On the Complexity of Parity Word Automata

Valerie King!* and Orna Kupferman? and Moshe Y. Vardi®**

! University of Victoria
Department of Computer Science, P.O. Box 3055, Victoria, BC, Canada V8W 3P6
Email: val@csr.csc.uvic.ca, URL: http://www.csr.uvic.ca/™ val
2 Hebrew University
School of Computer Science and Engineering, Jerusalem 91904, Israel
Email: orna@cs.huji.ac.il, URL: http://www.cs.huji.ac.il/~ orna
3 Rice University
Department of Computer Science, Houston, TX 77251-1892, U.S.A.
Email: vardiQcs.rice.edu, URL: http://www.cs.rice.edu/"~ vardi

Abstract. Different types of nondeterministic automata on infinite words
differ in their succinctness and in the complexity for their nonempti-
ness problem. A simple translation of a parity automaton to an equiv-
alent Biichi automaton is quadratic: a parity automaton with n states,
m transitions, and index k may result in a Biichi automaton of size
O((n + m)k). The best known algorithm for the nonemptiness problem
of parity automata goes through Biichi automata, leading to a complex-
ity of O((n + m)k). In this paper we show that while the translation
of parity automata to Biichi automata cannot be improved, the special
structure of the acceptance condition of parity automata can be used in
order to solve the nonemptiness problem directly, with a dynamic graph
algorithm of complexity O((n + m)logk).

1 Introduction

Today’s rapid development of complex and safety-critical systems requires reli-
able verification methods. The automata-theoretic approach to system verifica-
tion uses the theory of automata on infinite objects [Biic62,McN66,Rab69] as a
unifying paradigm for the specification, verification, and synthesis of nontermi-
nating systems. By translating specifications to automata, we reduce questions
about systems and their specifications to questions about automata. More specif-
ically, questions such as satisfiability of specifications and correctness of systems
with respect to their specifications are reduced to questions such as nonempti-
ness and language containment [VW86,Kur94,VW94]. The automata-theoretic
approach separates the logical and the algorithmic aspects of reasoning about
systems. The translation of specifications to automata handles the logic and
shifts all the algorithmic difficulties to automata-theoretic problems.

* This work was done while the author was visiting the Hebrew University.
** Supported in part by NSF grants CCR-9700061 and CCR-9988322, and by a grant
from the Intel Corporation.

Like automata on finite words, automata on infinite words either accept or
reject an input word. Since a run on an infinite word does not have a final
state, acceptance is determined with respect to the set of states visited infinitely
often during the run. For example, in Bichi automata [Biic62], some of the
states are designated as accepting states, and a run is accepting if it visits states
from the accepting set infinitely often. In parity automata [Mos84,EJ91], the
acceptance condition is a partition {Fi, F»,...,Fy;} of the state space, and a
run is accepting if the minimal index i for which the set F; is visited infinitely
often is even. In Rabin automata [Rab69], the acceptance condition is a set
{{G1,By1),...,{Gr, Br)} of pairs of sets of states, and a run is accepting if there
is a pair (G;, B;) for which the set G; is visited visited infinitely often and the
set B; is visited only finitely often. The number k appearing in the acceptance
condition of parity and Rabin automata is called the index of the automaton.

The type of the automaton influences its succinctness. For example, a simple
transformation of a parity or a Rabin nondeterministic automaton with n states,
m transitions, and index k to an equivalent nondeterministic Biichi automaton
composes k copies of the automaton, and thus results in an automaton of size
O((n + m)k). The type of the automaton also influences the difficulty of an-
swering questions about it. In particular, while the nonemptiness problem for
nondeterministic Biichi automata can be easily reduced to the reachability prob-
lem (the automaton is nonempty iff there is an accepting state reachable from
an initial state and from itself), and can therefore be solved in linear time or
NLOGSPACE, there is no straightforward linear-time solution to the nonempti-
ness problem for parity and Rabin nondeterministic automata. An algorithm that
first translates the parity or Rabin automaton to an equivalent Biichi automa-
ton has time complexity O((n + m)k), which is also the best known complexity
for the problem. In particular, when k = n, the above implies that while the
nonemptiness problem for Biichi word automata can be solved in linear time,
the best known algorithm for parity automata is quadratic.

