
Compiler Construction
Winter 2020

Recitation 5:
Code Generation*

Yotam Feldman

Based on materials by Yannis Smaragdakis
and slides by Guy Golan-Gueta

* Low-level IR



Code Generation

Abstract 
Syntax Tree

(AST)

Intermediate 
code generation

LLVM
code

Target
code generation

x86
code

Ex. 2 clang

Today: compiling basic, imperative features



Code Generation

• Valid programs (ASTs) compile to an LLVM program that’s
– valid,
– executes,
– has the same input-output and external behavior (console output)

• Rules for valid MiniJava ASTs:
https://www.cs.tau.ac.il/research/yotam.feldman/courses/wcc20/s
emantic.html

Abstract 
Syntax Tree

(AST)

Intermediate 
code generation

LLVM
code

https://www.cs.tau.ac.il/research/yotam.feldman/courses/wcc20/semantic.html


LLVM Recap

• Typed

• Unbounded number of SSA registers

• Stack allocation alloca

• Heap allocation and bitcast

• load and store

• Branch and conditional branch: br

• Array and getelementptr

• Basic binary operations: add, sub…

• Function calls: call and ret



Translation (IR Lowering)

Visitor(s) generate LLVM declarations and code

• Class declarations

• Statements

• Expressions



Local variables

• Local variables translated to stack locations

• Load & store

– Too early to optimize!

Demo



Store & Load According to Static Type

• Assume type safety!

– Otherwise, the behavior is undefined

• Use symbol table to obtain the type from the declaration

Demo x 2



Simple Expressions

Demo
• TR[e] = LIR translation of AST expression e

– A sequence of IR instructions

– Use temporary variables (IR registers) to store intermediate values 
during translation



Compound Expressions

• SSA, need to allocate fresh registers

• Order of evaluation is important

– Think about method calls that perform mutations

Demo



IdExpr

id = x

AddExpr

e1 e2

id = y

visit

visit

(left)

visit

(right)

TR[x + y]

%_0 = load i32, i32* %x 

%_1 = load i32, i32* %y 

%_2 = add i32 %_0, %_1
IdExpr

Compound Expressions: Example



IdExpr

id = x

AddExpr

left right

num=42

visit

visit

(left)

visit

(right)

TR[x + 42]

%_0 = load i32, i32* %x 

%_2 = add i32 %_0, 42

Translating expressions – example

IntLitExpr

(%_1 = i32 42 --- invalid) 



Translating Statement Blocks

TR[{ s1; s2; … ; sN }] TR[s1]

TR[s2]

TR[s3]

…

TR[sN]



Translating If-Then-Else

• Conditional branch

• Need to generate code evaluating the condition

Demo



Translating Short-Circuit And

Generate code for

• Evaluating the first operand

• If true, continuing; otherwise skipping

• Evaluating the second operand

• Joining using the phi instruction

Demo



Translating While

• Jump back to beginning of the loop

• Exercise 



Arrays

• Allocation

• Access

• Assignment

• Dynamic checks

– “ArrayIndexOutOfBoundsException”

• Also: array length (exercise )

3 1 2 3

R1:[1,2,3]

i32

Demo



Summary

• Local (stack) variables

• Generating code for expressions

• Control structures

• Short-circuit and

• Arrays

• Upcoming: object-oriented code generation



Exercise #2
• Start early

• Read the requirements carefully!

• Reference compilation examples

• Extend symbol table and class hierarchy analysis from ex1

• Assume that the program is semantically valid 
– List of rules

– For the type in LLVM instructions, use the declared type and assume that 
the usage is valid

• Class fields and (instance) method calls – next week
– From today: local variables, expressions, control flow, arrays…

• Submission instructions

https://github.com/yotamfe/compilers-project-2020-public/tree/master/examples/ex2
https://www.cs.tau.ac.il/research/yotam.feldman/courses/wcc20/semantic.html#semantic-checks
file:///C:/Users/yotam/Documents/compilation/web/codegen.html#submission

