${\rm semilinear}\ {\rm equation}$

$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = u^2$$

Initial condition:

$$u(0,y)=1$$

initial curve:

$$x = 0, \quad y = t, \quad u = 1$$

The characteristic equations are:

$$\frac{\partial x}{\partial s} = 1$$
$$\frac{\partial y}{\partial s} = 1$$
$$\frac{\partial u}{\partial s} = u^2$$

 So

$$x = s + x_0 = s$$
$$y = s + y_0 = s + t$$

Also

$$\begin{aligned} \frac{du}{u^2} &= ds \\ -\frac{1}{u} &= s+c \\ u &= -\frac{1}{s+c} = \frac{-1}{s+\frac{1}{u_0}} = \frac{u_0}{1-su_0} = \frac{1}{1-s} \end{aligned}$$

Inverting

$$s = x$$
$$t = y - x$$

 So

$$u = \frac{1}{1 - x}$$

Note at x = 1 we have $u = \infty$.

Homework: consider same equation with IC $u = e^{-y^2}$

quasilinear equation

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 2t$$

Initial condition:

$$u(x,0) = x = x_0$$

The characteristic equations are:

$$\frac{\partial t}{\partial s} = 1$$
$$\frac{\partial x}{\partial s} = u \qquad \text{So } \frac{dx}{dt} = u$$
$$\frac{\partial u}{\partial s} = 2t$$

Note, that the characteristic curves now depend on u. However, the first equation integrates to t=s (remember t is time). So $\frac{\partial u}{\partial s}=2t$ becomes $\frac{\partial u}{\partial t}=2t$

$$u(x,t) = t^{2} + C$$
 $C = u - t^{2} = u(x,0) = x_{0}$

The slope of the characteristics is now given by

$$\frac{dx}{dt} = u = x_0 + t^2$$

So the characteristic curve is given by

$$x = \frac{1}{3}t^3 + x_0(t+1)$$

or $x_0 = \frac{x - \frac{1}{3}t^3}{(t+1)}$

On the characteristic

$$C = x_0 = \frac{3x - t^2}{3(t+1)}$$

 So

$$u(x,t) = t^{2} + C = t^{2} + \frac{3x - t^{2}}{3(t+1)}$$

So in this case the solution is well defined for all t > 0

quasilinear equation

$$\frac{\partial u}{\partial t} + a(u)\frac{\partial u}{\partial x} = 0$$

Represents fluid flow and traffic flow.

So $\frac{du}{dt} = 0$ (i.e. *u* is constant) along the characteristics $\frac{dx}{dt} = a(u)$. Since *u* is constant along the characteristic so is a(u). Hence $\frac{dx}{dt}$ is constant and so the characteristics are straight lines.

 \mathbf{So}

$$u(x,t) = f(x - a(u)t)$$

This an implicit solution for u. Differentiating we get

$$u_t = \frac{-a}{1 + f'a_u t} f' \quad u_x = \frac{1}{1 + f'a_u t} f'$$

Assume $a_u > 0$ In particular $a_u \neq 0$. The slope is $\frac{dt}{dx} = \frac{1}{a(u(x_0, t_0))} = \frac{1}{a(f(x_0))}$.

case I: f' > 0. Then u at t = 0 increases and the slope $\frac{1}{u}$ decreases. So the solution and its derivatives are bounded.

case II: f' < 0. Then u at t = 0 decreases and the slope $\frac{1}{u}$ increases. So the solution and its derivatives are unbounded. u_x and u_t approach infinity as $t \to \frac{-1}{u'_0 a_u} = \frac{1}{|u'_0|a_u}$.

So we have two cases:

- expansion wave $a(f(z)) \ge a(f(w))$ whenever $z \le w$. Solution and derivatives are bounded.
- compression wave = shock wave. Solution and derivatives may become unbounded.

Physically this means that later air moves faster than earlier air.

Hence, this *seems* to imply that there is no solution beyond some t_* .

However, physically the fluid continues to exist beyond the singularity!

Hence, we need to define a generalized solution that allows solutions for all time.