Parity automata are particularly useful in the context of verification. This
follows from the fact that the parity acceptance condition can naturally recog-
nize languages given by fixed-point expressions [Ko0z83,EJ91], and many prop-
erties of systems are naturally specified by means of fixed points. This is espe-
cially relevant for the branching case, where alternating parity tree automata
are exactly as expressive as the u-calculus [EJ91,JW95]. The parity acceptance
condition can be viewed as a special case of the Rabin acceptance condition.
Indeed, a parity condition {F}, Fs,..., Fy} is equivalent to a Rabin condition
{{Fo, F1),{(Fy, i UF, U F3s), ..., (Fo, F1 U...U Fp,_1)}. Some algorithms for
parity automata use this equivalence and do not try to make use of the fact
that the parity condition has much more structure in it. The question whether
we can somehow exploit this structure is important and interesting, and is the
key to some fundamental questions in automata and verification. In particular,
while the nonemptiness problem for nondeterministic Rabin tree automata is

NP-complete [EJ88], we know that for parity automata the problem is in UP N
co-UP [Jur98]!, and its precise complexity is an open problem.

It is shown in [SN99] that the blow up in the translation of parity automata to
Biichi automata cannot be avoided. For that, Seidl and Niwiriski”, show a family
L, of languages such that £, can be recognized by a parity automaton with n
states, 2n + 1 transitions, and index n, yet the smallest Biichi automaton for
L, has O(n?) states and transitions. It follows that nonemptiness algorithms for
parity automata that use a translation to Biichi automata cannot be improved.

In this paper we show that while the special structure of parity automata does
not prevent them from defining rich languages succinctly, it is helpful when the
nonemptiness problem is considered. We present an algorithm that circumvent
the translation to Biichi automata: given a parity automaton with n states, m
transitions, and index k, our algorithm solves the nonemptiness problem in time
complexity O((n + m)logk). This improves the O((n + m)k) known algorithm.

As detailed in Section 3, our algorithm is a variation of an algorithm for hi-
erarchical clustering [Tar82], and is heavily based on the special structure of the
acceptance condition of parity automata. In particular, it cannot be extended to
Rabin automata. The algorithm handles a known-in-advance sequence of inser-
tions of edges, thus it is an off-line partially dynamic algorithm.

While parity word automata do not have the same practical importance as
parity tree automata, we believe that our results are interesting, from both a
theoretical and practical points of view: this is not the first time that dynamic
graph algorithms are used to improve the complexity of a nonemptiness prob-
lem of automata on infinite words. In [HT96], Henzinger and Telle developed an
algorithm, called lock-step search, for the maintenance of the strongly connected
components of a directed graph under edge deletion, and use the algorithm in or-
der to improve the complexity of the nonemptiness problem for Streett automata.
A dynamic algorithm was recently used in [BGS00] in order to find and analyze
the strongly connected components of a graph of size n with O(nlogn) symbolic
steps, improving the quadratic complexity of this highly practical problem. So,
we believe that dynamic graph algorithms can be used further to improve the
complexity of problems from automata theory and verification. Creating a class
of problems where dynamic graph algorithms have proven to be useful has clear
practical importance. In particular, the same ideas used in our algorithm may
be useful in the branching case.

2 Preliminaries

Given an alphabet X, an infinite word over X is an infinite sequence w = oy -
o1 - 0o - -+ of letters in X. An automaton over infinite words (word automaton,
for short) is A = (¥, Q, 0, Qo,), where X is the input alphabet, @ is a finite
set of states, § : Q x X — 29 is a transition function, Qo C Q is a set of initial
states, and « is an acceptance condition (a condition that defines a subset of Q*;

! The class UP is a subset of NP, where each word accepted by the Turing machine
has a unique accepting run.

we define several acceptance conditions below). Intuitively, d(g, o) is the set of
states that A can move into when it is in state ¢ and it reads the letter o. Since
A may have several initial states and since the transition function may specify
many possible transitions for each state and letter, A may be nondeterministic.

