next up previous
Next: About this document ... Up: No Title Previous: Open Problems

Bibliography

1
W. Ackermann.
Zum hilbertshen aufbau der reelen zahlen.
Math. Ann., 99:118-133, 1928.

2
V. Bafna and P. Pevzner.
Genome rearrangements and sorting by reversals.
SIAM Journal on Computing, 25(2):272-289, 1996.

3
P. Berman and S. Hannenhalli.
Fast sorting by reversal.
In Proc. Combinatorial Pattern Matching (CPM), pages 168-, 1996.
LNCS 1075.

4
Bovine and Mouse on Human Comparative Maps.
http://bos.cvm.tamu.edu.

5
A. Caprara.
Formulations and complexity of multiple sorting by reversals.
In S. Istrail, P. Pevzner, and M. Waterman, editors, Proceedings of the 3rd Annual International Conference on Computational Molecular Biology (RECOMB), pages 84-93, Lyon, France, 1999. ACM Press.

6
Alberto Caprara.
Sorting permutations by reversals and Eulerian cycle decompositions.
SIAM Journal on Discrete Mathematics, 12(1):91-110, February 1999.

7
D. A. Christie.
A 3/2-approximation algorithm for sorting by reversals.
In Proc. ninth annual ACM-SIAM Symp. on Discrete Algorithms (SODA 98), pages 244-252. ACM Press, 1998.

8
T. Dobzhansky and A. H. Sturtevant.
Inversions in the chromosomes of drosophila pseudoobscura.
Genetics, 23:28-64, 1938.

9
S. Even and O. Goldreich.
The minimum-length generator sequence is np-hard.
J. of Algorithms, 2:311-313, 1981.

10
W. H. Gates and C. H. Papadimitriou.
Bound for sorting by prefix reversals.
Discrete Mathematics 27, pages 47-57, 1979.

11
S. Hannenhalli.
Private communication.
unpublished, 1998.

12
Sridhar Hannenhalli and Pavel A. Pevzner.
Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals.
Journal of the ACM, 46(1):1-27, January 1999.

13
S. B. Hoot and J. D. Palmer.
Structural rearrangements, including parallel inversions, within the chloroplast genome of Anemone and related genera.
J. Molecular Evooution, 38:274-281, 1994.

14
M. R. Jerrum.
The complexity of finding minimum-length generator sequences.
Theor. Comput. Sci., 36:265-289, 1985.

15
Haim Kaplan, Ron Shamir, and Robert E. Tarjan.
A faster and simpler algorithm for sorting signed permutations by reversals.
SIAM Journal on Computing, 29(3):880-892, June 2000.

16
J. Kececioglu and D. Sankoff.
Exact and approximation algorithms for sorting by reversals, with application to genome rearrangement.
Algorithmica, 13(1/2):180-210, January 1995.

17
J. D. Palmer and L. A. Herbon.
Tricircular mitochondrial genomes of Brassica and Raphanus: reversal of repeat configurations by inversion.
Nucleic Acids Research, 14:9755-9764, 1986.

18
J. D. Palmer and L. A. Herbon.
Unicircular structure of the Brassica hirta mitochondrial genome.
Current Genetics, 11:565-570, 1987.

19
J. D. Palmer and L. A. Herbon.
Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence.
J. Molecular Evolution, 28:87-97, 1988.

20
J. D. Palmer, B. Osorio, and W.R. Thompson.
Evolutionalry significance fo inversions in legume chorloplast DNAs.
Current Genetics, 14:65-74, 1988.

21
Oxford Grid: Human vs. Mouse.
http://www.informatix.jax.org.



Peer Itsik
2001-01-17