightly different.

For clarity, we describe the data structure for linear permutations. Consider the doubled permutation
f () (see Sectior2.2), which is denoted here simply by A connected pair of black edgek; (52) is
represented by the pairi(2i + 1), which is connected by a gray edge. Thuis, a union of disjoint pairs.
The two elements in each pair are caliedtesWe need a data structure that supports the following tasks
in sub-linear time:

e Query(r, e1, e2): Find a pair that intersects(, e2) in =.
e Operation(r, e1, e2, e3): Apply an operation or that cuts before elements, e> andes (for reversals

e2 = e3).

Next, we describe the data structure. The permutatiendivided into®(,/n/Tog n) blocks of size
©(/n Tog n) each. The elements in each block are ordered according to the order of their massan
an example in Fig22). A splay tre€[15] is attached to each block, in which the elements of the block
are maintained. This is a balanced binary search tree that is re-balanced via rotations, and supports splits
and concatenations in logarithmic time. We also maintain a lookup-table that contains for each element
a pointer to its block.

In order to maintain signed permutations we introduceeaérsé flag for each node in the splay tree.
This flag indicates whether the elements of its subtree should be reversed (in order and sign). The reverse
flag of a node can be flipped by exchanging the order of its two children, and flipping their own flags.
The ability to clear the reverse flag allows us to implement splits and concatenations, while correctly
maintaining the permutatigi1].

As shown in[11], we may assume that queries and operations involve only elements that are on block
boundaries. More specifically, for queries we assume in the sequel tisahe first element in its block
ande; is the last element in its block. For operations we assume in the sequef thaiandes are all
first elements in their blocks.

Lemma 23. Tasks Query and Operation can be performed in ting/n log n).

Proof.

e Query(r, e1, e2): Let By and B> be the blocks that contail ande2 (the blocks are found by using the
lookup-table) and assume, w.l.0.g., tiBatis located before,. For each block which is befor®; or
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after B> do the following: Split the attached splay tree after locatiprand beforeeo, and consider
the subtree that is bounded by these two elements. If this subtree is not empty then pick an arbitrary
element in it. By construction, this element and its mate are intersecting aitkp}, i.e., the query
is answered. Otherwise, continue to the next block. The split is done in logarithmic time. Since there
are O (/n/1og n) blocks between blockB81 and B», the total time isO (y/n log n).

e Operatior(r, e1, e2, e3): A transposition can be done by applying three reversals, and a transreversal
or a revrev can be mimicked by two reversals. Since a reversal takesitinya Tog n) [11], all
operations can be done within the same time bourid.

Corollary 24. Each iteration in Ste of Algorithm Sort can be implemented in tir0&./n log n).

We are now ready to state the main result of this paper:

Theorem 25. Algorithm Sort is al.5-approximation algorithm for sorting by transpositions and
transreversalswhich runs in time0 (n%2./log n).

Proof. The number of iterations in the algorithm is linear. By Coroll@4; each iteration can be
implemented in time) (\/n Tog n). In total, the algorithm runs in timé (n%2,/log n). O
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