next up previous
Next: Refinements Up: The CLICK Algorithm Previous: Probabilistic Assumptions

The Basic CLICK Algorithm

The CLICK algorithm represents the input data as a weighted similarity graph G = (V,E). In this graph vertices correspond to elements and edge weights are derived from the similarity values. The weight wij of an edge (i,j) reflects the probability that i and j are mates, and is set to be

\begin{displaymath}w_{ij}=\log{\frac{p_{mates}f(S_{ij}\vert\textrm{$i$ ,$j$\spac...
...{mates})f(S_{ij}\vert\textrm{$i$ ,$j$\space are non-mates})}}
\end{displaymath}

where $f(S_{ij}\vert\textrm{$i$ ,$j$\space are mates})=f(S_{ij}\vert\mu_T,\sigma_T)$ is the value of the probability density function for mates at Sij:

\begin{displaymath}f(S_{ij}\vert\textrm{$i$ ,$j$\space are mates})=\frac{1}{\sqrt{2\pi}\sigma_T}
e^{-\frac{(S_{ij}-\mu_T)^2}{2\sigma_T^2}}
\end{displaymath}

Similarly, $f(S_{ij}\vert\textrm{$i$ ,$j$\space are non-mates})$ is the value of the probability density function for non-mates. The basic CLICK algorithm is defined in figure 11.13.
  
Figure 11.13: The Basic-CLICK algorithm
\framebox{
{
\begin{minipage}{\textwidth}
\begin{tabbing}
\ \ \ \ \= \ \ ...
...bf end\ if\ }{} \- \\
{\small\bf end}
\end{tabbing}
\end{minipage}
}
}

The idea behind the algorithm the following: given a connected graph G, we would like to decide whether V(G) is a subset of some true cluster, or V(G) contains elements from at least two true clusters. In the first case we say that G is pure. In order to make this decision we test for each cut C in G the following two hypotheses: G is declared a kernel if H1 is more probable for all cuts. Using the following lemma (11.6), we can simply calculate the minimum weighted cut to determine whether G is a kernel.
 \begin{lemma}
$G$\space is a kernel iff $MinWeightCut(G)>0$ .
\end{lemma}

\begin{proof}Using Bayes Theorem, it can be shown that
\begin{displaymath}
W(C...
...rt C) \leq Pr(H_0^C\vert C)$ , therefore $G$\space is not a kernel.
\end{proof}

next up previous
Next: Refinements Up: The CLICK Algorithm Previous: Probabilistic Assumptions
Peer Itsik
2001-01-31