next up previous
Next: About this document ... Up: No Title Previous: Open Problems

Bibliography

1
W. Ackermann.
Zum hilbertshen aufbau der reelen zahlen.
Math. Ann., 99:118-133, 1928.

2
To Know Ourselves: an overview of the human genome project.
http://www.ornl.gov/techresources/human_genome/tko/06_img.html.

3
V. Bafna and P. Pevzner.
Genome rearrangements and sorting by reversals.
SIAM Journal on Computing, 25(2):272-289, 1996.

4
P. Berman and S. Hannenhalli.
Fast sorting by reversal.
In Proc. Combinatorial Pattern Matching (CPM), pages 168-, 1996.
LNCS 1075.

5
Bovine and Mouse on Human Comparative Maps.
http://bos.cvm.tamu.edu/htmls/hsa-x.html.

6
A. Caprara.
Sorting by reversals is difficult.
In Proceedings of the First International Conference on Computational Molecular Biology, pages 75-83, New York, January19-22 1997. ACM Press.

7
A. Caprara.
Formulations and complexity of multiple sorting by reversals.
In Proc. at RECOMB 1999, to appear, 1999.
unpublished.

8
D. A. Christie.
A 3/2-approximation algorithm for sorting by reversals.
In Proc. ninth annual ACM-SIAM Symp. on Discrete Algorithms (SODA 98), pages 244-252. ACM Press, 1998.

9
T. Dobzhansky and A. H. Sturtevant.
Inversions in the chromosomes of drosophila pseudoobscura.
Genetics, 23:28-64, 1938.

10
S. Even and O. Goldreich.
The minimum-length generator sequence is np-hard.
J. of Algorithms, 2:311-313, 1981.

11
W. H. Gates and C. H. Papadimitriou.
Bound for sorting by prefix reversals.
Discrete Mathematics 27, pages 47-57, 1979.

12
S. Hannenhalli.
Private communication.
unpublished, 1998.

13
S. Hannenhalli and P. Pevzner.
Transforming cabbage into turnip (polynomial algorithm for sorting signed permutations by reversals).
In Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, pages 178-189, Las Vegas, Nevada, 29 May-1 June 1995.

14
S. B. Hoot and J. D. Palmer.
Structural rearrangements, including parallel inversions, within the chloroplast genome of Anemone and related genera.
J. Molecular Evooution, 38:274-281, 1994.

15
M. R. Jerrum.
The complexity of finding minimum-length generator sequences.
Theor. Comput. Sci., 36:265-289, 1985.

16
H. Kaplan, R. Shamir, and R. E. Tarjan.
Faster and simpler algorithm for sorting signed permutations by reversals.
In Proc. 8th annual ACM-SIAM Symp. on Discrete Algorithms (SODA 97), pages 344-351, 1997.
Also in Proc. RECOMB 97, page 163.

17
J. Kececioglu and D. Sankoff.
Exact and approximation algorithms for sorting by reversals, with application to genome rearrangement.
Algorithmica, 13(1/2):180-210, January 1995.

18
J. D. Palmer and L. A. Herbon.
Tricircular mitochondrial genomes of Brassica and Raphanus: reversal of repeat configurations by inversion.
Nucleic Acids Research, 14:9755-9764, 1986.

19
J. D. Palmer and L. A. Herbon.
Unicircular structure of the Brassica hirta mitochondrial genome.
Current Genetics, 11:565-570, 1987.

20
J. D. Palmer and L. A. Herbon.
Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence.
J. Molecular Evolution, 28:87-97, 1988.

21
J. D. Palmer, B. Osorio, and W.R. Thompson.
Evolutionalry significance fo inversions in legume chorloplast DNAs.
Current Genetics, 14:65-74, 1988.


Itshack Pe`er
1999-03-16