Given an input infinite word w = 0g-01-02--- € X, a run of A on w can be
viewed as a function r : IN — @ where r(0) € Qo (i-e., the run starts in one of
the initial states) and for every i > 0, we have r(i + 1) € §(r(i),0;) (i-e., the run
obeys the transition function). Each run r induces a set inf(r) of states that r
visits infinitely often. Formally,

inf(r) = {qg € Q : for infinitely many i € IN, we have r(i) = g¢}.

As @ is finite, it is guaranteed that in f(r) # 0. The run r accepts w iff it satisfies
the acceptance condition a. We consider here three acceptance conditions.

— A run r satisfies a Biichi acceptance condition a C @ if and only if inf(r) N
a# 0.

— A run r satisfies a parity acceptance condition o = {F}, F5, ..., Fy}, where
the F;’s are a partition of @, iff the minimal index ¢ for which inf(r)NF; # 0
is even. For 1 <7 < 2k, we use the notation 17’z = FiUF5U...F;. Note that
FLCHC--- Chy=Q.

— A run r satisfies a Rabin acceptance condition o = {(G1, B1), . ..,{Gk, Bx)},
where for 1 < i <k, G; C @ and B; C @, if and only if there exists a pair
(G4, B;) € a for which inf(r)NG; # 0 and inf(r) N B; = 0.

The number k appearing in a parity or Rabin condition is called the index
of the automaton. Note that the acceptance condition of an (either a parity or
Rabin) automaton with index k involves 2k sets. An automaton A accepts an
input word w iff there exists a run r of A on w such that r accepts w. The
language of A, denoted L£(A), is the set of infinite words that A accepts. Thus,
each word automaton defines a subset of X*. We say that an automaton A is
nonempty iff L(A) # 0. For simplicity, we assume that all the states in the
automaton are reachable; that is, for every state ¢, there is a word w and a run
r of A on w such that r visits ¢. We also assume that no state is redundant; that
is, for every state ¢, there is a word w and a run r of A4 on w such that r accepts
w in a run that visits ¢. Note that we can omit states that are redundant or not
reachable and get an equivalent smaller automaton.

A labeled directed graph G = (D,V, E,l) consists of a domain D, a set V of
vertices, a set £ C V x V of edges, and a labeling function [: V' — D that
maps each vertex to a value in D. We assume that D = {1,...,n} for some
n > 1. A path in G is a sequence vy, vs, ..., v, of vertices such that n > 1 and
(vi,vi41) € E for all ¢ > 1. We say that vertex v is reachable from vertex v’ iff
there is a path v1,vs,...,v, in G with v = v; and v = v,,. A cycle is a path
V1,V2,...,U, with n > 2 and v; = v,. A strongly connected component (SCC)
of G is a set of states C C V such that for all v and v’ in C, the vertex v is
reachable from v'. An SCC C is mazimal (MSCQC) if for all vertices v € C, the
set C'U{v} is no longer a SCC. An SCC is nontrivial if it contains a cycle. Note

that a single vertex with a self loop is a nontrivial SCC. Each graph G has a
unique partition into MSCC. By [Tar72], this partition can be found in time
o(V|+|E]).

With each automaton A = (X, Q,d,Qo, @), we can associate a graph G4 =
(Dq, @, Es,ly), where for ¢q,q' € Q, we have Es(q,q') if there is o € X such that
q'" € 0(q,0). The labels of the graph encodes the acceptance condition «. For
example, if A is a Biichi automaton, we can have D, = {1,2} and l,(¢) =1
iff ¢ € «a. Similarly, if A4 is a parity automaton with index k, we can have
D, ={1,...,2k} and l,(q) = i for the i such that g € F;. When we refer to the
number of states and edges of an automaton A, we mean |@Q| and |Es]|.

Theorem 1. [CES86] The nonemptiness problem for Biichi automata can be
solved in linear time.

