
Compiler Construction
Winter 2020

Recitation 8:
Static Analysis

Yotam Feldman



Semantic Analysis

Semantic
analysis

Abstract 
Syntax Tree

(AST)

Intermediate 
code generation

LLVM
code

Target
code generation

x86
code



Uninitialized Variables

int x;

int y;

y = x;

compilation error
(semantic analysis)

What would happen at runtime?



Initialized Fields

class A {

int x;

public int bar() {

int y;

y = x;

return y;

}

}

Does this compile?

What happens at runtime?



Initialized Fields

class A {

A x;

public int bar() {

return x.bar2();

}

public int bar2() {

return 2;

}

}

Does this compile?

What happens at runtime?



Initialized Array Components

int[] arr;
int y;

arr = new int[5];

y = arr[3];

Does this compile?

What happens at runtime?



Initialized Array Components

int[] arr;
int y;

arr = new int[5];

y = arr[3];

Does this compile?

compilation error
(semantic analysis)



Initialized Formal Parameters

class A {

public int bar(int x) {
int y;

y = x;

return y;
}

}

Does this compile?

What happens at runtime?



Initialization in Java

…

https://docs.oracle.com/javase/specs/jls/se7/html/jls-4.html#jls-4.12.5


Initialization in Java

https://docs.oracle.com/javase/specs/jls/se7/html/jls-4.html#jls-4.12.5


Definite Initialization

int x;

int y;
if (…) {

x = 5;

}

y = x;

Does this compile?

What happens at runtime?



Definite Initialization: Static Analysis

int x;

int y;

int n;

n = 5;
if (n > 2) {

x = 5;

} else {
}

y = x;

Does this compile?

What happens at runtime?

compilation error
(semantic analysis)

overapproximation





Is-Initialized (Join-Semi)Lattice

tt ff

⊤

tt ⊔ tt ? tt

ff ⊔ ff ? ff

tt ⊔ ff ? ⊤

tt ⊔ ⊤ ? ⊤

ff ⊔ ⊤ ? ⊤

tt, ff ⊑ ⊤

tt ⊑ tt

ff ⊑ ff

⊤ ⊑ ⊤



Abstract Domain

• Each element is a map from variables to tt, ff, ⊤
[𝑥1 ↦ 𝑎1, 𝑥2 ↦ 𝑎2, … , 𝑥𝑚 ↦ 𝑎𝑚] , 𝑎𝑖 ∈ tt, ff, ⊤

• Order: 𝑥1 ↦ 𝑎1, … , 𝑥𝑚 ↦ 𝑎𝑚 ⊑ 𝑥1 ↦ 𝑏1, … , 𝑥𝑚 ↦ 𝑏𝑚 iff
𝑎1 ⊑ 𝑏1, … , 𝑎𝑚 ⊑ 𝑏𝑚

(⊤, ⊤)

(ff, ⊤) (tt, ⊤) (⊤, ff)(⊤, tt)

(ff, ff) (ff, tt) (tt, ff)(tt, tt)



Abstract Domain

• Each element is a map from variables to tt, ff, ⊤
[𝑥1 ↦ 𝑎1, 𝑥2 ↦ 𝑎2, … , 𝑥𝑚 ↦ 𝑎𝑚] , 𝑎𝑖 ∈ tt, ff, ⊤

• Order: 𝑥1 ↦ 𝑎1, … , 𝑥𝑚 ↦ 𝑎𝑚 ⊑ 𝑥1 ↦ 𝑏1, … , 𝑥𝑚 ↦ 𝑏𝑚 iff
𝑎1 ⊑ 𝑏1, … , 𝑎𝑚 ⊑ 𝑏𝑚

• Join: 𝑥1 ↦ 𝑎1, … , 𝑥𝑚 ↦ 𝑎𝑚 ⊔ 𝑥1 ↦ 𝑏1, … , 𝑥𝑚 ↦ 𝑏𝑚 =
[𝑥1 ↦ 𝑎1 ⊔ 𝑏1, … , 𝑥𝑚 ↦ 𝑎𝑚 ⊔ 𝑏𝑚]

• Transformers.



