CGAL 6.1 - 2D and 3D Linear Geometry Kernel
|
#include <Concepts/FunctionObjectConcepts.h>
AdaptableBinaryFunction
Operations | |
A model of this concept must provide: | |
bool | operator() (const Kernel::Sphere_3 &s, const Kernel::Point_3 &p) |
returns true iff p lies on the bounded side of s . | |
bool | operator() (const Kernel::Tetrahedron_3 &t, const Kernel::Point_3 &p) |
returns true iff p lies on the bounded side of t . | |
bool | operator() (const Kernel::Iso_cuboid_3 &c, const Kernel::Point_3 &p) |
returns true iff p lies on the bounded side of c . | |
bool | operator() (const Kernel::Circle_3 &c, const Kernel::Point_3 &p) |
returns true iff p lies on the bounded side of c . | |
bool | operator() (const Kernel::Sphere_3 &s1, const Kernel::Sphere_3 &s2, const Kernel::Point_3 &a, const Kernel::Point_3 &b) |
returns true iff the line segment ab is inside the union of the bounded sides of s1 and s2 . | |
bool Kernel::HasOnBoundedSide_3::operator() | ( | const Kernel::Circle_3 & | c, |
const Kernel::Point_3 & | p | ||
) |
returns true iff p
lies on the bounded side of c
.
bool Kernel::HasOnBoundedSide_3::operator() | ( | const Kernel::Iso_cuboid_3 & | c, |
const Kernel::Point_3 & | p | ||
) |
returns true iff p
lies on the bounded side of c
.
bool Kernel::HasOnBoundedSide_3::operator() | ( | const Kernel::Sphere_3 & | s, |
const Kernel::Point_3 & | p | ||
) |
returns true iff p
lies on the bounded side of s
.
bool Kernel::HasOnBoundedSide_3::operator() | ( | const Kernel::Sphere_3 & | s1, |
const Kernel::Sphere_3 & | s2, | ||
const Kernel::Point_3 & | a, | ||
const Kernel::Point_3 & | b | ||
) |
returns true iff the line segment ab
is inside the union of the bounded sides of s1
and s2
.
bool Kernel::HasOnBoundedSide_3::operator() | ( | const Kernel::Tetrahedron_3 & | t, |
const Kernel::Point_3 & | p | ||
) |
returns true iff p
lies on the bounded side of t
.