Proof: Tt is easy to see that a Biichi automaton A is nonempty iff there is a
state ¢ € « that is reachable in A from ¢ and from itself. First, such a state
q witnesses an accepting run of A that first leads from Qg to ¢ and then visits
q infinitely often. Also, if some word is accepted by A, then there must be a
run of A that visits infinitely often some state in « that is reachable from Q.
Being visited more than once, this state is also reachable from itself. We can test
for the existence of ¢ as above by partitioning the graph G 4 into MSCC’s and
looking for a component that is reachable from)¢9 and whose intersection with
a is not empty. O

Note that by guessing a state ¢ as in the proof of Theorem 1 and performing
two reachability tests, the nonemptiness problem for Biichi automata can also
be solved in NLOGSPACE, and is in fact NLOGSPACE-complete [VW94]. In
this paper, however, we study the time complexity of the nonemptiness problem.

It is easy to see that a Biichi acceptance condition « is equivalent to a parity
condition {@,a} and that a parity condition {Fy, Fs,...,Fa} is equivalent to
the Rabin condition {(FQ,F}), e, (ng,ﬁ’gk_l)}. It follows that one can easily
translate a given Biichi automaton to an equivalent parity automaton, and can
translate a given parity automaton to an equivalent Rabin automaton. It turns
out that for nondeterministic automata, translations are possible also in the
other directions. We describe here the translations of Rabin and parity nonde-
terministic automata to Biichi nondeterministic automata.

Theorem 2. [Cho74] Given a Rabin automaton A with n states, m edges, and
indez k, there is a Biichi automaton A’ with O(nk) states and O(mk) edges such
that L(A") = L(A).

Proof: Let A = (X,Q,6,Qo,a) with a = {{(G1, B1),...,{(Gk,Bg)}. For every
1<i<klet Q = (Q\ B;) x {i}. We define the Biichi automaton A' =
(Elea(SI:QO:aI): where

- Q' =QUU i< Qi-
— For every ¢ € Q and o € X, we have

e 0'(q,0) =6(¢q,0) U U1§i<k((6(% o)\ By) x {i}).
e For every 1 < i < k, we have ¢'((g,4),0) = (6(q,0) \ B;) x {i}.

—a = Ulgz’gk Gi x {i}.

Thus, A’ consists of k£ + 1 copies of A. One copy (“the initial copy”) is
full and it contains all the states in Q. Then, k copies are partial: every such
copy is associated with a pair (G;, B;), its states are labeled 4, and it contains
all the states in @ \ B;. A run of A’ starts at the initial copy. The run can
nondeterministically choose between staying in the initial copy or moving to one
of the other k copies. Once a run of A’ moves to a copy associated with the i’th
pair, it cannot visit states from B;. Indeed, (); does not contain such states. The
acceptance condition of A’ guarantees that an accepting run eventually leaves
the initial copy and moves to some @;, where it visits infinitely many states from
G;. O

Since a parity acceptance condition can be translated to a Rabin acceptance
condition, Theorem 2 implies the following theorem.

Theorem 3. Given a parity automaton A with n states, m edges, and indez k,
there is a Biichi automaton A' with O(nk) states and O(mk) edges such that
L(A) =L(A).

Theorem 1 together with Theorems 2 and 3 imply an O((n+m)k) solution to
the nonemptiness problem for Rabin and parity automata with n states, m edges,
and index k. In this paper we show that while the blow up in the translation of
parity and Rabin automata to Biichi automata cannot be avoided [SN99], one
can solve the nonemptiness problem for a parity automaton with n states, m
edges, and index k, in time O((n + m)logk).

3 An Efficient Solution to the Nonemptiness Problem

In this section we present an algorithm of running time O((n + m)logk) for
solving the nonemptiness problem for a parity automaton with n states, m edges,
and index k. The idea of the algorithm is as follows. Consider a parity automaton
A=(X,Q,0,Q0,), with @ = {Fy,..., Fy}. It is easy to see that the automaton
A is nonempty if there is 1 < i < k such that the graph G; obtained from A
by omitting states in F; U ... U Fy;_; contains a MSCC with a node in F;.
Since the graph G; is contained in the graph G;_;, the search for a candidate
i, if starts from ¢ = k and proceeds to i = 1, involves a sequence of increasing
graphs. Proceeding from G; to G;_1, we need to calculate the MSCC’s of G;_;.
The MSCC’s of G; refine these of G;_1, in the sense that if two vertices belong
to the same MSCC in G;, they also belong to the same MSCC in G;_;. Once we
need to calculate the MSCC’s of G;_1, we have already calculated these of G;.
So, there is a hope that we can do better than calculating the MSCC’s of G;_1
from scratch, which is indeed what our algorithm does.