Uninitialized Variables

int x;

int y;

y = x; x is not initialized

[𝑥 ↦ ff, 𝑦 ↦ ff]
[𝑥 ↦ ff, 𝑦 ↦ ff]



Assignment

int x;

int y;

x = 5;

y = x;

[𝑥 ↦ ff, 𝑦 ↦ ff]
[𝑥 ↦ ff, 𝑦 ↦ ff]
[𝑥 ↦ tt, 𝑦 ↦ ff]



Assignment

int x;

int y;
y = 7;

y = x; x is not initialized

[𝑥 ↦ ff, 𝑦 ↦ ff]
[𝑥 ↦ ff, 𝑦 ↦ ff]
[𝑥 ↦ ff, 𝑦 ↦ ff]



If

int x;

int y;
if (…) {

x = 5;

} else {

}

y = x;
compilation error
(semantic analysis)

[𝑥 ↦ ff, 𝑦 ↦ ff]

[𝑥 ↦ ff, 𝑦 ↦ ff]

[𝑥 ↦ ff, 𝑦 ↦ ff]

[𝑥 ↦ tt, 𝑦 ↦ ff]

[𝑥 ↦ ff, 𝑦 ↦ ff]

𝑥 ↦ ff, 𝑦 ↦ ff ⊔ 𝑥 ↦ tt, 𝑦 ↦ ff

= 𝑥 ↦ ⊤, 𝑦 ↦ ff



If

int x;

int y;
if (…) {

x = 5;

} else {

x = 7;
}

y = x;

[𝑥 ↦ ff, 𝑦 ↦ ff]

[𝑥 ↦ ff, 𝑦 ↦ ff]

[𝑥 ↦ ff, 𝑦 ↦ ff]

[𝑥 ↦ tt, 𝑦 ↦ ff]

[𝑥 ↦ ff, 𝑦 ↦ ff]

𝑥 ↦ tt, 𝑦 ↦ ff ⊔ 𝑥 ↦ tt, 𝑦 ↦ ff

= 𝑥 ↦ tt, 𝑦 ↦ ff

[𝑥 ↦ tt, 𝑦 ↦ ff]



Inside a Branch

int x;

int y;
if (…) {

x = 5;

y = x;

} else {

}

[𝑥 ↦ ff, 𝑦 ↦ ff]

[𝑥 ↦ ff, 𝑦 ↦ ff]

[𝑥 ↦ tt, 𝑦 ↦ ff]

[𝑥 ↦ ff, 𝑦 ↦ ff]



While

int x;

int y;
while (…) {

x = 5;

}

y = x;

compilation error
(semantic analysis)

[𝑥 ↦ ff, 𝑦 ↦ ff]

[𝑥 ↦ ff, 𝑦 ↦ ff]

[𝑥 ↦ tt, 𝑦 ↦ ff]

[𝑥 ↦ ff, 𝑦 ↦ ff]

𝑥 ↦ ff, 𝑦 ↦ ff ⊔ 𝑥 ↦ tt, 𝑦 ↦ ff

= 𝑥 ↦ ⊤, 𝑦 ↦ ff



Suggested Implementation

• Set of definitely initialized local variables after execution of 
statement at each point in the AST

• Take the join after visiting children

• Store set on stack before visiting a child corresponding to a 
branch



Definite Initialization in Java

• https://docs.oracle.com/javase/specs/jls/se7/html/jls-16.html

• Handles if & while conditions a bit more precisely

• Handles all Java features

https://docs.oracle.com/javase/specs/jls/se7/html/jls-16.html


What If It’s a False Alarm?

• In semantic analysis – part of the spec,
part of the interface with the programmer

• Assume the worst and do no harm

– don’t perform the optimization

https://docs.oracle.com/javase/specs/jls/se7/html/jls-16.html


Static Type Analysis as Static Analysis

int boolean

⊤

int[]

A C …1 2 … true false …

…
…

B

…

Object



Static vs. Dynamic Checks

• Could we prove at compile time (= semantic checks, static 
analysis) that array accesses are in bounds?

– In some cases, but not all of them

– Unless we restrict the programmer, and forbid (many) valid programs

• Could we check initialization at runtime instead?

– Yes, with overhead

– (Is it worth it?)



Summary

• Initialization in Java

• Definite initialization in Java

• Static analysis

• Abstract interpretation

• Ex. 3


