Wave Equation
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The general solution is a particular solution by the general solution to the
homogenous equation. To find a particular soltion let us guess u = f(z + ct).
Then &% +c2% = cf' +cf = h. So f' = L.

The general solution to the homogenous equation is u = g(x — ct) .
So the general solution of the wave equations is

u(z,t) = f(z+ct) + g(z —ct)
i.e. a wave going to the right plus a wave moving to the left both at speed c .

Method II: change of variables
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So
u(z,t) = f(§) +9(n) = f(z+ct) + gz —ct)

For now we have two arbitraty functions in C2.

Note: If there are discontinuouities in the initial data they travel along the
characteristics « + ¢t = constant and 1z — ¢t = constant . Across the char-
acteristics the solution is smooth.

Initial data - D’Alembart

Consider the following initial value problem
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u(z,0) = p(z)
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From the above we know

u(@,t) = f(z+ct) + g(x —ct)
p(x) = u(z,0) = f(z) + g(z)
%(w,t) =cf'(x +ct) —cg'(z — ct)
v(a) = 2 (w,0) = [ () ~ /(@)

Solving

Integrating we get

D’Alembart’s formula
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Properties:

the solution exists and is unique

no part of the wave goes faster than the speed c. In particular it takes a
finite time for propagation of signals (causality).

— In three dimensions signals move only at speed ¢ (Huygen’s principle)

— In two dimensions the entire domain between the characteristics is
filled (flatland). So echoes stay forever !!

Domain of influence: Initial conditions within a region can affect the so-
lution only for points/time within the characteristics

Domain of Dependence: The solution at point/time (x,t) is influence only
by initial data at (x-ct, x+ct)

Cauchy data on noncharacteristic surface determines the solution

The solution depends continuously on the initial and boundary data.

So the equation is well posed
Discontinuities in second derivative propagate along characteristics

D’Alembert’s solution makes sense even if the initial data are such that
f and g are only piecewise differentiable. Hence, we define a generalized
solution as a limit of "classical solutions". So we have solutions that don’t
have two continuous derivatives everywhere.

Discuss vibrating string and drum
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Energy

We start with the wave equation and multiply by u and integrate. Let c? = %
Define: Kinetic energy (KE) = 1 [p (%)2 dx

Potential energy (PE) =1 [T (g—;)Q dx

Total energy T = KE + PE = 1 [* {p (%)2 +T (%)2} dx
Then
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So we have conservation of energy
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Telegraph Equation
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So we have loss of energy
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Define a new variable by v(z,t) = e%u(x,t) or u(x,t) = e P*v(z,t) . Then
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So the telegraph equation in terms of v becomes
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Klein-Gordon Equation
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Similar to equation for v but opposite sign of lower order term