Our algorithm is a variation of an algorithm for hierarchical clustering [Tar82].
Consider a directed graph with m weighted edges and n vertices. A hierarchical

decomposition of the graph is a process in which the graph’s edges are added
one at a time in order of weight. Tarjan’s algorithm constructs a decomposition
tree whose leaves are the vertices of the graph and whose internal nodes are
associated with MSCC'’s that are formed as the hierarchical-decomposition pro-
cess proceeds. Thus, the children of a node associated with a component C' are
the subcomponents that coalesce to form C. The running time of the algorithm
is O(mlogn). Our variation of the algorithm corresponds to the special case
of the graphs G; described above: it inserts edges in batches, rather than one
at a time, and it simplifies steps and data structures that are not relevant to
the nonemptiness check. In particular, once the algorithm detects a nontrivial
MSCC in which the minimal label of all vertices is even, it terminates with a
positive reply.

The formal description of the algorithm is below, given in terms of the labeled
directed graph that corresponds to A. Given a labeled directed graph G =
(D,V,E,l) with D C {1,2,3,...,2k}, the even-cycle problem is to determine
whether there is a cycle C in G such that min,ec{l(v)} is even. It is easy to see
that the nonemptiness problem for a parity automaton A is equivalent to the
even-cycle problem for G 4. Indeed, an accepting run of 4 induces an even cycle,
and vice versa. Also, recall that we assume that all the states in A, and hence
also in G4, are reachable; thus we do not have to worry about the cycle being
reachable.

Theorem 4. Let G = ({1,2,3,...,2k},V, E,l) be a labeled directed graph with
V| = n and |E| = m. The even-cycle problem for G can be solved in time
O((n +m)logk).

Proof: For i € {1,...,2k}, let V; C V be the set of vertices v with I(v) > 1,
and let E; = EN(V; x V;). Thus, E; contains only edges whose both endpoints
have labels greater than or equal to i. Then, let G; = ({i,...,2k},V;, E;, 1) be
G when restricted to vertices and edges in V; and F;.

We first claim that the answer to the even-cycle problem is positive iff there
is some even i € {1,...,2k} and a nontrivial MSCC of G; that contains a vertex
labeled 7. Indeed, since min,ey,{l(v)} > i, such an MSCC witnesses a cycle C
in G for which min,ec{l(v)} = 4, which is even. Also, if there is a cycle C in G
such that minyec{l(v)} is some even 4, this cycle belongs to a nontrivial MSCC
of G;. We call i a witness for G.

For all ¢ and j with ¢ < j, we have that V; C V;, thus the graph G; is a
subgraph of G;. Consequently, the MSCC’s of G; refine these of G;, in the sense
that if two vertices belong to the same MSCC in G, they also belong to the same
MSCC in G;. This refinement is the key to our algorithm. Following the analysis
above, the algorithm searches for ¢ € {1,...,2k} such that 4 is even and there
is a nontrivial MSCC of G; that contains a vertex labeled 4. Intuitively, when
the algorithm examines a candidate i, it either terminates with “Yes”, in case i
is a witness, or examine further candidates j # i. We distinguish between two
cases. If j > i, the examination of j proceeds with a subgraph of G;, consisting
of vertices and edges that belong to the nontrivial MSCC’s of G;. If j < ¢, the

