CGAL 6.1 - 2D and 3D Linear Geometry Kernel
|
#include <Concepts/FunctionObjectConcepts.h>
AdaptableBinaryFunction
Operations | |
A model of this concept must provide: | |
bool | operator() (const Kernel::Sphere_3 &s, const Kernel::Point_3 &p) |
returns true iff p lies on the unbounded side of s . | |
bool | operator() (const Kernel::Tetrahedron_3 &t, const Kernel::Point_3 &p) |
returns true iff p lies on the unbounded side of t . | |
bool | operator() (const Kernel::Iso_cuboid_3 &c, const Kernel::Point_3 &p) |
returns true iff p lies on the unbounded side of c . | |
bool | operator() (const Kernel::Circle_3 &c, const Kernel::Point_3 &p) |
returns true iff p lies on the unbounded side of c . | |
bool Kernel::HasOnUnboundedSide_3::operator() | ( | const Kernel::Circle_3 & | c, |
const Kernel::Point_3 & | p | ||
) |
returns true iff p
lies on the unbounded side of c
.
bool Kernel::HasOnUnboundedSide_3::operator() | ( | const Kernel::Iso_cuboid_3 & | c, |
const Kernel::Point_3 & | p | ||
) |
returns true iff p
lies on the unbounded side of c
.
bool Kernel::HasOnUnboundedSide_3::operator() | ( | const Kernel::Sphere_3 & | s, |
const Kernel::Point_3 & | p | ||
) |
returns true iff p
lies on the unbounded side of s
.
bool Kernel::HasOnUnboundedSide_3::operator() | ( | const Kernel::Tetrahedron_3 & | t, |
const Kernel::Point_3 & | p | ||
) |
returns true iff p
lies on the unbounded side of t
.