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so v = h(x+ ct) and
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The general solution is a particular solution by the general solution to the
homogenous equation. To �nd a particular soltion let us guess u = f(x+ ct).
Then @u

@t + c
@u
@x = cf 0 + cf 0 = h. So f 0 = h

2c .
The general solution to the homogenous equation is u = g(x� ct) .
So the general solution of the wave equations is

u(x; t) = f(x+ ct) + g(x� ct)

i.e. a wave going to the right plus a wave moving to the left both at speed c .

Method II: change of variables

� = x+ ct � = x� ct
0 = utt � c2uxx = �4c2u��
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So
u(x; t) = f(�) + g(�) = f(x+ ct) + g(x� ct)

For now we have two arbitraty functions in C2.
Note: If there are discontinuouities in the initial data they travel along the
characteristics x+ ct = constant and x� ct = constant . Across the char-
acteristics the solution is smooth.

Initial data - D�Alembart

Consider the following initial value problem
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From the above we know

u(x; t) = f(x+ ct) + g(x� ct)
'(x) = u(x; 0) = f(x) + g(x)
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Solving
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Integrating we get

f(s) =
'(s)

2
+
1

2c

Z s

 (z)dz +A

g(s) =
'(s)

2
� 1

2c

Z s

 (z)dz +B

D�Alembart�s formula
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Properties:

� the solution exists and is unique

� no part of the wave goes faster than the speed c. In particular it takes a
�nite time for propagation of signals (causality).

� In three dimensions signals move only at speed c (Huygen�s principle)

� In two dimensions the entire domain between the characteristics is
�lled (�atland). So echoes stay forever !!

� Domain of in�uence: Initial conditions within a region can a¤ect the so-
lution only for points/time within the characteristics

� Domain of Dependence: The solution at point/time (x,t) is in�uence only
by initial data at (x-ct, x+ct)

� Cauchy data on noncharacteristic surface determines the solution

� The solution depends continuously on the initial and boundary data.
So the equation is well posed

� Discontinuities in second derivative propagate along characteristics

� D�Alembert�s solution makes sense even if the initial data are such that
f and g are only piecewise di¤erentiable. Hence, we de�ne a generalized
solution as a limit of "classical solutions". So we have solutions that don�t
have two continuous derivatives everywhere.

Discuss vibrating string and drum
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Energy

We start with the wave equation and multiply by u and integrate. Let c2 = T
�

De�ne: Kinetic energy (KE) = 1
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So we have conservation of energy
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Telegraph Equation
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So we have loss of energy
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De�ne a new variable by v(x; t) = e�tu(x; t) or u(x; t) = e��tv(x; t) . Then
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So the telegraph equation in terms of v becomes
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Klein-Gordon Equation
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Similar to equation for v but opposite sign of lower order term
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