examination of j proceeds with a compressed version of G, in which vertices that
belong to the same MSCC of G; are represented by a single vertex. Consequently,
the graphs we consider have fewer states and edges. More precisely, for all j; >
and js < i, the number of edges in the two graphs required for checking j; and
J2 is not greater than the number of edges in the graph required for checking 1.
Formally, we solve the even-cycle problem by the recursive routine solve({(D,V, E,), i, j)
described below. The routine gets as input a labeled directed graph and two in-
dices ¢ and j in D. The routine outputs “Yes” if there is a witness in {i,...,j}
for the even-cycle problem for (D, V, E,), and outputs “No” otherwise. To solve
the even-cycle problem for a given graph G, we call solve(G, 1, 2k). The idea be-
hind solve(G, 1, j) is as follows. Given G and i < j (if j < 4, no witness i <1 < j
exists and the routine terminates with “No”), the routine first finds the MSCC’s
of Gi4, where mid is an index midway between i and j. If mid is even and
there is a nontrivial MSCC of G,,,;q with a vertex labeled mid, the routine stops
and returns “Yes” (mid is the witness). Otherwise, we call solve(G,mid+1,j)
and solve(G,4, mid — 1), where the call for solve(G_ ,mid + 1, j) searches for
a witness in {mid+1,...,j} and G is a subgraph of G4, and the call for
solve(G,i, mid — 1) searches for a witness in {i,...,mid— 1} and G is a com-
pressed version of G, in which a set of vertices that belong to the same MSCC
of Giq is represented by a single vertex.

procedure solve((D,V, E,l},i,j)

1. If j <, return “No” and STOP.

2. mid := [21].

3. (a) Vinia :={v € V| l{(v) > mid}.
(b) Emia :=EN Vinia X Vimia).

4. Find the MSCC’s of Gyniqg = <D, V, Enid, l>
For each v € V, let Cpia(v) denote the MSCC containing v in G4, and
let Crniq denote the set of all (trivial and nontrivial) MSCC’s in Gi4- Note
that each vertex v € V'\ Vj,;4 induces the trivial MSCC {v} € Cpniq.

5. If mid is even and there is v € V44 such that I(v) = mid and C,iq(v) is
nontrivial, output “Yes” and STOP.

6. (Search for a witness in {mid+1,...,5}.)

(@) Vi :={v € Vpia | l(v) > mid + 1 and Cp,iq(v) is nontrivial }.
(b) E, = {(u,v) € EiaN (VJ_ X VJ_) | C,m-d(u) = Cmid(v)}.
(c) solve({D,V,,E,,l),mid+1,j).
7. (Search for a witness in {i,...,mid — 1}.)
(a) VT = Cmid-
(b) E1 := {{Cpia(u), Cmia(v)) | (u,v) € E and ({u,v) & Epmiq or Crid(u) #

Cmia(v))}-
(¢) For C € Crpig, define I7(C) = minyec{l(v)}.
(d) solve({D, V¥, ET,lT),i,mid — 1).

Let us explain Steps (6) and (7) in more detail. In Step (6), the graph G|
removes an edge from G,,;q if the edge has a vertex labeled mid or if it connects

vertices of different MSCCs. Indeed, such edges cannot participate in an MSCC
that witnesses a cycle C' for which min,ec{l(v)} is in mid+1,...,j. In Step (7),
the vertices of Gt are the MSCC’s of G,,;q and there is an edge between two
MSCC’s C,, and C, if there are vertices u € C,, and v € C, such that u or v are
not in Vj,;q (in which case the corresponding MSCC is a singleton and is trivial)
and (u,v) € E, or both u and v are in V;,,;4 and they belong to different MSCC’s
(in which case C, # C,). Indeed, searching for a witness in ¢,...,mid — 1, we
can ignore the internal structure of MSCC’s in Cypiq-

We now prove formally that for every graph G and indices ¢ and j, the
procedure solve(G, i, j) outputs “Yes” iff there is an even i < w < j and there
is a cycle C' in G such that w is the minimal label in C'. Since the initial call is to
solve(G,1,2k) and all the cycles in G are reachable, this implies the correctness
of the algorithm. The proof proceeds by induction on j — ¢. When j — ¢ < 0,
thus j < 4, no ¢ < w < j exists, and the procedure indeed outputs “No”. For
the induction step, assume that the correctness claim holds for j —4 < k, and
consider the case j —i = k + 1. Let mid = [“2]. Clearly, there is an even
i <w < j and there is a cycle C in G such that w is the minimal label in C iff
one of the following holds:

(a) mid is even and there is a cycle C in G such that mid is the minimal label
in C,

(b) there is an even mid + 1 < w < j and there is a cycle C in G such that w
is the minimal label in C, or

(c) there is an even i < w < mid — 1 and there is a cycle C in G such that w is
the minimal label in C.

We prove that solve(G, i, j) outputs “Yes” in Steps (5), (6), or (7), iff (a), (b),
or (c) holds, respectively.

— Assume that (a) holds. Then, the cycle C exists in G4, the conditions
in Step (5) are satisfied, and the algorithm outputs “Yes”. Assume now
that the algorithm outputs “Yes” is Step (5). Then, mid is even and there
is a nontrivial MSCC in G,,;q that contains a vertex labeled mid. By the
definition of G,,;4, this implies the existence of a cycle C in G such that mid
is the minimal label in C. Hence, (a) holds.

— Assume that (b) holds. Then, the cycle C exists in (D,V,,E|,l). Indeed,
since the minimal index in C is mid+1 < w < j, the vertices and edges that
are removed from G do not participate in C. So, by the induction hypothesis,
the algorithm outputs “Yes” in Step (6). Assume that the algorithm outputs
“Yes” in Step (6). Then, by the induction hypothesis, there is an even mid+
1 <w < j and there is a cycle C in (D, V,, E, ,l) such that w is the minimal
label in C. Since the cycle C' is also a cycle of G, it follows that (b) holds.

— Assume that (c) holds. Let i1 < w < mid — 1 and C = vy,v9,...,0, be
such that w is even and C is a circle in G for which w is the minimal
label in C (that iS, v = Un). Let Cl = sz'd(’ul),cmid(’UQ), ey sz'd(vn) be
the sequence of MSCCs in Cp,iq induced by C. For all 1 < k < n —1, we
have that Cpiq(vk) = Cria(Vk+1) or E1(Cmia(Vk), Cmid(vk+1))- Hence, the

sequence obtained from C’ by omitting successive repetitions of the same
MSCC in Cpiq is a cycle Ct in (D, V7, ET,l7). Since the minimal label
in C is w, then, by definition of I+, the same holds for C+. So, by the
induction hypothesis, the algorithm outputs “Yes” in Step (7). Assume that
the algorithm outputs “Yes” in Step (7). Then, by the induction hypothesis,
there is an even i < w < mid — 1 and there is a cycle C+ in (D, V7, Ev,l1)
such that w is the minimal label in Cr. By replacing each vertex in C+t
(which is a MSCC in G) by the appropriate path in G, we can get from C
the cycle required for (b) to hold.

We now analyze the time complexity of the algorithm. First, note that since
all the states in the graph G are reachable, then all the intermediate graphs G|
and G created by the procedure are such that |E | > |V, | and |E+| > |V7].
Also, note that for every graph G, each edge (u,v) € E contributes an edge to at
most one of E; and E+. That is, |[E| |+ |ET| < |E|- Indeed, an edge {u,v) € E
isin E, only if {u,v) € Epig and Cpyiq(u) = Ciq(v), and it contributes an edge
to ET only if it satisfies the complementary condition, namely (u,v) & E,;q or
Cria(u) # Cria(v).

Let R(s,d) denote the cost of solve({(D,V, E,l),i,j), where s = |E| and
d=j—i+1 (ie., d is the size of the set {i,...,7} within which a witness is
searched). Since we can find the MSCC’s of a graph in time O(|V| + |E|) and
s = |E| > |V|, the cost of steps (1-5) of the algorithm is O(s), thus the cost of
solve(G, 1, j) is O(s) plus the cost of the two recursive calls to solve in steps (6)
and (7). Hence, we can describe R(s,d), for all s > 0, by a recurrence as follows.

— R(s,0) = 0(1).
— For all d > 1, we have R(s,d) = O(s) + R(s1, |%52]) + R(sT, [%42]), with

s +s1 <s.

It is easy to see that R(s,1) = R(s,2) = O(s). We prove that for all d > 2,
we have R(s,d) = O(slogd). In particular, the cost of solve((D,V, E,1),1, 2k)
is O((|V| + |E|) log k).

Let b be a constant such that for all s, we have R(s,2) < bs. Note that the
cost of steps (1-5) is then at most bs. We prove that there is ¢ > b such that
for all d > 2, we have that R(s,d) < cslog, d, thus R(s,d) = O(slog, d). The
proof proceeds by an induction on d. Recall that R(s,2) < bs, hence R(s,2) <
cslog, 2, and the induction claim holds for the base d = 2. Now, assume that
for all 2 < d' < d, we have that R(s,d') < cslog, d'. By the recurrence above,
R(s,d+1) < cs+ R(sy1,|2]) + R(sT,[4]), for s, and st with s; + sT < s.
Then, by the induction hypothesis, R(s,d+1) < cs+cs1 log,| 4] +csTlog,[4] <
cs(1 +1log, [4]) < cslog,(d + 1), and we are done.

O

References

[BGS00] R. Bloem, H.N. Gabow, and F. Somenzi. An algorithm for strongly connected
component analysis in nlog n symbolic steps. In Formal Methods in Computer
Aided Design, Lecture Notes in Computer Science. Springer-Verlag, 2000.

[Biic62]

[CESS6]

[ChoT4]

[EJ88]

[EJO1]

[HT96]

[Jur9sg]

[TW95]

[Koz83]

[Kur94]

J.R. Biichi. On a decision method in restricted second order arithmetic. In
Proc. Internat. Congr. Logic, Method. and Philos. Sci. 1960, pages 1-12, Stan-
ford, 1962. Stanford University Press.

E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transac-
tions on Programming Languages and Systems, 8(2):244-263, January 1986.

Y. Choueka. Theories of automata on w-tapes: A simplified approach. Journal
of Computer and System Sciences, 8:117-141, 1974.

E.A. Emerson and C. Jutla. The complexity of tree automata and logics of
programs. In Proc. 29th IEEE Symp. on Foundations of Computer Science,
pages 328-337, White Plains, October 1988.

E.A. Emerson and C. Jutla. Tree automata, p-calculus and determinacy. In
Proc. 82nd IEEE Symp. on Foundations of Computer Science, pages 368-377,
San Juan, October 1991.

M. Henzinger and J.A. Telle. Faster algorithms for the nonemptiness of Streett
automata and for communication protocol pruning. In Proc. 5th Scandinavian
Workshop on Algorithm Theory, volume 1097 of Lecture Notes in Computer
Science, pages 10-20. Springer-Verlag, 1996.

M. Jurdzinski. Deciding the winner in parity games is in up N co-up. Infor-
mation Processing Letters, 68(3):119-124, 1998.

D. Janin and I. Walukiewicz. Automata for the modal p-calculus and re-
lated results. In Proc. 20th International Symp. on Mathematical Foundations
of Computer Science, Lecture Notes in Computer Science, pages 552-562.
Springer-Verlag, 1995.

D. Kozen. Results on the propositional p-calculus. Theoretical Computer
Science, 27:333-354, 1983.

R.P. Kurshan. Computer Aided Verification of Coordinating Processes.
Princeton Univ. Press, 1994.

[McN66] R. McNaughton. Testing and generating infinite sequences by a finite au-

[Mos84]

[Rab69]
[SN99]

[Tar72]
[Tar82]

[VWS86]

[VW94]

tomaton. Information and Control, 9:521-530, 1966.

A.W. Mostowski. Regular expressions for infinite trees and a standard form of
automata. In Computation Theory, volume 208 of Lecture Notes in Computer
Science, pages 157-168. Springer-Verlag, 1984.

M.O. Rabin. Decidability of second order theories and automata on infinite
trees. Transaction of the AMS, 141:1-35, 1969.

H. Seidl and D. Niwinski. On distributive fixed-point expressions. Theoretical
Informatics and Applications, 33(4-5):427-446, 1999.

R.E. Tarjan. Depth first search and linear graph algorithms. STAM Journal
of Computing, 1(2):146-160, 1972.

R.E. Tarjan. A hierarchical clustering algorithm using strong components.
Information Processing Letters, 14:26-29, 1982.

M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification. In Proc. 1st Symp. on Logic in Computer Science, pages
332-344, Cambridge, June 1986.

M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Informa-
tion and Computation, 115(1):1-37, November 1994.

